Merge pull request #1148 from YosysHQ/xc7mux

synth_xilinx to infer wide multiplexers using new '-widemux <min>' option
This commit is contained in:
Eddie Hung 2019-07-10 14:38:00 -07:00 committed by GitHub
commit 2f990a7319
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 415 additions and 49 deletions

View File

@ -13,6 +13,7 @@ Yosys 0.9 .. Yosys 0.9-dev
- Added "synth_ice40 -abc9" (experimental)
- Added "synth -abc9" (experimental)
- Added "script -scriptwire
- "synth_xilinx" to now infer wide multiplexers (-widemux <min> to enable)
Yosys 0.8 .. Yosys 0.8-dev

View File

@ -30,6 +30,7 @@ $(eval $(call add_share_file,share/xilinx,techlibs/xilinx/drams_map.v))
$(eval $(call add_share_file,share/xilinx,techlibs/xilinx/arith_map.v))
$(eval $(call add_share_file,share/xilinx,techlibs/xilinx/ff_map.v))
$(eval $(call add_share_file,share/xilinx,techlibs/xilinx/lut_map.v))
$(eval $(call add_share_file,share/xilinx,techlibs/xilinx/mux_map.v))
$(eval $(call add_share_file,share/xilinx,techlibs/xilinx/abc_xc7.box))
$(eval $(call add_share_file,share/xilinx,techlibs/xilinx/abc_xc7.lut))

View File

@ -3,17 +3,22 @@
# NB: Inputs/Outputs must be ordered alphabetically
# (with exceptions for carry in/out)
# F7BMUX slower than F7AMUX
# Average across F7[AB]MUX
# Inputs: I0 I1 S0
# Outputs: O
F7BMUX 1 1 3 1
217 223 296
F7MUX 1 1 3 1
204 208 286
# Inputs: I0 I1 S0
# Outputs: O
MUXF8 2 1 3 1
104 94 273
# Inputs: I0 I1 I2 I3 S0 S1
# Outputs: O
$__MUXF78 3 1 6 1
294 297 311 317 390 273
# CARRY4 + CARRY4_[ABCD]X
# Inputs: CYINIT DI0 DI1 DI2 DI3 S0 S1 S2 S3 CI
# Outputs: O0 O1 O2 O3 CO0 CO1 CO2 CO3
@ -21,7 +26,7 @@ MUXF8 2 1 3 1
# input/output and the entire bus has been
# moved there overriding the otherwise
# alphabetical ordering)
CARRY4 3 1 10 8
CARRY4 4 1 10 8
482 - - - - 223 - - - 222
598 407 - - - 400 205 - - 334
584 556 537 - - 523 558 226 - 239
@ -34,20 +39,20 @@ CARRY4 3 1 10 8
# SLICEM/A6LUT
# Inputs: A0 A1 A2 A3 A4 D DPRA0 DPRA1 DPRA2 DPRA3 DPRA4 WCLK WE
# Outputs: DPO SPO
RAM32X1D 4 0 13 2
RAM32X1D 5 0 13 2
- - - - - - 631 472 407 238 127 - -
631 472 407 238 127 - - - - - - - -
# SLICEM/A6LUT
# Inputs: A0 A1 A2 A3 A4 A5 D DPRA0 DPRA1 DPRA2 DPRA3 DPRA4 DPRA5 WCLK WE
# Outputs: DPO SPO
RAM64X1D 5 0 15 2
RAM64X1D 6 0 15 2
- - - - - - - 642 631 472 407 238 127 - -
642 631 472 407 238 127 - - - - - - - - -
# SLICEM/A6LUT + F7[AB]MUX
# Inputs: A0 A1 A2 A3 A4 A5 A6 D DPRA0 DPRA1 DPRA2 DPRA3 DPRA4 DPRA5 DPRA6 WCLK WE
# Outputs: DPO SPO
RAM128X1D 6 0 17 2
RAM128X1D 7 0 17 2
- - - - - - - - 1009 998 839 774 605 494 450 - -
1047 1036 877 812 643 532 478 - - - - - - - - - -

View File

@ -93,11 +93,8 @@ module \$__XILINX_SHREG_ (input C, input D, input [31:0] L, input E, output Q, o
\$__XILINX_SHREG_ #(.DEPTH(DEPTH-64), .INIT(INIT[DEPTH-64-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_2 (.C(C), .D(T3), .L(L[4:0]), .E(E), .Q(T4));
if (&_TECHMAP_CONSTMSK_L_)
assign Q = T4;
else begin
MUXF7 fpga_mux_0 (.O(T5), .I0(T0), .I1(T2), .S(L[5]));
MUXF7 fpga_mux_1 (.O(T6), .I0(T4), .I1(1'b0 /* unused */), .S(L[5]));
MUXF8 fpga_mux_2 (.O(Q), .I0(T5), .I1(T6), .S(L[6]));
end
else
\$__XILINX_MUXF78 fpga_hard_mux (.I0(T0), .I1(T2), .I2(T4), .I3(1'bx), .S0(L[5]), .S1(L[6]), .O(Q));
end else
if (DEPTH > 97 && DEPTH < 128) begin
wire T0, T1, T2, T3, T4, T5, T6, T7, T8;
@ -107,11 +104,8 @@ module \$__XILINX_SHREG_ (input C, input D, input [31:0] L, input E, output Q, o
\$__XILINX_SHREG_ #(.DEPTH(DEPTH-96), .INIT(INIT[DEPTH-96-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_3 (.C(C), .D(T5), .L(L[4:0]), .E(E), .Q(T6));
if (&_TECHMAP_CONSTMSK_L_)
assign Q = T6;
else begin
MUXF7 fpga_mux_0 (.O(T7), .I0(T0), .I1(T2), .S(L[5]));
MUXF7 fpga_mux_1 (.O(T8), .I0(T4), .I1(T6), .S(L[5]));
MUXF8 fpga_mux_2 (.O(Q), .I0(T7), .I1(T8), .S(L[6]));
end
else
\$__XILINX_MUXF78 fpga_hard_mux (.I0(T0), .I1(T2), .I2(T4), .I3(T6), .S0(L[5]), .S1(L[6]), .O(Q));
end
else if (DEPTH == 128) begin
wire T0, T1, T2, T3, T4, T5, T6;
@ -121,12 +115,8 @@ module \$__XILINX_SHREG_ (input C, input D, input [31:0] L, input E, output Q, o
SRLC32E #(.INIT(INIT_R[128-1:96]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_3 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T5), .Q(T6), .Q31(SO));
if (&_TECHMAP_CONSTMSK_L_)
assign Q = T6;
else begin
wire T7, T8;
MUXF7 fpga_mux_0 (.O(T7), .I0(T0), .I1(T2), .S(L[5]));
MUXF7 fpga_mux_1 (.O(T8), .I0(T4), .I1(T6), .S(L[5]));
MUXF8 fpga_mux_2 (.O(Q), .I0(T7), .I1(T8), .S(L[6]));
end
else
\$__XILINX_MUXF78 fpga_hard_mux (.I0(T0), .I1(T2), .I2(T4), .I3(T6), .S0(L[5]), .S1(L[6]), .O(Q));
end
// For fixed length, if just 1 over a convenient value, decompose
else if (DEPTH <= 129 && &_TECHMAP_CONSTMSK_L_) begin
@ -158,3 +148,220 @@ module \$__XILINX_SHREG_ (input C, input D, input [31:0] L, input E, output Q, o
end
endgenerate
endmodule
`ifdef MIN_MUX_INPUTS
module \$__XILINX_SHIFTX (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
parameter [A_WIDTH-1:0] _TECHMAP_CONSTMSK_A_ = 0;
parameter [A_WIDTH-1:0] _TECHMAP_CONSTVAL_A_ = 0;
parameter [B_WIDTH-1:0] _TECHMAP_CONSTMSK_B_ = 0;
parameter [B_WIDTH-1:0] _TECHMAP_CONSTVAL_B_ = 0;
function integer A_WIDTH_trimmed;
input integer start;
begin
A_WIDTH_trimmed = start;
while (A_WIDTH_trimmed > 0 && _TECHMAP_CONSTMSK_A_[A_WIDTH_trimmed-1] && _TECHMAP_CONSTVAL_A_[A_WIDTH_trimmed-1] === 1'bx)
A_WIDTH_trimmed = A_WIDTH_trimmed - 1;
end
endfunction
generate
genvar i, j;
// Bit-blast
if (Y_WIDTH > 1) begin
for (i = 0; i < Y_WIDTH; i++)
\$__XILINX_SHIFTX #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(A_WIDTH-Y_WIDTH+1), .B_WIDTH(B_WIDTH), .Y_WIDTH(1'd1)) bitblast (.A(A[A_WIDTH-Y_WIDTH+i:i]), .B(B), .Y(Y[i]));
end
// If the LSB of B is constant zero (and Y_WIDTH is 1) then
// we can optimise by removing every other entry from A
// and popping the constant zero from B
else if (_TECHMAP_CONSTMSK_B_[0] && !_TECHMAP_CONSTVAL_B_[0]) begin
wire [(A_WIDTH+1)/2-1:0] A_i;
for (i = 0; i < (A_WIDTH+1)/2; i++)
assign A_i[i] = A[i*2];
\$__XILINX_SHIFTX #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH((A_WIDTH+1'd1)/2'd2), .B_WIDTH(B_WIDTH-1'd1), .Y_WIDTH(Y_WIDTH)) _TECHMAP_REPLACE_ (.A(A_i), .B(B[B_WIDTH-1:1]), .Y(Y));
end
// Trim off any leading 1'bx -es in A
else if (_TECHMAP_CONSTMSK_A_[A_WIDTH-1] && _TECHMAP_CONSTVAL_A_[A_WIDTH-1] === 1'bx) begin
localparam A_WIDTH_new = A_WIDTH_trimmed(A_WIDTH-1);
\$__XILINX_SHIFTX #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(A_WIDTH_new), .B_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) _TECHMAP_REPLACE_ (.A(A[A_WIDTH_new-1:0]), .B(B), .Y(Y));
end
else if (A_WIDTH < `MIN_MUX_INPUTS) begin
wire _TECHMAP_FAIL_ = 1;
end
else if (A_WIDTH == 2) begin
MUXF7 fpga_hard_mux (.I0(A[0]), .I1(A[1]), .S(B[0]), .O(Y));
end
else if (A_WIDTH <= 4) begin
wire [4-1:0] Ax;
if (A_WIDTH == 4)
assign Ax = A;
else
// Rather than extend with 1'bx which gets flattened to 1'b0
// causing the "don't care" status to get lost, extend with
// the same driver of F7B.I0 so that we can optimise F7B away
// later
assign Ax = {A[1], A};
\$__XILINX_MUXF78 fpga_hard_mux (.I0(Ax[0]), .I1(Ax[2]), .I2(Ax[1]), .I3(Ax[3]), .S0(B[1]), .S1(B[0]), .O(Y));
end
// Note that the following decompositions are 'backwards' in that
// the LSBs are placed on the hard resources, and the soft resources
// are used for MSBs.
// This has the effect of more effectively utilising the hard mux;
// take for example a 5:1 multiplexer, currently this would map as:
//
// A[0] \___ __ A[0] \__ __
// A[4] / \| \ whereas the more A[1] / \| \
// A[1] _____| | obvious mapping A[2] \___| |
// A[2] _____| |-- of MSBs to hard A[3] / | |__
// A[3]______| | resources would A[4] ____| |
// |__/ lead to: 1'bx ____| |
// || |__/
// || ||
// B[1:0] B[1:2]
//
// Expectation would be that the 'forward' mapping (right) is more
// area efficient (consider a 9:1 multiplexer using 2x4:1 multiplexers
// on its I0 and I1 inputs, and A[8] and 1'bx on its I2 and I3 inputs)
// but that the 'backwards' mapping (left) is more delay efficient
// since smaller LUTs are faster than wider ones.
else if (A_WIDTH <= 8) begin
wire [8-1:0] Ax = {{{8-A_WIDTH}{1'bx}}, A};
wire T0 = B[2] ? Ax[4] : Ax[0];
wire T1 = B[2] ? Ax[5] : Ax[1];
wire T2 = B[2] ? Ax[6] : Ax[2];
wire T3 = B[2] ? Ax[7] : Ax[3];
\$__XILINX_MUXF78 fpga_hard_mux (.I0(T0), .I1(T2), .I2(T1), .I3(T3), .S0(B[1]), .S1(B[0]), .O(Y));
end
else if (A_WIDTH <= 16) begin
wire [16-1:0] Ax = {{{16-A_WIDTH}{1'bx}}, A};
wire T0 = B[2] ? B[3] ? Ax[12] : Ax[4]
: B[3] ? Ax[ 8] : Ax[0];
wire T1 = B[2] ? B[3] ? Ax[13] : Ax[5]
: B[3] ? Ax[ 9] : Ax[1];
wire T2 = B[2] ? B[3] ? Ax[14] : Ax[6]
: B[3] ? Ax[10] : Ax[2];
wire T3 = B[2] ? B[3] ? Ax[15] : Ax[7]
: B[3] ? Ax[11] : Ax[3];
\$__XILINX_MUXF78 fpga_hard_mux (.I0(T0), .I1(T2), .I2(T1), .I3(T3), .S0(B[1]), .S1(B[0]), .O(Y));
end
else begin
localparam num_mux16 = (A_WIDTH+15) / 16;
localparam clog2_num_mux16 = $clog2(num_mux16);
wire [num_mux16-1:0] T;
wire [num_mux16*16-1:0] Ax = {{(num_mux16*16-A_WIDTH){1'bx}}, A};
for (i = 0; i < num_mux16; i++)
\$__XILINX_SHIFTX #(
.A_SIGNED(A_SIGNED),
.B_SIGNED(B_SIGNED),
.A_WIDTH(16),
.B_WIDTH(4),
.Y_WIDTH(Y_WIDTH)
) fpga_mux (
.A(Ax[i*16+:16]),
.B(B[3:0]),
.Y(T[i])
);
\$__XILINX_SHIFTX #(
.A_SIGNED(A_SIGNED),
.B_SIGNED(B_SIGNED),
.A_WIDTH(num_mux16),
.B_WIDTH(clog2_num_mux16),
.Y_WIDTH(Y_WIDTH)
) _TECHMAP_REPLACE_ (
.A(T),
.B(B[B_WIDTH-1-:clog2_num_mux16]),
.Y(Y));
end
endgenerate
endmodule
(* techmap_celltype = "$__XILINX_SHIFTX" *)
module _90__XILINX_SHIFTX (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
\$shiftx #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(A_WIDTH), .B_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) _TECHMAP_REPLACE_ (.A(A), .B(B), .Y(Y));
endmodule
module \$_MUX_ (A, B, S, Y);
input A, B, S;
output Y;
generate
if (`MIN_MUX_INPUTS == 2)
\$__XILINX_SHIFTX #(.A_SIGNED(0), .B_SIGNED(0), .A_WIDTH(2), .B_WIDTH(1), .Y_WIDTH(1)) _TECHMAP_REPLACE_ (.A({B,A}), .B(S), .Y(Y));
else
wire _TECHMAP_FAIL_ = 1;
endgenerate
endmodule
module \$_MUX4_ (A, B, C, D, S, T, Y);
input A, B, C, D, S, T;
output Y;
\$__XILINX_SHIFTX #(.A_SIGNED(0), .B_SIGNED(0), .A_WIDTH(4), .B_WIDTH(2), .Y_WIDTH(1)) _TECHMAP_REPLACE_ (.A({D,C,B,A}), .B({T,S}), .Y(Y));
endmodule
module \$_MUX8_ (A, B, C, D, E, F, G, H, S, T, U, Y);
input A, B, C, D, E, F, G, H, S, T, U;
output Y;
\$__XILINX_SHIFTX #(.A_SIGNED(0), .B_SIGNED(0), .A_WIDTH(8), .B_WIDTH(3), .Y_WIDTH(1)) _TECHMAP_REPLACE_ (.A({H,G,F,E,D,C,B,A}), .B({U,T,S}), .Y(Y));
endmodule
module \$_MUX16_ (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, S, T, U, V, Y);
input A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, S, T, U, V;
output Y;
\$__XILINX_SHIFTX #(.A_SIGNED(0), .B_SIGNED(0), .A_WIDTH(16), .B_WIDTH(4), .Y_WIDTH(1)) _TECHMAP_REPLACE_ (.A({P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A}), .B({V,U,T,S}), .Y(Y));
endmodule
`endif
`ifndef _ABC
module \$__XILINX_MUXF78 (O, I0, I1, I2, I3, S0, S1);
output O;
input I0, I1, I2, I3, S0, S1;
wire T0, T1;
parameter _TECHMAP_BITS_CONNMAP_ = 0;
parameter [_TECHMAP_BITS_CONNMAP_-1:0] _TECHMAP_CONNMAP_I0_ = 0;
parameter [_TECHMAP_BITS_CONNMAP_-1:0] _TECHMAP_CONNMAP_I1_ = 0;
parameter [_TECHMAP_BITS_CONNMAP_-1:0] _TECHMAP_CONNMAP_I2_ = 0;
parameter [_TECHMAP_BITS_CONNMAP_-1:0] _TECHMAP_CONNMAP_I3_ = 0;
parameter _TECHMAP_CONSTMSK_S0_ = 0;
parameter _TECHMAP_CONSTVAL_S0_ = 0;
parameter _TECHMAP_CONSTMSK_S1_ = 0;
parameter _TECHMAP_CONSTVAL_S1_ = 0;
if (_TECHMAP_CONSTMSK_S0_ && _TECHMAP_CONSTVAL_S0_ === 1'b1)
assign T0 = I1;
else if (_TECHMAP_CONSTMSK_S0_ || _TECHMAP_CONNMAP_I0_ === _TECHMAP_CONNMAP_I1_)
assign T0 = I0;
else
MUXF7 mux7a (.I0(I0), .I1(I1), .S(S0), .O(T0));
if (_TECHMAP_CONSTMSK_S0_ && _TECHMAP_CONSTVAL_S0_ === 1'b1)
assign T1 = I3;
else if (_TECHMAP_CONSTMSK_S0_ || _TECHMAP_CONNMAP_I2_ === _TECHMAP_CONNMAP_I3_)
assign T1 = I2;
else
MUXF7 mux7b (.I0(I2), .I1(I3), .S(S0), .O(T1));
if (_TECHMAP_CONSTMSK_S1_ && _TECHMAP_CONSTVAL_S1_ === 1'b1)
assign O = T1;
else if (_TECHMAP_CONSTMSK_S1_ || (_TECHMAP_CONNMAP_I0_ === _TECHMAP_CONNMAP_I1_ && _TECHMAP_CONNMAP_I1_ === _TECHMAP_CONNMAP_I2_ && _TECHMAP_CONNMAP_I2_ === _TECHMAP_CONNMAP_I3_))
assign O = T0;
else
MUXF8 mux8 (.I0(T0), .I1(T1), .S(S1), .O(O));
endmodule
`endif

View File

@ -169,11 +169,19 @@ module MUXF8(output O, input I0, I1, S);
assign O = S ? I1 : I0;
endmodule
`ifdef _ABC
(* abc_box_id = 3, lib_whitebox *)
module \$__XILINX_MUXF78 (output O, input I0, I1, I2, I3, S0, S1);
assign O = S1 ? (S0 ? I3 : I2)
: (S0 ? I1 : I0);
endmodule
`endif
module XORCY(output O, input CI, LI);
assign O = CI ^ LI;
endmodule
(* abc_box_id = 3, abc_carry="CI,CO", lib_whitebox *)
(* abc_box_id = 4, abc_carry="CI,CO", lib_whitebox *)
module CARRY4(output [3:0] CO, O, input CI, CYINIT, input [3:0] DI, S);
assign O = S ^ {CO[2:0], CI | CYINIT};
assign CO[0] = S[0] ? CI | CYINIT : DI[0];
@ -281,7 +289,7 @@ module FDPE_1 (output reg Q, input C, CE, D, PRE);
always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else if (CE) Q <= D;
endmodule
(* abc_box_id = 4, abc_scc_break="D,WE" *)
(* abc_box_id = 5, abc_scc_break="D,WE" *)
module RAM32X1D (
output DPO, SPO,
input D, WCLK, WE,
@ -299,7 +307,7 @@ module RAM32X1D (
always @(posedge clk) if (WE) mem[a] <= D;
endmodule
(* abc_box_id = 5, abc_scc_break="D,WE" *)
(* abc_box_id = 6, abc_scc_break="D,WE" *)
module RAM64X1D (
output DPO, SPO,
input D, WCLK, WE,
@ -317,7 +325,7 @@ module RAM64X1D (
always @(posedge clk) if (WE) mem[a] <= D;
endmodule
(* abc_box_id = 6, abc_scc_break="D,WE" *)
(* abc_box_id = 7, abc_scc_break="D,WE" *)
module RAM128X1D (
output DPO, SPO,
input D, WCLK, WE,

71
techlibs/xilinx/mux_map.v Normal file
View File

@ -0,0 +1,71 @@
/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
* 2019 Eddie Hung <eddie@fpgeh.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
// The purpose of these mapping rules is to allow preserve all (sufficiently
// wide) $shiftx cells during 'techmap' so that they can be mapped to hard
// resources, rather than being bit-blasted to gates during 'techmap'
// execution
module \$shiftx (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
parameter [B_WIDTH-1:0] _TECHMAP_CONSTMSK_B_ = 0;
parameter [B_WIDTH-1:0] _TECHMAP_CONSTVAL_B_ = 0;
generate
if (B_SIGNED) begin
if (_TECHMAP_CONSTMSK_B_[B_WIDTH-1] && (_TECHMAP_CONSTVAL_B_[B_WIDTH-1] == 1'b0 || _TECHMAP_CONSTVAL_B_[B_WIDTH-1] === 1'bx))
// Optimisation to remove B_SIGNED if sign bit of B is constant-0
\$shiftx #(
.A_SIGNED(A_SIGNED),
.B_SIGNED(0),
.A_WIDTH(A_WIDTH),
.B_WIDTH(B_WIDTH-1'd1),
.Y_WIDTH(Y_WIDTH)
) _TECHMAP_REPLACE_ (
.A(A), .B(B[B_WIDTH-2:0]), .Y(Y)
);
else
wire _TECHMAP_FAIL_ = 1;
end
else begin
if (((A_WIDTH + Y_WIDTH - 1) / Y_WIDTH) < `MIN_MUX_INPUTS)
wire _TECHMAP_FAIL_ = 1;
else
\$__XILINX_SHIFTX #(
.A_SIGNED(A_SIGNED),
.B_SIGNED(B_SIGNED),
.A_WIDTH(A_WIDTH),
.B_WIDTH(B_WIDTH),
.Y_WIDTH(Y_WIDTH)
) _TECHMAP_REPLACE_ (
.A(A), .B(B), .Y(Y)
);
end
endgenerate
endmodule

View File

@ -2,6 +2,7 @@
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
* (C) 2019 Eddie Hung <eddie@fpgeh.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
@ -77,6 +78,11 @@ struct SynthXilinxPass : public ScriptPass
log(" -nowidelut\n");
log(" do not use MUXF[78] resources to implement LUTs larger than LUT6s\n");
log("\n");
log(" -widemux <int>\n");
log(" enable inference of hard multiplexer resources (MUXF[78]) for muxes at or\n");
log(" above this number of inputs (minimum value 2, recommended value >= 5).\n");
log(" default: 0 (no inference)\n");
log("\n");
log(" -run <from_label>:<to_label>\n");
log(" only run the commands between the labels (see below). an empty\n");
log(" from label is synonymous to 'begin', and empty to label is\n");
@ -99,6 +105,7 @@ struct SynthXilinxPass : public ScriptPass
std::string top_opt, edif_file, blif_file, family;
bool flatten, retime, vpr, nobram, nodram, nosrl, nocarry, nowidelut, abc9;
int widemux;
void clear_flags() YS_OVERRIDE
{
@ -116,6 +123,7 @@ struct SynthXilinxPass : public ScriptPass
nocarry = false;
nowidelut = false;
abc9 = false;
widemux = 0;
}
void execute(std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
@ -186,6 +194,10 @@ struct SynthXilinxPass : public ScriptPass
nosrl = true;
continue;
}
if (args[argidx] == "-widemux" && argidx+1 < args.size()) {
widemux = std::stoi(args[++argidx]);
continue;
}
if (args[argidx] == "-abc9") {
abc9 = true;
continue;
@ -197,6 +209,9 @@ struct SynthXilinxPass : public ScriptPass
if (family != "xcup" && family != "xcu" && family != "xc7" && family != "xc6s")
log_cmd_error("Invalid Xilinx -family setting: %s\n", family.c_str());
if (widemux != 0 && widemux < 2)
log_cmd_error("-widemux value must be 0 or >= 2.\n");
if (!design->full_selection())
log_cmd_error("This command only operates on fully selected designs!\n");
@ -212,9 +227,9 @@ struct SynthXilinxPass : public ScriptPass
{
if (check_label("begin")) {
if (vpr)
run("read_verilog -lib -D _ABC -D_EXPLICIT_CARRY +/xilinx/cells_sim.v");
run("read_verilog -lib -icells -D _ABC -D_EXPLICIT_CARRY +/xilinx/cells_sim.v");
else
run("read_verilog -lib -D _ABC +/xilinx/cells_sim.v");
run("read_verilog -lib -icells -D _ABC +/xilinx/cells_sim.v");
run("read_verilog -lib +/xilinx/cells_xtra.v");
@ -224,21 +239,41 @@ struct SynthXilinxPass : public ScriptPass
run(stringf("hierarchy -check %s", top_opt.c_str()));
}
if (check_label("flatten", "(with '-flatten' only)")) {
if (flatten || help_mode) {
run("proc");
run("flatten");
}
}
if (check_label("coarse")) {
run("synth -run coarse");
run("proc");
if (help_mode || flatten)
run("flatten", "(if -flatten)");
run("opt_expr");
run("opt_clean");
run("check");
run("opt");
if (help_mode)
run("wreduce [-keepdc]", "(option for '-widemux')");
else
run("wreduce" + std::string(widemux > 0 ? " -keepdc" : ""));
run("peepopt");
run("opt_clean");
if (widemux > 0 || help_mode)
run("muxpack", " ('-widemux' only)");
// shregmap -tech xilinx can cope with $shiftx and $mux
// cells for identifying variable-length shift registers,
// so attempt to convert $pmux-es to the former
if (!nosrl || help_mode)
run("pmux2shiftx", "(skip if '-nosrl')");
// Also: wide multiplexer inference benefits from this too
if (!(nosrl && widemux == 0) || help_mode) {
run("pmux2shiftx", "(skip if '-nosrl' and '-widemux=0')");
run("clean", " (skip if '-nosrl' and '-widemux=0')");
}
run("techmap -map +/cmp2lut.v -D LUT_WIDTH=6");
run("alumacc");
run("share");
run("opt");
run("fsm");
run("opt -fast");
run("memory -nomap");
run("opt_clean");
}
if (check_label("bram", "(skip if '-nobram')")) {
@ -256,10 +291,41 @@ struct SynthXilinxPass : public ScriptPass
}
if (check_label("fine")) {
if (widemux > 0)
run("opt -fast -mux_bool -undriven -fine"); // Necessary to omit -mux_undef otherwise muxcover
// performs less efficiently
else
run("opt -fast -full");
run("memory_map");
run("dffsr2dff");
run("dff2dffe");
if (help_mode) {
run("simplemap t:$mux", " ('-widemux' only)");
run("muxcover <internal options>, ('-widemux' only)");
}
else if (widemux > 0) {
run("simplemap t:$mux");
constexpr int cost_mux2 = 100;
std::string muxcover_args = stringf(" -nodecode -mux2=%d", cost_mux2);
switch (widemux) {
case 2: muxcover_args += stringf(" -mux4=%d -mux8=%d -mux16=%d", cost_mux2+1, cost_mux2+2, cost_mux2+3); break;
case 3:
case 4: muxcover_args += stringf(" -mux4=%d -mux8=%d -mux16=%d", cost_mux2*(widemux-1)-2, cost_mux2*(widemux-1)-1, cost_mux2*(widemux-1)); break;
case 5:
case 6:
case 7:
case 8: muxcover_args += stringf(" -mux8=%d -mux16=%d", cost_mux2*(widemux-1)-1, cost_mux2*(widemux-1)); break;
case 9:
case 10:
case 11:
case 12:
case 13:
case 14:
case 15:
default: muxcover_args += stringf(" -mux16=%d", cost_mux2*(widemux-1)-1); break;
}
run("muxcover " + muxcover_args);
}
run("opt -full");
if (!nosrl || help_mode) {
@ -270,29 +336,36 @@ struct SynthXilinxPass : public ScriptPass
run("shregmap -tech xilinx -minlen 3", "(skip if '-nosrl')");
}
std::string techmap_files = " -map +/techmap.v";
std::string techmap_args = " -map +/techmap.v";
if (help_mode)
techmap_files += " [-map +/xilinx/arith_map.v]";
techmap_args += " [-map +/xilinx/mux_map.v]";
else if (widemux > 0)
techmap_args += stringf(" -D MIN_MUX_INPUTS=%d -map +/xilinx/mux_map.v", widemux);
if (help_mode)
techmap_args += " [-map +/xilinx/arith_map.v]";
else if (!nocarry) {
techmap_files += " -map +/xilinx/arith_map.v";
techmap_args += " -map +/xilinx/arith_map.v";
if (vpr)
techmap_files += " -D _EXPLICIT_CARRY";
techmap_args += " -D _EXPLICIT_CARRY";
else if (abc9)
techmap_files += " -D _CLB_CARRY";
techmap_args += " -D _CLB_CARRY";
}
run("techmap " + techmap_files);
run("techmap " + techmap_args);
run("opt -fast");
}
if (check_label("map_cells")) {
run("techmap -map +/techmap.v -map +/xilinx/cells_map.v");
std::string techmap_args = "-map +/techmap.v -D _ABC -map +/xilinx/cells_map.v";
if (widemux > 0)
techmap_args += stringf(" -D MIN_MUX_INPUTS=%d", widemux);
run("techmap " + techmap_args);
run("clean");
}
if (check_label("map_luts")) {
run("opt_expr -mux_undef");
if (help_mode)
run("abc -luts 2:2,3,6:5[,10,20] [-dff]", "(skip if 'nowidelut', only for '-retime')");
run("abc -luts 2:2,3,6:5[,10,20] [-dff]", "(option for 'nowidelut', option for '-retime')");
else if (abc9) {
if (family != "xc7")
log_warning("'synth_xilinx -abc9' currently supports '-family xc7' only.\n");