Merge pull request #4367 from YosysHQ/lofty/intel_alm-drop-quartus

intel_alm: drop quartus support
This commit is contained in:
N. Engelhardt 2024-05-21 16:01:23 +02:00 committed by GitHub
commit 24f9329c67
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
21 changed files with 18 additions and 1190 deletions

View File

@ -20,10 +20,7 @@ $(eval $(call add_share_file,share/intel_alm/cyclonev,techlibs/intel_alm/cyclone
# RAM
$(eval $(call add_share_file,share/intel_alm/common,techlibs/intel_alm/common/bram_m10k.txt))
$(eval $(call add_share_file,share/intel_alm/common,techlibs/intel_alm/common/bram_m10k_map.v))
$(eval $(call add_share_file,share/intel_alm/common,techlibs/intel_alm/common/bram_m20k.txt))
$(eval $(call add_share_file,share/intel_alm/common,techlibs/intel_alm/common/bram_m20k_map.v))
$(eval $(call add_share_file,share/intel_alm/common,techlibs/intel_alm/common/lutram_mlab.txt))
# Miscellaneous
$(eval $(call add_share_file,share/intel_alm/common,techlibs/intel_alm/common/megafunction_bb.v))
$(eval $(call add_share_file,share/intel_alm/common,techlibs/intel_alm/common/quartus_rename.v))

View File

@ -1,4 +1,4 @@
// The core logic primitive of the Cyclone V/10GX is the Adaptive Logic Module
// The core logic primitive of the Cyclone V is the Adaptive Logic Module
// (ALM). Each ALM is made up of an 8-input, 2-output look-up table, covered
// in this file, connected to combinational outputs, a carry chain, and four
// D flip-flops (which are covered as MISTRAL_FF in dff_sim.v).
@ -77,14 +77,6 @@
// SUMOUT 368 1342 1323 887 927 - 785 -
// CARRYOUT 71 1082 1062 866 813 - 1198 -
// Arria V LUT output timings (picoseconds):
//
// CARRY A B C D E F G
// COMBOUT - 387 375 316 317 - 76 319 (LUT6)
// COMBOUT - 387 375 316 317 218 76 319 (LUT7)
// SUMOUT 249 744 732 562 576 - 511 -
// CARRYOUT 19 629 623 530 514 - 696 -
(* abc9_lut=2, lib_whitebox *)
module MISTRAL_ALUT6(input A, B, C, D, E, F, output Q);
@ -100,26 +92,6 @@ specify
(F => Q) = 97;
endspecify
`endif
`ifdef arriav
specify
(A => Q) = 387;
(B => Q) = 375;
(C => Q) = 316;
(D => Q) = 317;
(E => Q) = 319;
(F => Q) = 76;
endspecify
`endif
`ifdef cyclone10gx
specify
(A => Q) = 275;
(B => Q) = 272;
(C => Q) = 175;
(D => Q) = 165;
(E => Q) = 162;
(F => Q) = 53;
endspecify
`endif
assign Q = LUT >> {F, E, D, C, B, A};
@ -140,24 +112,6 @@ specify
(E => Q) = 97;
endspecify
`endif
`ifdef arriav
specify
(A => Q) = 375;
(B => Q) = 316;
(C => Q) = 317;
(D => Q) = 319;
(E => Q) = 76;
endspecify
`endif
`ifdef cyclone10gx
specify
(A => Q) = 272;
(B => Q) = 175;
(C => Q) = 165;
(D => Q) = 162;
(E => Q) = 53;
endspecify
`endif
assign Q = LUT >> {E, D, C, B, A};
@ -177,22 +131,6 @@ specify
(D => Q) = 97;
endspecify
`endif
`ifdef arriav
specify
(A => Q) = 316;
(B => Q) = 317;
(C => Q) = 319;
(D => Q) = 76;
endspecify
`endif
`ifdef cyclone10gx
specify
(A => Q) = 175;
(B => Q) = 165;
(C => Q) = 162;
(D => Q) = 53;
endspecify
`endif
assign Q = LUT >> {D, C, B, A};
@ -211,20 +149,6 @@ specify
(C => Q) = 97;
endspecify
`endif
`ifdef arriav
specify
(A => Q) = 316;
(B => Q) = 317;
(C => Q) = 76;
endspecify
`endif
`ifdef cyclone10gx
specify
(A => Q) = 165;
(B => Q) = 162;
(C => Q) = 53;
endspecify
`endif
assign Q = LUT >> {C, B, A};
@ -242,18 +166,6 @@ specify
(B => Q) = 97;
endspecify
`endif
`ifdef arriav
specify
(A => Q) = 316;
(B => Q) = 76;
endspecify
`endif
`ifdef cyclone10gx
specify
(A => Q) = 162;
(B => Q) = 53;
endspecify
`endif
assign Q = LUT >> {B, A};
@ -268,16 +180,6 @@ specify
(A => Q) = 97;
endspecify
`endif
`ifdef arriav
specify
(A => Q) = 76;
endspecify
`endif
`ifdef cyclone10gx
specify
(A => Q) = 53;
endspecify
`endif
assign Q = ~A;
@ -306,40 +208,6 @@ specify
(CI => CO) = 36; // Divided by 2 to account for there being two ALUT_ARITHs in an ALM)
endspecify
`endif
`ifdef arriav
specify
(A => SO) = 744;
(B => SO) = 732;
(C => SO) = 562;
(D0 => SO) = 576;
(D1 => SO) = 511;
(CI => SO) = 249;
(A => CO) = 629;
(B => CO) = 623;
(C => CO) = 530;
(D0 => CO) = 514;
(D1 => CO) = 696;
(CI => CO) = 10; // Divided by 2 to account for there being two ALUT_ARITHs in an ALM)
endspecify
`endif
`ifdef cyclone10gx
specify
(A => SO) = 644;
(B => SO) = 477;
(C => SO) = 416;
(D0 => SO) = 380;
(D1 => SO) = 431;
(CI => SO) = 276;
(A => CO) = 525;
(B => CO) = 433;
(C => CO) = 712;
(D0 => CO) = 653;
(D1 => CO) = 593;
(CI => CO) = 16;
endspecify
`endif
wire q0, q1;
@ -349,283 +217,3 @@ assign q1 = LUT1 >> {D1, C, B, A};
assign {CO, SO} = q0 + !q1 + CI;
endmodule
/*
// A, B, C0, C1, E0, E1, F0, F1: data inputs
// CARRYIN: carry input
// SHAREIN: shared-arithmetic input
// CLK0, CLK1, CLK2: clock inputs
//
// COMB0, COMB1: combinational outputs
// FF0, FF1, FF2, FF3: DFF outputs
// SUM0, SUM1: adder outputs
// CARRYOUT: carry output
// SHAREOUT: shared-arithmetic output
module MISTRAL_ALM(
input A, B, C0, C1, E0, E1, F0, F1, CARRYIN, SHAREIN, // LUT path
input CLK0, CLK1, CLK2, AC0, AC1, // FF path
output COMB0, COMB1, SUM0, SUM1, CARRYOUT, SHAREOUT,
output FF0, FF1, FF2, FF3
);
parameter LUT0 = 16'b0000;
parameter LUT1 = 16'b0000;
parameter LUT2 = 16'b0000;
parameter LUT3 = 16'b0000;
parameter INIT0 = 1'b0;
parameter INIT1 = 1'b0;
parameter INIT2 = 1'b0;
parameter INIT3 = 1'b0;
parameter C0_MUX = "C0";
parameter C1_MUX = "C1";
parameter F0_MUX = "VCC";
parameter F1_MUX = "GND";
parameter FEEDBACK0 = "FF0";
parameter FEEDBACK1 = "FF2";
parameter ADD_MUX = "LUT";
parameter DFF01_DATA_MUX = "COMB";
parameter DFF23_DATA_MUX = "COMB";
parameter DFF0_CLK = "CLK0";
parameter DFF1_CLK = "CLK0";
parameter DFF2_CLK = "CLK0";
parameter DFF3_CLK = "CLK0";
parameter DFF0_AC = "AC0";
parameter DFF1_AC = "AC0";
parameter DFF2_AC = "AC0";
parameter DFF3_AC = "AC0";
// Feedback muxes from the flip-flop outputs.
wire ff_feedback_mux0, ff_feedback_mux1;
// C-input muxes which can be set to also use the F-input.
wire c0_input_mux, c1_input_mux;
// F-input muxes which can be set to a constant to allow LUT5 use.
wire f0_input_mux, f1_input_mux;
// Adder input muxes to select between shared-arithmetic mode and arithmetic mode.
wire add0_input_mux, add1_input_mux;
// Combinational-output muxes for LUT #1 and LUT #3
wire lut1_comb_mux, lut3_comb_mux;
// Sum-output muxes for LUT #1 and LUT #3
wire lut1_sum_mux, lut3_sum_mux;
// DFF data-input muxes
wire dff01_data_mux, dff23_data_mux;
// DFF clock selectors
wire dff0_clk, dff1_clk, dff2_clk, dff3_clk;
// DFF asynchronous-clear selectors
wire dff0_ac, dff1_ac, dff2_ac, dff3_ac;
// LUT, DFF and adder output wires for routing.
wire lut0_out, lut1a_out, lut1b_out, lut2_out, lut3a_out, lut3b_out;
wire dff0_out, dff1_out, dff2_out, dff3_out;
wire add0_sum, add1_sum, add0_carry, add1_carry;
generate
if (FEEDBACK0 === "FF0")
assign ff_feedback_mux0 = dff0_out;
else if (FEEDBACK0 === "FF1")
assign ff_feedback_mux0 = dff1_out;
else
$error("Invalid FEEDBACK0 setting!");
if (FEEDBACK1 == "FF2")
assign ff_feedback_mux1 = dff2_out;
else if (FEEDBACK1 == "FF3")
assign ff_feedback_mux1 = dff3_out;
else
$error("Invalid FEEDBACK1 setting!");
if (C0_MUX === "C0")
assign c0_input_mux = C0;
else if (C0_MUX === "F1")
assign c0_input_mux = F1;
else if (C0_MUX === "FEEDBACK1")
assign c0_input_mux = ff_feedback_mux1;
else
$error("Invalid C0_MUX setting!");
if (C1_MUX === "C1")
assign c1_input_mux = C1;
else if (C1_MUX === "F0")
assign c1_input_mux = F0;
else if (C1_MUX === "FEEDBACK0")
assign c1_input_mux = ff_feedback_mux0;
else
$error("Invalid C1_MUX setting!");
// F0 == VCC is LUT5
// F0 == F0 is LUT6
// F0 == FEEDBACK is unknown
if (F0_MUX === "VCC")
assign f0_input_mux = 1'b1;
else if (F0_MUX === "F0")
assign f0_input_mux = F0;
else if (F0_MUX === "FEEDBACK0")
assign f0_input_mux = ff_feedback_mux0;
else
$error("Invalid F0_MUX setting!");
// F1 == GND is LUT5
// F1 == F1 is LUT6
// F1 == FEEDBACK is unknown
if (F1_MUX === "GND")
assign f1_input_mux = 1'b0;
else if (F1_MUX === "F1")
assign f1_input_mux = F1;
else if (F1_MUX === "FEEDBACK1")
assign f1_input_mux = ff_feedback_mux1;
else
$error("Invalid F1_MUX setting!");
if (ADD_MUX === "LUT") begin
assign add0_input_mux = ~lut1_sum_mux;
assign add1_input_mux = ~lut3_sum_mux;
end else if (ADD_MUX === "SHARE") begin
assign add0_input_mux = SHAREIN;
assign add1_input_mux = lut1_comb_mux;
end else
$error("Invalid ADD_MUX setting!");
if (DFF01_DATA_MUX === "COMB")
assign dff01_data_mux = COMB0;
else if (DFF01_DATA_MUX === "SUM")
assign dff01_data_mux = SUM0;
else
$error("Invalid DFF01_DATA_MUX setting!");
if (DFF23_DATA_MUX === "COMB")
assign dff23_data_mux = COMB0;
else if (DFF23_DATA_MUX === "SUM")
assign dff23_data_mux = SUM0;
else
$error("Invalid DFF23_DATA_MUX setting!");
if (DFF0_CLK === "CLK0")
assign dff0_clk = CLK0;
else if (DFF0_CLK === "CLK1")
assign dff0_clk = CLK1;
else if (DFF0_CLK === "CLK2")
assign dff0_clk = CLK2;
else
$error("Invalid DFF0_CLK setting!");
if (DFF1_CLK === "CLK0")
assign dff1_clk = CLK0;
else if (DFF1_CLK === "CLK1")
assign dff1_clk = CLK1;
else if (DFF1_CLK === "CLK2")
assign dff1_clk = CLK2;
else
$error("Invalid DFF1_CLK setting!");
if (DFF2_CLK === "CLK0")
assign dff2_clk = CLK0;
else if (DFF2_CLK === "CLK1")
assign dff2_clk = CLK1;
else if (DFF2_CLK === "CLK2")
assign dff2_clk = CLK2;
else
$error("Invalid DFF2_CLK setting!");
if (DFF3_CLK === "CLK0")
assign dff3_clk = CLK0;
else if (DFF3_CLK === "CLK1")
assign dff3_clk = CLK1;
else if (DFF3_CLK === "CLK2")
assign dff3_clk = CLK2;
else
$error("Invalid DFF3_CLK setting!");
if (DFF0_AC === "AC0")
assign dff0_ac = AC0;
else if (DFF0_AC === "AC1")
assign dff0_ac = AC1;
else
$error("Invalid DFF0_AC setting!");
if (DFF1_AC === "AC0")
assign dff1_ac = AC0;
else if (DFF1_AC === "AC1")
assign dff1_ac = AC1;
else
$error("Invalid DFF1_AC setting!");
if (DFF2_AC === "AC0")
assign dff2_ac = AC0;
else if (DFF2_AC === "AC1")
assign dff2_ac = AC1;
else
$error("Invalid DFF2_AC setting!");
if (DFF3_AC === "AC0")
assign dff3_ac = AC0;
else if (DFF3_AC === "AC1")
assign dff3_ac = AC1;
else
$error("Invalid DFF3_AC setting!");
endgenerate
// F0 on the Quartus diagram
MISTRAL_ALUT4 #(.LUT(LUT0)) lut0 (.A(A), .B(B), .C(C0), .D(c1_input_mux), .Q(lut0_out));
// F2 on the Quartus diagram
MISTRAL_ALUT4 #(.LUT(LUT1)) lut1_comb (.A(A), .B(B), .C(C0), .D(c1_input_mux), .Q(lut1_comb_mux));
MISTRAL_ALUT4 #(.LUT(LUT1)) lut1_sum (.A(A), .B(B), .C(C0), .D(E0), .Q(lut1_sum_mux));
// F1 on the Quartus diagram
MISTRAL_ALUT4 #(.LUT(LUT2)) lut2 (.A(A), .B(B), .C(C1), .D(c0_input_mux), .Q(lut2_out));
// F3 on the Quartus diagram
MISTRAL_ALUT4 #(.LUT(LUT3)) lut3_comb (.A(A), .B(B), .C(C1), .D(c0_input_mux), .Q(lut3_comb_mux));
MISTRAL_ALUT4 #(.LUT(LUT3)) lut3_sum (.A(A), .B(B), .C(C1), .D(E1), .Q(lut3_sum_mux));
MISTRAL_FF #(.INIT(INIT0)) dff0 (.D(dff01_data_mux), .CLK(dff0_clk), .ACn(dff0_ac), .Q(dff0_out));
MISTRAL_FF #(.INIT(INIT1)) dff1 (.D(dff01_data_mux), .CLK(dff1_clk), .ACn(dff1_ac), .Q(dff1_out));
MISTRAL_FF #(.INIT(INIT2)) dff2 (.D(dff23_data_mux), .CLK(dff2_clk), .ACn(dff2_ac), .Q(dff2_out));
MISTRAL_FF #(.INIT(INIT3)) dff3 (.D(dff23_data_mux), .CLK(dff3_clk), .ACn(dff3_ac), .Q(dff3_out));
// Adders
assign {add0_carry, add0_sum} = CARRYIN + lut0_out + lut1_sum_mux;
assign {add1_carry, add1_sum} = add0_carry + lut2_out + lut3_sum_mux;
// COMBOUT outputs on the Quartus diagram
assign COMB0 = E0 ? (f0_input_mux ? lut3_comb_mux : lut1_comb_mux)
: (f0_input_mux ? lut2_out : lut0_out);
assign COMB1 = E1 ? (f1_input_mux ? lut3_comb_mux : lut1_comb_mux)
: (f1_input_mux ? lut2_out : lut0_out);
// SUMOUT output on the Quartus diagram
assign SUM0 = add0_sum;
assign SUM1 = add1_sum;
// COUT output on the Quartus diagram
assign CARRYOUT = add1_carry;
// SHAREOUT output on the Quartus diagram
assign SHAREOUT = lut3_comb_mux;
// REGOUT outputs on the Quartus diagram
assign FF0 = dff0_out;
assign FF1 = dff1_out;
assign FF2 = dff2_out;
assign FF3 = dff3_out;
endmodule
*/

View File

@ -1,33 +0,0 @@
bram __MISTRAL_M20K_SDP
init 1 # TODO: Re-enable when I figure out how BRAM init works
abits 14 @D16384x1
dbits 1 @D16384x1
abits 13 @D8192x2
dbits 2 @D8192x2
abits 12 @D4096x4 @D4096x5
dbits 4 @D4096x4
dbits 5 @D4096x5
abits 11 @D2048x8 @D2048x10
dbits 8 @D2048x8
dbits 10 @D2048x10
abits 10 @D1024x16 @D1024x20
dbits 16 @D1024x16
dbits 20 @D1024x20
abits 9 @D512x32 @D512x40
dbits 32 @D512x32
dbits 40 @D512x40
groups 2
ports 1 1
wrmode 1 0
# read enable; write enable + byte enables (only for multiples of 8)
enable 1 1
transp 0 0
clocks 1 1
clkpol 1 1
endbram
match __MISTRAL_M20K_SDP
min efficiency 5
make_transp
endmatch

View File

@ -1,31 +0,0 @@
module __MISTRAL_M20K_SDP(CLK1, A1ADDR, A1DATA, A1EN, B1ADDR, B1DATA, B1EN);
parameter CFG_ABITS = 10;
parameter CFG_DBITS = 20;
parameter CFG_ENABLE_A = 1;
parameter CFG_ENABLE_B = 1;
input CLK1;
input [CFG_ABITS-1:0] A1ADDR, B1ADDR;
input [CFG_DBITS-1:0] A1DATA;
output [CFG_DBITS-1:0] B1DATA;
input [CFG_ENABLE_A-1:0] A1EN, B1EN;
altsyncram #(
.operation_mode("dual_port"),
.ram_block_type("m20k"),
.widthad_a(CFG_ABITS),
.width_a(CFG_DBITS),
.widthad_b(CFG_ABITS),
.width_b(CFG_DBITS),
) _TECHMAP_REPLACE_ (
.address_a(A1ADDR),
.data_a(A1DATA),
.wren_a(A1EN),
.address_b(B1ADDR),
.q_b(B1DATA),
.clock0(CLK1),
.clock1(CLK1)
);
endmodule

View File

@ -77,38 +77,6 @@ specify
if (ACLR === 1'b0) (ACLR => Q) = 282;
endspecify
`endif
`ifdef arriav
specify
if (ENA && ACLR !== 1'b0 && !SCLR && !SLOAD) (posedge CLK => (Q : DATAIN)) = 470;
if (ENA && SCLR) (posedge CLK => (Q : 1'b0)) = 633;
if (ENA && !SCLR && SLOAD) (posedge CLK => (Q : SDATA)) = 439;
$setup(DATAIN, posedge CLK, /* -170 */ 0);
$setup(ENA, posedge CLK, /* -170 */ 0);
$setup(SCLR, posedge CLK, /* -170 */ 0);
$setup(SLOAD, posedge CLK, /* -170 */ 0);
$setup(SDATA, posedge CLK, /* -170 */ 0);
if (ACLR === 1'b0) (ACLR => Q) = 215;
endspecify
`endif
`ifdef cyclone10gx
specify
// TODO (long-term): investigate these numbers.
// It seems relying on the Quartus Timing Analyzer was not the best idea; it's too fiddly.
if (ENA && ACLR !== 1'b0 && !SCLR && !SLOAD) (posedge CLK => (Q : DATAIN)) = 219;
if (ENA && SCLR) (posedge CLK => (Q : 1'b0)) = 219;
if (ENA && !SCLR && SLOAD) (posedge CLK => (Q : SDATA)) = 219;
$setup(DATAIN, posedge CLK, 268);
$setup(ENA, posedge CLK, 268);
$setup(SCLR, posedge CLK, 268);
$setup(SLOAD, posedge CLK, 268);
$setup(SDATA, posedge CLK, 268);
if (ACLR === 1'b0) (ACLR => Q) = 0;
endspecify
`endif
initial begin
// Altera flops initialise to zero.

View File

@ -1,7 +1,7 @@
// The MLAB
// --------
// In addition to Logic Array Blocks (LABs) that contain ten Adaptive Logic
// Modules (ALMs, see alm_sim.v), the Cyclone V/10GX also contain
// Modules (ALMs, see alm_sim.v), the Cyclone V also contains
// Memory/Logic Array Blocks (MLABs) that can act as either ten ALMs, or utilise
// the memory the ALM uses to store the look-up table data for general usage,
// producing a 32 address by 20-bit block of memory. MLABs are spread out
@ -14,11 +14,8 @@
// or shift registers (by using the output of the Nth bit as input for the N+1th
// bit).
//
// Oddly, instead of providing a block 32 address by 20-bit cell, Quartus asks
// synthesis tools to build MLABs out of 32 address by 1-bit cells, and tries
// to put these cells in the same MLAB during cell placement. Because of this
// a MISTRAL_MLAB cell represents one of these 32 address by 1-bit cells, and
// 20 of them represent a physical MLAB.
// For historical reasons a MISTRAL_MLAB cell represents a 32 address by 1-bit cell,
// and 20 of them represent a physical MLAB.
//
// How the MLAB works
// ------------------
@ -28,10 +25,7 @@
// by the Yosys `memory_bram` pass, and it doesn't make sense to me to use
// `techmap` just for the sake of renaming the cell ports.
//
// The MLAB can be initialised to any value, but unfortunately Quartus only
// allows memory initialisation from a file. Since Yosys doesn't preserve input
// file information, or write the contents of an `initial` block to a file,
// Yosys can't currently initialise the MLAB in a way Quartus will accept.
// The MLAB can be initialised to any value.
//
// The MLAB takes in data from A1DATA at the rising edge of CLK1, and if A1EN
// is high, writes it to the address in A1ADDR. A1EN can therefore be used to
@ -39,9 +33,7 @@
//
// Simultaneously, the MLAB reads data from B1ADDR, and outputs it to B1DATA,
// asynchronous to CLK1 and ignoring A1EN. If a synchronous read is needed
// then the output can be fed to embedded flops. Presently, Yosys assumes
// Quartus will pack external flops into the MLAB, but this is an assumption
// that needs testing.
// then the output can be fed to embedded flops.
// The vendor sim model outputs 'x for a very short period (a few
// combinational delta cycles) after each write. This has been omitted from
@ -69,33 +61,6 @@ specify
(B1ADDR[4] => B1DATA) = 96;
endspecify
`endif
`ifdef arriav
specify
$setup(A1ADDR, posedge CLK1, 62);
$setup(A1DATA, posedge CLK1, 62);
$setup(A1EN, posedge CLK1, 62);
(B1ADDR[0] => B1DATA) = 370;
(B1ADDR[1] => B1DATA) = 292;
(B1ADDR[2] => B1DATA) = 218;
(B1ADDR[3] => B1DATA) = 74;
(B1ADDR[4] => B1DATA) = 177;
endspecify
`endif
`ifdef cyclone10gx
// TODO: Cyclone 10 GX timings; the below timings are for Cyclone V
specify
$setup(A1ADDR, posedge CLK1, 86);
$setup(A1DATA, posedge CLK1, 86);
$setup(A1EN, posedge CLK1, 86);
(B1ADDR[0] => B1DATA) = 487;
(B1ADDR[1] => B1DATA) = 475;
(B1ADDR[2] => B1DATA) = 382;
(B1ADDR[3] => B1DATA) = 284;
(B1ADDR[4] => B1DATA) = 96;
endspecify
`endif
always @(posedge CLK1)
if (A1EN) mem[A1ADDR] <= A1DATA;
@ -134,17 +99,6 @@ specify
if (B1EN) (posedge CLK1 => (B1DATA : A1DATA)) = 1004;
endspecify
`endif
`ifdef arriav
specify
$setup(A1ADDR, posedge CLK1, 97);
$setup(A1DATA, posedge CLK1, 74);
$setup(A1EN, posedge CLK1, 109);
$setup(B1ADDR, posedge CLK1, 97);
$setup(B1EN, posedge CLK1, 126);
if (B1EN) (posedge CLK1 => (B1DATA : A1DATA)) = 787;
endspecify
`endif
always @(posedge CLK1) begin
if (!A1EN)

View File

@ -1,311 +0,0 @@
`ifdef cyclonev
`define LCELL cyclonev_lcell_comb
`define MAC cyclonev_mac
`define MLAB cyclonev_mlab_cell
`define RAM_BLOCK cyclonev_ram_block
`define IBUF cyclonev_io_ibuf
`define OBUF cyclonev_io_obuf
`define CLKENA cyclonev_clkena
`endif
`ifdef arriav
`define LCELL arriav_lcell_comb
`define MAC arriav_mac
`define MLAB arriav_mlab_cell
`define RAM_BLOCK arriav_ram_block
`define IBUF arriav_io_ibuf
`define OBUF arriav_io_obuf
`define CLKENA arriav_clkena
`endif
`ifdef cyclone10gx
`define LCELL cyclone10gx_lcell_comb
`define MAC cyclone10gx_mac
`define MLAB cyclone10gx_mlab_cell
`define RAM_BLOCK cyclone10gx_ram_block
`define IBUF cyclone10gx_io_ibuf
`define OBUF cyclone10gx_io_obuf
`define CLKENA cyclone10gx_clkena
`endif
module __MISTRAL_VCC(output Q);
MISTRAL_ALUT2 #(.LUT(4'b1111)) _TECHMAP_REPLACE_ (.A(1'b1), .B(1'b1), .Q(Q));
endmodule
module __MISTRAL_GND(output Q);
MISTRAL_ALUT2 #(.LUT(4'b0000)) _TECHMAP_REPLACE_ (.A(1'b1), .B(1'b1), .Q(Q));
endmodule
module MISTRAL_FF(input DATAIN, CLK, ACLR, ENA, SCLR, SLOAD, SDATA, output reg Q);
dffeas #(.power_up("low"), .is_wysiwyg("true")) _TECHMAP_REPLACE_ (.d(DATAIN), .clk(CLK), .clrn(ACLR), .ena(ENA), .sclr(SCLR), .sload(SLOAD), .asdata(SDATA), .q(Q));
endmodule
module MISTRAL_ALUT6(input A, B, C, D, E, F, output Q);
parameter [63:0] LUT = 64'h0000_0000_0000_0000;
`LCELL #(.lut_mask(LUT)) _TECHMAP_REPLACE_ (.dataa(A), .datab(B), .datac(C), .datad(D), .datae(E), .dataf(F), .combout(Q));
endmodule
module MISTRAL_ALUT5(input A, B, C, D, E, output Q);
parameter [31:0] LUT = 32'h0000_0000;
`LCELL #(.lut_mask({2{LUT}})) _TECHMAP_REPLACE_ (.dataa(A), .datab(B), .datac(C), .datad(D), .datae(E), .combout(Q));
endmodule
module MISTRAL_ALUT4(input A, B, C, D, output Q);
parameter [15:0] LUT = 16'h0000;
`LCELL #(.lut_mask({4{LUT}})) _TECHMAP_REPLACE_ (.dataa(A), .datab(B), .datac(C), .datad(D), .combout(Q));
endmodule
module MISTRAL_ALUT3(input A, B, C, output Q);
parameter [7:0] LUT = 8'h00;
`LCELL #(.lut_mask({8{LUT}})) _TECHMAP_REPLACE_ (.dataa(A), .datab(B), .datac(C), .combout(Q));
endmodule
module MISTRAL_ALUT2(input A, B, output Q);
parameter [3:0] LUT = 4'h0;
`LCELL #(.lut_mask({16{LUT}})) _TECHMAP_REPLACE_ (.dataa(A), .datab(B), .combout(Q));
endmodule
module MISTRAL_NOT(input A, output Q);
NOT _TECHMAP_REPLACE_ (.IN(A), .OUT(Q));
endmodule
module MISTRAL_ALUT_ARITH(input A, B, C, D0, D1, CI, output SO, CO);
parameter LUT0 = 16'h0000;
parameter LUT1 = 16'h0000;
`LCELL #(.lut_mask({16'h0, LUT1, 16'h0, LUT0})) _TECHMAP_REPLACE_ (.dataa(A), .datab(B), .datac(C), .datad(D0), .dataf(D1), .cin(CI), .sumout(SO), .cout(CO));
endmodule
module MISTRAL_MLAB(input [4:0] A1ADDR, input A1DATA, A1EN, CLK1, input [4:0] B1ADDR, output B1DATA);
parameter _TECHMAP_CELLNAME_ = "";
// Here we get to an unfortunate situation. The cell has a mem_init0 parameter,
// which takes in a hexadecimal string that could be used to initialise RAM.
// In the vendor simulation models, this appears to work fine, but Quartus,
// either intentionally or not, forgets about this parameter and initialises the
// RAM to zero.
//
// Because of this, RAM initialisation is presently disabled, but the source
// used to generate mem_init0 is kept (commented out) in case this gets fixed
// or an undocumented way to get Quartus to initialise from mem_init0 is found.
`MLAB #(
.logical_ram_name(_TECHMAP_CELLNAME_),
.logical_ram_depth(32),
.logical_ram_width(1),
.mixed_port_feed_through_mode("Dont Care"),
.first_bit_number(0),
.first_address(0),
.last_address(31),
.address_width(5),
.data_width(1),
.byte_enable_mask_width(1),
.port_b_data_out_clock("NONE"),
// .mem_init0($sformatf("%08x", INIT))
) _TECHMAP_REPLACE_ (
.portaaddr(A1ADDR),
.portadatain(A1DATA),
.portbaddr(B1ADDR),
.portbdataout(B1DATA),
.ena0(A1EN),
.clk0(CLK1)
);
endmodule
module MISTRAL_M10K(A1ADDR, A1DATA, A1EN, CLK1, B1ADDR, B1DATA, B1EN);
parameter CFG_ABITS = 10;
parameter CFG_DBITS = 10;
parameter _TECHMAP_CELLNAME_ = "";
input [CFG_ABITS-1:0] A1ADDR, B1ADDR;
input [CFG_DBITS-1:0] A1DATA;
input CLK1, A1EN, B1EN;
output [CFG_DBITS-1:0] B1DATA;
// Much like the MLAB, the M10K has mem_init[01234] parameters which would let
// you initialise the RAM cell via hex literals. If they were implemented.
// Since the MISTRAL_M10K block has an inverted write-enable (like the real hardware)
// but the Quartus primitive expects a normal write-enable, we add an inverter.
wire A1EN_N;
NOT wren_inv (.IN(A1EN), .OUT(A1EN_N));
`RAM_BLOCK #(
.operation_mode("dual_port"),
.logical_ram_name(_TECHMAP_CELLNAME_),
.port_a_address_width(CFG_ABITS),
.port_a_data_width(CFG_DBITS),
.port_a_logical_ram_depth(2**CFG_ABITS),
.port_a_logical_ram_width(CFG_DBITS),
.port_a_first_address(0),
.port_a_last_address(2**CFG_ABITS - 1),
.port_a_first_bit_number(0),
.port_b_address_width(CFG_ABITS),
.port_b_data_width(CFG_DBITS),
.port_b_logical_ram_depth(2**CFG_ABITS),
.port_b_logical_ram_width(CFG_DBITS),
.port_b_first_address(0),
.port_b_last_address(2**CFG_ABITS - 1),
.port_b_first_bit_number(0),
.port_b_address_clock("clock0"),
.port_b_read_enable_clock("clock0")
) ram_block (
.portaaddr(A1ADDR),
.portadatain(A1DATA),
.portawe(A1EN_N),
.portbaddr(B1ADDR),
.portbdataout(B1DATA),
.portbre(B1EN),
.clk0(CLK1)
);
endmodule
module MISTRAL_MUL27X27(input [26:0] A, B, output [53:0] Y);
parameter A_SIGNED = 1;
parameter B_SIGNED = 1;
`MAC #(
.ax_width(27),
.signed_max(A_SIGNED ? "true" : "false"),
.ay_scan_in_width(27),
.signed_may(B_SIGNED ? "true" : "false"),
.result_a_width(54),
.operation_mode("M27x27")
) _TECHMAP_REPLACE_ (
.ax(A),
.ay(B),
.resulta(Y)
);
endmodule
module MISTRAL_MUL18X18(input [17:0] A, B, output [35:0] Y);
parameter A_SIGNED = 1;
parameter B_SIGNED = 1;
`MAC #(
.ax_width(18),
.signed_max(A_SIGNED ? "true" : "false"),
.ay_scan_in_width(18),
.signed_may(B_SIGNED ? "true" : "false"),
.result_a_width(36),
.operation_mode("M18x18_FULL")
) _TECHMAP_REPLACE_ (
.ax(A),
.ay(B),
.resulta(Y)
);
endmodule
module MISTRAL_MUL9X9(input [8:0] A, B, output [17:0] Y);
parameter A_SIGNED = 1;
parameter B_SIGNED = 1;
`MAC #(
.ax_width(9),
.signed_max(A_SIGNED ? "true" : "false"),
.ay_scan_in_width(9),
.signed_may(B_SIGNED ? "true" : "false"),
.result_a_width(18),
.operation_mode("M9x9")
) _TECHMAP_REPLACE_ (
.ax(A),
.ay(B),
.resulta(Y)
);
endmodule
module MISTRAL_IB(input PAD, output O);
`IBUF #(
.bus_hold("false"),
.differential_mode("false")
) _TECHMAP_REPLACE_ (
.i(PAD),
.o(O)
);
endmodule
module MISTRAL_OB(output PAD, input I, OE);
`OBUF #(
.bus_hold("false"),
.differential_mode("false")
) _TECHMAP_REPLACE_ (
.i(I),
.o(PAD),
.oe(OE)
);
endmodule
module MISTRAL_IO(output PAD, input I, OE, output O);
`IBUF #(
.bus_hold("false"),
.differential_mode("false")
) ibuf (
.i(PAD),
.o(O)
);
`OBUF #(
.bus_hold("false"),
.differential_mode("false")
) obuf (
.i(I),
.o(PAD),
.oe(OE)
);
endmodule
module MISTRAL_CLKBUF (input A, output Q);
`CLKENA #(
.clock_type("auto"),
.ena_register_mode("always enabled"),
.ena_register_power_up("high"),
.disable_mode("low"),
.test_syn("high")
) _TECHMAP_REPLACE_ (
.inclk(A),
.ena(1'b1),
.outclk(Q)
);
endmodule

View File

@ -2,7 +2,7 @@
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Claire Xenia Wolf <claire@yosyshq.com>
* Copyright (C) 2019 Dan Ravensloft <dan.ravensloft@gmail.com>
* Copyright (C) 2019 Hannah Ravensloft <dan.ravensloft@gmail.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
@ -43,21 +43,11 @@ struct SynthIntelALMPass : public ScriptPass {
log(" -family <family>\n");
log(" target one of:\n");
log(" \"cyclonev\" - Cyclone V (default)\n");
log(" \"arriav\" - Arria V (non-GZ)\n");
log(" \"cyclone10gx\" - Cyclone 10GX\n");
log("\n");
log(" -vqm <file>\n");
log(" write the design to the specified Verilog Quartus Mapping File. Writing\n");
log(" of an output file is omitted if this parameter is not specified. Implies\n");
log(" -quartus.\n");
log("\n");
log(" -noflatten\n");
log(" do not flatten design before synthesis; useful for per-module area\n");
log(" statistics\n");
log("\n");
log(" -quartus\n");
log(" output a netlist using Quartus cells instead of MISTRAL_* cells\n");
log("\n");
log(" -dff\n");
log(" pass DFFs to ABC to perform sequential logic optimisations\n");
log(" (EXPERIMENTAL)\n");
@ -87,17 +77,15 @@ struct SynthIntelALMPass : public ScriptPass {
log("\n");
}
string top_opt, family_opt, bram_type, vout_file;
bool flatten, quartus, nolutram, nobram, dff, nodsp, noiopad, noclkbuf;
string top_opt, family_opt, bram_type;
bool flatten, nolutram, nobram, dff, nodsp, noiopad, noclkbuf;
void clear_flags() override
{
top_opt = "-auto-top";
family_opt = "cyclonev";
bram_type = "m10k";
vout_file = "";
flatten = true;
quartus = false;
nolutram = false;
nobram = false;
dff = false;
@ -121,11 +109,6 @@ struct SynthIntelALMPass : public ScriptPass {
top_opt = "-top " + args[++argidx];
continue;
}
if (args[argidx] == "-vqm" && argidx + 1 < args.size()) {
quartus = true;
vout_file = args[++argidx];
continue;
}
if (args[argidx] == "-run" && argidx + 1 < args.size()) {
size_t pos = args[argidx + 1].find(':');
if (pos == std::string::npos)
@ -134,10 +117,6 @@ struct SynthIntelALMPass : public ScriptPass {
run_to = args[argidx].substr(pos + 1);
continue;
}
if (args[argidx] == "-quartus") {
quartus = true;
continue;
}
if (args[argidx] == "-nolutram") {
nolutram = true;
continue;
@ -173,18 +152,6 @@ struct SynthIntelALMPass : public ScriptPass {
if (!design->full_selection())
log_cmd_error("This command only operates on fully selected designs!\n");
if (family_opt == "cyclonev" || family_opt == "arriav") {
bram_type = "m10k";
} else if (family_opt == "cyclone10gx") {
bram_type = "m20k";
} else if (family_opt == "arriva") {
// I have typoed "arriav" as "arriva" (a local bus company)
// so many times I thought it would be funny to have an easter egg.
log_cmd_error("synth_intel_alm cannot synthesize for bus companies. (did you mean '-family arriav'?)\n");
} else {
log_cmd_error("Invalid family specified: '%s'\n", family_opt.c_str());
}
log_header(design, "Executing SYNTH_INTEL_ALM pass.\n");
log_push();
@ -237,22 +204,16 @@ struct SynthIntelALMPass : public ScriptPass {
if (help_mode) {
run("techmap -map +/mul2dsp.v [...]", "(unless -nodsp)");
} else if (!nodsp) {
// Cyclone V/Arria V supports 9x9 multiplication, Cyclone 10 GX does not.
run("techmap -map +/mul2dsp.v -D DSP_A_MAXWIDTH=27 -D DSP_B_MAXWIDTH=27 -D DSP_A_MINWIDTH=19 -D DSP_B_MINWIDTH=4 -D DSP_NAME=__MUL27X27");
run("chtype -set $mul t:$__soft_mul");
run("techmap -map +/mul2dsp.v -D DSP_A_MAXWIDTH=27 -D DSP_B_MAXWIDTH=27 -D DSP_A_MINWIDTH=4 -D DSP_B_MINWIDTH=19 -D DSP_NAME=__MUL27X27");
run("chtype -set $mul t:$__soft_mul");
if (family_opt == "cyclonev" || family_opt == "arriav") {
run("techmap -map +/mul2dsp.v -D DSP_A_MAXWIDTH=18 -D DSP_B_MAXWIDTH=18 -D DSP_A_MINWIDTH=10 -D DSP_B_MINWIDTH=4 -D DSP_NAME=__MUL18X18");
run("chtype -set $mul t:$__soft_mul");
run("techmap -map +/mul2dsp.v -D DSP_A_MAXWIDTH=18 -D DSP_B_MAXWIDTH=18 -D DSP_A_MINWIDTH=4 -D DSP_B_MINWIDTH=10 -D DSP_NAME=__MUL18X18");
run("chtype -set $mul t:$__soft_mul");
run("techmap -map +/mul2dsp.v -D DSP_A_MAXWIDTH=9 -D DSP_B_MAXWIDTH=9 -D DSP_A_MINWIDTH=4 -D DSP_B_MINWIDTH=4 -D DSP_NAME=__MUL9X9");
run("chtype -set $mul t:$__soft_mul");
} else if (family_opt == "cyclone10gx") {
run("techmap -map +/mul2dsp.v -D DSP_A_MAXWIDTH=18 -D DSP_B_MAXWIDTH=18 -D DSP_A_MINWIDTH=4 -D DSP_B_MINWIDTH=4 -D DSP_NAME=__MUL18X18");
run("chtype -set $mul t:$__soft_mul");
}
}
run("alumacc");
if (!noiopad)
@ -269,7 +230,7 @@ struct SynthIntelALMPass : public ScriptPass {
}
if (!nolutram && check_label("map_lutram", "(skip if -nolutram)")) {
run("memory_bram -rules +/intel_alm/common/lutram_mlab.txt", "(for Cyclone V / Cyclone 10GX)");
run("memory_bram -rules +/intel_alm/common/lutram_mlab.txt", "(for Cyclone V)");
}
if (check_label("map_ffram")) {
@ -303,28 +264,6 @@ struct SynthIntelALMPass : public ScriptPass {
run("check");
run("blackbox =A:whitebox");
}
if (check_label("quartus")) {
if (quartus || help_mode) {
// Quartus ICEs if you have a wire which has `[]` in its name,
// which Yosys produces when building memories out of flops.
run("rename -hide w:*[* w:*]*");
// VQM mode does not support 'x, so replace those with zero.
run("setundef -zero");
// VQM mode does not support multi-bit constant assignments
// (e.g. 2'b00 is an error), so as a workaround use references
// to constant driver cells, which Quartus accepts.
run("hilomap -singleton -hicell __MISTRAL_VCC Q -locell __MISTRAL_GND Q");
// Rename from Yosys-internal MISTRAL_* cells to Quartus cells.
run(stringf("techmap -D %s -map +/intel_alm/common/quartus_rename.v", family_opt.c_str()));
}
}
if (check_label("vqm")) {
if (!vout_file.empty() || help_mode) {
run(stringf("write_verilog -attr2comment -defparam -nohex -decimal %s", help_mode ? "<file-name>" : vout_file.c_str()));
}
}
}
} SynthIntelALMPass;

View File

@ -7,12 +7,3 @@ stat
select -assert-count 9 t:MISTRAL_ALUT_ARITH
select -assert-none t:MISTRAL_ALUT_ARITH %% t:* %D
design -reset
read_verilog ../common/add_sub.v
hierarchy -top top
equiv_opt -assert -map +/intel_alm/common/alm_sim.v synth_intel_alm -family cyclone10gx -noiopad -noclkbuf # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd top # Constrain all select calls below inside the top module
stat
select -assert-count 9 t:MISTRAL_ALUT_ARITH
select -assert-none t:MISTRAL_ALUT_ARITH %% t:* %D

View File

@ -12,18 +12,6 @@ select -assert-count 1 t:MISTRAL_NOT
select -assert-none t:MISTRAL_FF t:MISTRAL_NOT %% t:* %D
design -load read
hierarchy -top adff
proc
equiv_opt -async2sync -assert -map +/intel_alm/common/alm_sim.v -map +/intel_alm/common/dff_sim.v synth_intel_alm -family cyclone10gx -noiopad -noclkbuf # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd adff # Constrain all select calls below inside the top module
select -assert-count 1 t:MISTRAL_FF
select -assert-count 1 t:MISTRAL_NOT
select -assert-none t:MISTRAL_FF t:MISTRAL_NOT %% t:* %D
design -load read
hierarchy -top adffn
proc
@ -35,17 +23,6 @@ select -assert-count 1 t:MISTRAL_FF
select -assert-none t:MISTRAL_FF %% t:* %D
design -load read
hierarchy -top adffn
proc
equiv_opt -async2sync -assert -map +/intel_alm/common/alm_sim.v -map +/intel_alm/common/dff_sim.v synth_intel_alm -family cyclone10gx -noiopad -noclkbuf # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd adffn # Constrain all select calls below inside the top module
select -assert-count 1 t:MISTRAL_FF
select -assert-none t:MISTRAL_FF %% t:* %D
design -load read
hierarchy -top dffs
proc
@ -58,18 +35,6 @@ select -assert-count 1 t:MISTRAL_ALUT2
select -assert-none t:MISTRAL_FF t:MISTRAL_ALUT2 %% t:* %D
design -load read
hierarchy -top dffs
proc
equiv_opt -async2sync -assert -map +/intel_alm/common/alm_sim.v -map +/intel_alm/common/dff_sim.v synth_intel_alm -family cyclone10gx -noiopad -noclkbuf # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd dffs # Constrain all select calls below inside the top module
select -assert-count 1 t:MISTRAL_FF
select -assert-count 1 t:MISTRAL_ALUT2
select -assert-none t:MISTRAL_FF t:MISTRAL_ALUT2 %% t:* %D
design -load read
hierarchy -top ndffnr
proc
@ -81,14 +46,3 @@ select -assert-count 2 t:MISTRAL_NOT
select -assert-none t:MISTRAL_FF t:MISTRAL_NOT %% t:* %D
design -load read
hierarchy -top ndffnr
proc
equiv_opt -async2sync -assert -map +/intel_alm/common/alm_sim.v -map +/intel_alm/common/dff_sim.v synth_intel_alm -family cyclone10gx -noiopad -noclkbuf # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd ndffnr # Constrain all select calls below inside the top module
select -assert-count 1 t:MISTRAL_FF
select -assert-count 2 t:MISTRAL_NOT
select -assert-none t:MISTRAL_FF t:MISTRAL_NOT %% t:* %D

View File

@ -5,3 +5,4 @@ cd sync_ram_sdp
select -assert-count 1 t:MISTRAL_NOT
select -assert-count 1 t:MISTRAL_M10K
select -assert-none t:MISTRAL_NOT t:MISTRAL_M10K %% t:* %D

View File

@ -11,17 +11,3 @@ select -assert-count 8 t:MISTRAL_ALUT_ARITH
select -assert-count 8 t:MISTRAL_FF
select -assert-none t:MISTRAL_NOT t:MISTRAL_ALUT_ARITH t:MISTRAL_FF %% t:* %D
design -reset
read_verilog ../common/counter.v
hierarchy -top top
proc
flatten
equiv_opt -assert -async2sync -map +/intel_alm/common/alm_sim.v -map +/intel_alm/common/dff_sim.v synth_intel_alm -family cyclone10gx -noiopad -noclkbuf # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd top # Constrain all select calls below inside the top module
select -assert-count 2 t:MISTRAL_NOT
select -assert-count 8 t:MISTRAL_ALUT_ARITH
select -assert-count 8 t:MISTRAL_FF
select -assert-none t:MISTRAL_NOT t:MISTRAL_ALUT_ARITH t:MISTRAL_FF %% t:* %D

View File

@ -7,17 +7,6 @@ equiv_opt -async2sync -assert -map +/intel_alm/common/alm_sim.v -map +/intel_alm
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd dff # Constrain all select calls below inside the top module
select -assert-count 1 t:MISTRAL_FF
select -assert-none t:MISTRAL_FF %% t:* %D
design -load read
hierarchy -top dff
proc
equiv_opt -async2sync -assert -map +/intel_alm/common/alm_sim.v -map +/intel_alm/common/dff_sim.v synth_intel_alm -family cyclone10gx -noiopad -noclkbuf # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd dff # Constrain all select calls below inside the top module
select -assert-count 1 t:MISTRAL_FF
select -assert-none t:MISTRAL_FF %% t:* %D
@ -28,16 +17,5 @@ equiv_opt -async2sync -assert -map +/intel_alm/common/alm_sim.v -map +/intel_alm
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd dffe # Constrain all select calls below inside the top module
select -assert-count 1 t:MISTRAL_FF
select -assert-none t:MISTRAL_FF %% t:* %D
design -load read
hierarchy -top dffe
proc
equiv_opt -async2sync -assert -map +/intel_alm/common/alm_sim.v -map +/intel_alm/common/dff_sim.v synth_intel_alm -family cyclone10gx -noiopad -noclkbuf # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd dffe # Constrain all select calls below inside the top module
select -assert-count 1 t:MISTRAL_FF
select -assert-none t:MISTRAL_FF %% t:* %D

View File

@ -20,25 +20,3 @@ select -assert-max 6 t:MISTRAL_ALUT5 # Clang returns 5, GCC returns 4
select -assert-max 2 t:MISTRAL_ALUT6 # Clang returns 1, GCC returns 2
select -assert-none t:MISTRAL_FF t:MISTRAL_NOT t:MISTRAL_ALUT2 t:MISTRAL_ALUT3 t:MISTRAL_ALUT4 t:MISTRAL_ALUT5 t:MISTRAL_ALUT6 %% t:* %D
design -reset
read_verilog ../common/fsm.v
hierarchy -top fsm
proc
flatten
equiv_opt -run :prove -map +/intel_alm/common/alm_sim.v -map +/intel_alm/common/dff_sim.v synth_intel_alm -family cyclone10gx -noiopad -noclkbuf
async2sync
miter -equiv -make_assert -flatten gold gate miter
sat -verify -prove-asserts -show-public -set-at 1 in_reset 1 -seq 20 -prove-skip 1 miter
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd fsm # Constrain all select calls below inside the top module
select -assert-count 6 t:MISTRAL_FF
select -assert-max 1 t:MISTRAL_NOT
select -assert-max 2 t:MISTRAL_ALUT2 # Clang returns 2, GCC returns 1
select -assert-max 2 t:MISTRAL_ALUT3 # Clang returns 2, GCC returns 1
select -assert-max 2 t:MISTRAL_ALUT4 # Clang returns 0, GCC returns 1
select -assert-max 6 t:MISTRAL_ALUT5 # Clang returns 5, GCC returns 4
select -assert-max 2 t:MISTRAL_ALUT6 # Clang returns 1, GCC returns 2
select -assert-none t:MISTRAL_FF t:MISTRAL_NOT t:MISTRAL_ALUT2 t:MISTRAL_ALUT3 t:MISTRAL_ALUT4 t:MISTRAL_ALUT5 t:MISTRAL_ALUT6 %% t:* %D

View File

@ -10,16 +10,3 @@ select -assert-count 6 t:MISTRAL_ALUT2
select -assert-count 2 t:MISTRAL_ALUT4
select -assert-none t:MISTRAL_NOT t:MISTRAL_ALUT2 t:MISTRAL_ALUT4 %% t:* %D
design -reset
read_verilog ../common/logic.v
hierarchy -top top
proc
equiv_opt -assert -map +/intel_alm/common/alm_sim.v synth_intel_alm -family cyclone10gx -noiopad -noclkbuf # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd top # Constrain all select calls below inside the top module
select -assert-count 1 t:MISTRAL_NOT
select -assert-count 6 t:MISTRAL_ALUT2
select -assert-count 2 t:MISTRAL_ALUT4
select -assert-none t:MISTRAL_NOT t:MISTRAL_ALUT2 t:MISTRAL_ALUT4 %% t:* %D

View File

@ -37,3 +37,4 @@ select -assert-count 2 t:MISTRAL_ALUT2
select -assert-count 8 t:MISTRAL_ALUT3
select -assert-count 8 t:MISTRAL_FF
select -assert-none t:MISTRAL_ALUT2 t:MISTRAL_ALUT3 t:MISTRAL_FF t:MISTRAL_MLAB %% t:* %D

View File

@ -9,8 +9,6 @@ cd top # Constrain all select calls below inside the top module
select -assert-count 1 t:MISTRAL_MUL9X9
select -assert-none t:MISTRAL_MUL9X9 %% t:* %D
# Cyclone 10 GX does not have 9x9 multipliers.
design -reset
read_verilog ../common/mul.v
chparam -set X_WIDTH 17 -set Y_WIDTH 17 -set A_WIDTH 34
@ -23,18 +21,6 @@ cd top # Constrain all select calls below inside the top module
select -assert-count 1 t:MISTRAL_MUL18X18
select -assert-none t:MISTRAL_MUL18X18 %% t:* %D
design -reset
read_verilog ../common/mul.v
chparam -set X_WIDTH 17 -set Y_WIDTH 17 -set A_WIDTH 34
hierarchy -top top
proc
equiv_opt -assert -map +/intel_alm/common/dsp_sim.v synth_intel_alm -family cyclone10gx -noiopad -noclkbuf # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd top # Constrain all select calls below inside the top module
select -assert-count 1 t:MISTRAL_MUL18X18
select -assert-none t:MISTRAL_MUL18X18 %% t:* %D
design -reset
read_verilog ../common/mul.v
chparam -set X_WIDTH 26 -set Y_WIDTH 26 -set A_WIDTH 52
@ -47,14 +33,3 @@ cd top # Constrain all select calls below inside the top module
select -assert-count 1 t:MISTRAL_MUL27X27
select -assert-none t:MISTRAL_MUL27X27 %% t:* %D
design -reset
read_verilog ../common/mul.v
chparam -set X_WIDTH 26 -set Y_WIDTH 26 -set A_WIDTH 52
hierarchy -top top
proc
equiv_opt -assert -map +/intel_alm/common/dsp_sim.v synth_intel_alm -family cyclone10gx -noiopad -noclkbuf # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd top # Constrain all select calls below inside the top module
select -assert-count 1 t:MISTRAL_MUL27X27
select -assert-none t:MISTRAL_MUL27X27 %% t:* %D

View File

@ -11,16 +11,6 @@ select -assert-count 1 t:MISTRAL_ALUT3
select -assert-none t:MISTRAL_ALUT3 %% t:* %D
design -load read
hierarchy -top mux2
proc
equiv_opt -assert -map +/intel_alm/common/alm_sim.v synth_intel_alm -family cyclone10gx -noiopad -noclkbuf # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd mux2 # Constrain all select calls below inside the top module
select -assert-count 1 t:MISTRAL_ALUT3
select -assert-none t:MISTRAL_ALUT3 %% t:* %D
design -load read
hierarchy -top mux4
proc
@ -31,16 +21,6 @@ select -assert-count 1 t:MISTRAL_ALUT6
select -assert-none t:MISTRAL_ALUT6 %% t:* %D
design -load read
hierarchy -top mux4
proc
equiv_opt -assert -map +/intel_alm/common/alm_sim.v synth_intel_alm -family cyclone10gx -noiopad -noclkbuf # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd mux4 # Constrain all select calls below inside the top module
select -assert-count 1 t:MISTRAL_ALUT6
select -assert-none t:MISTRAL_ALUT6 %% t:* %D
design -load read
hierarchy -top mux8
proc
@ -52,17 +32,6 @@ select -assert-count 2 t:MISTRAL_ALUT6
select -assert-none t:MISTRAL_ALUT3 t:MISTRAL_ALUT6 %% t:* %D
design -load read
hierarchy -top mux8
proc
equiv_opt -assert -map +/intel_alm/common/alm_sim.v synth_intel_alm -family cyclone10gx -noiopad -noclkbuf # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd mux8 # Constrain all select calls below inside the top module
select -assert-count 1 t:MISTRAL_ALUT3
select -assert-count 2 t:MISTRAL_ALUT6
select -assert-none t:MISTRAL_ALUT3 t:MISTRAL_ALUT6 %% t:* %D
design -load read
hierarchy -top mux16
proc
@ -74,15 +43,3 @@ select -assert-max 2 t:MISTRAL_ALUT5
select -assert-max 5 t:MISTRAL_ALUT6
select -assert-none t:MISTRAL_ALUT3 t:MISTRAL_ALUT5 t:MISTRAL_ALUT6 %% t:* %D
design -load read
hierarchy -top mux16
proc
equiv_opt -assert -map +/intel_alm/common/alm_sim.v synth_intel_alm -family cyclone10gx -noiopad -noclkbuf # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd mux16 # Constrain all select calls below inside the top module
select -assert-max 1 t:MISTRAL_ALUT3
select -assert-max 2 t:MISTRAL_ALUT5
select -assert-max 5 t:MISTRAL_ALUT6
select -assert-none t:MISTRAL_ALUT3 t:MISTRAL_ALUT5 t:MISTRAL_ALUT6 %% t:* %D

View File

@ -1,26 +0,0 @@
read_verilog <<EOT
// Verilog has syntax for raw identifiers, where you start it with \ and end it with a space.
// This test crashes Quartus due to it parsing \a[10] as a wire slice and not a raw identifier.
module top();
(* keep *) wire [31:0] \a[10] ;
(* keep *) wire b;
assign b = \a[10] [31];
endmodule
EOT
synth_intel_alm -family cyclonev -quartus
select -assert-none w:*[* w:*]*
design -reset
read_verilog <<EOT
// Verilog has syntax for raw identifiers, where you start it with \ and end it with a space.
// This test crashes Quartus due to it parsing \a[10] as a wire slice and not a raw identifier.
module top();
(* keep *) wire [31:0] \a[10] ;
(* keep *) wire b;
assign b = \a[10] [31];
endmodule
EOT
synth_intel_alm -family cyclone10gx -quartus -noiopad -noclkbuf
select -assert-none w:*[* w:*]*

View File

@ -8,14 +8,3 @@ cd top # Constrain all select calls below inside the top module
select -assert-count 8 t:MISTRAL_FF
select -assert-none t:MISTRAL_FF %% t:* %D
design -reset
read_verilog ../common/shifter.v
hierarchy -top top
proc
flatten
equiv_opt -async2sync -assert -map +/intel_alm/common/alm_sim.v -map +/intel_alm/common/dff_sim.v synth_intel_alm -family cyclone10gx -noiopad -noclkbuf # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd top # Constrain all select calls below inside the top module
select -assert-count 8 t:MISTRAL_FF
select -assert-none t:MISTRAL_FF %% t:* %D

View File

@ -11,17 +11,3 @@ cd tristate # Constrain all select calls below inside the top module
select -assert-count 1 t:$_TBUF_
select -assert-none t:$_TBUF_ %% t:* %D
design -reset
read_verilog ../common/tribuf.v
hierarchy -top tristate
proc
tribuf
flatten
synth
equiv_opt -assert -map +/simcells.v synth_intel_alm -family cyclone10gx -noiopad -noclkbuf # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd tristate # Constrain all select calls below inside the top module
#Internal cell type used. Need support it.
select -assert-count 1 t:$_TBUF_
select -assert-none t:$_TBUF_ %% t:* %D