Major rewrite of "freduce" command

This commit is contained in:
Clifford Wolf 2014-01-02 16:52:33 +01:00
parent e501b8e5c7
commit 249ef8695a
4 changed files with 373 additions and 321 deletions

View File

@ -35,21 +35,19 @@ typedef ezSAT ezDefaultSAT;
struct SatGen
{
ezSAT *ez;
RTLIL::Design *design;
SigMap *sigmap;
std::string prefix;
SigPool initial_state;
bool ignore_div_by_zero;
bool model_undef;
SatGen(ezSAT *ez, RTLIL::Design *design, SigMap *sigmap, std::string prefix = std::string()) :
ez(ez), design(design), sigmap(sigmap), prefix(prefix), ignore_div_by_zero(false), model_undef(false)
SatGen(ezSAT *ez, SigMap *sigmap, std::string prefix = std::string()) :
ez(ez), sigmap(sigmap), prefix(prefix), ignore_div_by_zero(false), model_undef(false)
{
}
void setContext(RTLIL::Design *design, SigMap *sigmap, std::string prefix = std::string())
void setContext(SigMap *sigmap, std::string prefix = std::string())
{
this->design = design;
this->sigmap = sigmap;
this->prefix = prefix;
}

View File

@ -148,7 +148,7 @@ struct VlogHammerReporter
ezDefaultSAT ez;
SigMap sigmap(module);
SatGen satgen(&ez, design, &sigmap);
SatGen satgen(&ez, &sigmap);
satgen.model_undef = model_undef;
for (auto &c : module->cells)

View File

@ -28,337 +28,386 @@
#include <string.h>
#include <algorithm>
#define NUM_INITIAL_RANDOM_TEST_VECTORS 10
namespace {
bool noinv_mode;
int verbose_level;
typedef std::map<RTLIL::SigBit, std::pair<RTLIL::Cell*, std::set<RTLIL::SigBit>>> drivers_t;
struct equiv_bit_t
{
int depth;
bool inverted;
RTLIL::SigBit bit;
bool operator<(const equiv_bit_t &other) const {
if (depth != other.depth)
return depth < other.depth;
if (inverted != other.inverted)
return inverted < other.inverted;
return bit < other.bit;
}
};
struct FindReducedInputs
{
SigMap &sigmap;
drivers_t &drivers;
ezDefaultSAT ez;
std::set<RTLIL::Cell*> ez_cells;
SatGen satgen;
FindReducedInputs(SigMap &sigmap, drivers_t &drivers) :
sigmap(sigmap), drivers(drivers), satgen(&ez, &sigmap)
{
satgen.model_undef = true;
}
void register_cone_worker(std::set<RTLIL::SigBit> &pi, std::set<RTLIL::SigBit> &sigdone, RTLIL::SigBit out)
{
if (out.wire == NULL)
return;
if (sigdone.count(out) != 0)
return;
sigdone.insert(out);
if (drivers.count(out) != 0) {
std::pair<RTLIL::Cell*, std::set<RTLIL::SigBit>> &drv = drivers.at(out);
if (ez_cells.count(drv.first) == 0) {
satgen.setContext(&sigmap, "A");
if (!satgen.importCell(drv.first))
log_error("Can't create SAT model for cell %s (%s)!\n", RTLIL::id2cstr(drv.first->name), RTLIL::id2cstr(drv.first->type));
satgen.setContext(&sigmap, "B");
if (!satgen.importCell(drv.first))
log_abort();
ez_cells.insert(drv.first);
}
for (auto &bit : drv.second)
register_cone_worker(pi, sigdone, bit);
} else
pi.insert(out);
}
void register_cone(std::vector<RTLIL::SigBit> &pi, RTLIL::SigBit out)
{
std::set<RTLIL::SigBit> pi_set, sigdone;
register_cone_worker(pi_set, sigdone, out);
pi.clear();
pi.insert(pi.end(), pi_set.begin(), pi_set.end());
}
void analyze(std::vector<RTLIL::SigBit> &reduced_inputs, RTLIL::SigBit output)
{
if (verbose_level >= 1)
log(" Analyzing input cone for signal %s:\n", log_signal(output));
std::vector<RTLIL::SigBit> pi;
register_cone(pi, output);
if (verbose_level >= 1)
log(" Found %d input signals and %d cells.\n", int(pi.size()), int(ez_cells.size()));
satgen.setContext(&sigmap, "A");
int output_a = satgen.importSigSpec(output).front();
int output_undef_a = satgen.importUndefSigSpec(output).front();
ez.assume(ez.NOT(ez.expression(ezSAT::OpOr, satgen.importUndefSigSpec(pi))));
satgen.setContext(&sigmap, "B");
int output_b = satgen.importSigSpec(output).front();
int output_undef_b = satgen.importUndefSigSpec(output).front();
ez.assume(ez.NOT(ez.expression(ezSAT::OpOr, satgen.importUndefSigSpec(pi))));
for (size_t i = 0; i < pi.size(); i++)
{
RTLIL::SigSpec test_sig(pi[i]);
RTLIL::SigSpec rest_sig(pi);
rest_sig.remove(i, 1);
int test_sig_a, test_sig_b;
std::vector<int> rest_sig_a, rest_sig_b;
satgen.setContext(&sigmap, "A");
test_sig_a = satgen.importSigSpec(test_sig).front();
rest_sig_a = satgen.importSigSpec(rest_sig);
satgen.setContext(&sigmap, "B");
test_sig_b = satgen.importSigSpec(test_sig).front();
rest_sig_b = satgen.importSigSpec(rest_sig);
if (ez.solve(ez.vec_eq(rest_sig_a, rest_sig_b), ez.XOR(output_a, output_b), ez.XOR(test_sig_a, test_sig_b), ez.NOT(output_undef_a), ez.NOT(output_undef_b))) {
if (verbose_level >= 2)
log(" Result for input %s: pass\n", log_signal(test_sig));
reduced_inputs.push_back(pi[i]);
} else {
if (verbose_level >= 2)
log(" Result for input %s: strip\n", log_signal(test_sig));
}
}
if (verbose_level >= 1)
log(" Reduced input cone contains %d inputs.\n", int(reduced_inputs.size()));
}
};
struct PerformReduction
{
SigMap &sigmap;
drivers_t &drivers;
ezDefaultSAT ez;
SatGen satgen;
std::vector<int> sat_pi, sat_out, sat_def;
std::vector<RTLIL::SigBit> out_bits, pi_bits;
std::vector<bool> out_inverted;
std::vector<int> out_depth;
int register_cone_worker(std::set<RTLIL::Cell*> &celldone, std::map<RTLIL::SigBit, int> &sigdepth, RTLIL::SigBit out)
{
if (out.wire == NULL)
return 0;
if (sigdepth.count(out) != 0)
return sigdepth.at(out);
sigdepth[out] = 0;
if (drivers.count(out) != 0) {
std::pair<RTLIL::Cell*, std::set<RTLIL::SigBit>> &drv = drivers.at(out);
if (celldone.count(drv.first) == 0) {
if (!satgen.importCell(drv.first))
log_error("Can't create SAT model for cell %s (%s)!\n", RTLIL::id2cstr(drv.first->name), RTLIL::id2cstr(drv.first->type));
celldone.insert(drv.first);
}
int max_child_dept = 0;
for (auto &bit : drv.second)
max_child_dept = std::max(register_cone_worker(celldone, sigdepth, bit), max_child_dept);
sigdepth[out] = max_child_dept + 1;
} else {
pi_bits.push_back(out);
sat_pi.push_back(satgen.importSigSpec(out).front());
ez.assume(ez.NOT(satgen.importUndefSigSpec(out).front()));
}
return sigdepth[out];
}
PerformReduction(SigMap &sigmap, drivers_t &drivers, std::vector<RTLIL::SigBit> &bits) :
sigmap(sigmap), drivers(drivers), satgen(&ez, &sigmap), out_bits(bits)
{
satgen.model_undef = true;
std::set<RTLIL::Cell*> celldone;
std::map<RTLIL::SigBit, int> sigdepth;
for (auto &bit : bits) {
out_depth.push_back(register_cone_worker(celldone, sigdepth, bit));
sat_out.push_back(satgen.importSigSpec(bit).front());
sat_def.push_back(ez.NOT(satgen.importUndefSigSpec(bit).front()));
}
if (noinv_mode) {
out_inverted = std::vector<bool>(sat_out.size(), false);
} else {
if (!ez.solve(sat_out, out_inverted, ez.expression(ezSAT::OpAnd, sat_def)))
log_error("Solving for initial model failed!\n");
for (size_t i = 0; i < sat_out.size(); i++)
if (out_inverted.at(i))
sat_out[i] = ez.NOT(sat_out[i]);
}
}
void analyze(std::vector<std::vector<equiv_bit_t>> &results, std::vector<int> &bucket, int level)
{
if (bucket.size() <= 1)
return;
if (verbose_level >= 1)
log("%*s Trying to shatter bucket with %d signals.\n", 2*level, "", int(bucket.size()));
std::vector<int> sat_list, sat_inv_list;
for (int idx : bucket) {
sat_list.push_back(ez.AND(sat_out[idx], sat_def[idx]));
sat_inv_list.push_back(ez.AND(ez.NOT(sat_out[idx]), sat_def[idx]));
}
std::vector<int> modelVars = sat_out;
std::vector<bool> model;
if (verbose_level >= 2) {
modelVars.insert(modelVars.end(), sat_def.begin(), sat_def.end());
modelVars.insert(modelVars.end(), sat_pi.begin(), sat_pi.end());
}
if (ez.solve(modelVars, model, ez.expression(ezSAT::OpOr, sat_list), ez.expression(ezSAT::OpOr, sat_inv_list)))
{
if (verbose_level >= 2) {
for (size_t i = 0; i < pi_bits.size(); i++)
log("%*s -> PI %c == %s\n", 2*level, "", model[2*sat_out.size() + i] ? '1' : '0', log_signal(pi_bits[i]));
for (int idx : bucket)
log("%*s -> OUT %c == %s%s\n", 2*level, "", model[sat_out.size() + idx] ? model[idx] ? '1' : '0' : 'x',
out_inverted.at(idx) ? "~" : "", log_signal(out_bits[idx]));
}
std::vector<int> buckets[2];
for (int idx : bucket)
buckets[model[idx] ? 1 : 0].push_back(idx);
analyze(results, buckets[0], level+1);
analyze(results, buckets[1], level+1);
}
else
{
if (verbose_level >= 1) {
log("%*s Found %d equivialent signals:", 2*level, "", int(bucket.size()));
for (int idx : bucket)
log("%s%s%s", idx == bucket.front() ? " " : ", ", out_inverted[idx] ? "~" : "", log_signal(out_bits[idx]));
log("\n");
}
std::vector<equiv_bit_t> result;
for (int idx : bucket) {
equiv_bit_t bit;
bit.depth = out_depth[idx];
bit.inverted = out_inverted[idx];
bit.bit = out_bits[idx];
result.push_back(bit);
}
std::sort(result.begin(), result.end());
if (result.front().inverted)
for (auto &bit : result)
bit.inverted = !bit.inverted;
results.push_back(result);
}
}
void analyze(std::vector<std::vector<equiv_bit_t>> &results)
{
std::vector<int> bucket;
for (size_t i = 0; i < sat_out.size(); i++)
bucket.push_back(i);
analyze(results, bucket, 1);
}
};
struct FreduceHelper
{
RTLIL::Design *design;
RTLIL::Module *module;
bool try_mode;
ezDefaultSAT ez;
SigMap sigmap;
CellTypes ct;
SatGen satgen;
ConstEval ce;
drivers_t drivers;
SigPool inputs, nodes;
RTLIL::SigSpec input_sigs;
SigSet<RTLIL::SigSpec> source_signals;
std::vector<RTLIL::Const> test_vectors;
std::map<RTLIL::SigSpec, RTLIL::Const> node_to_data;
std::map<RTLIL::SigSpec, RTLIL::SigSpec> node_result;
uint32_t xorshift32_state;
uint32_t xorshift32() {
xorshift32_state ^= xorshift32_state << 13;
xorshift32_state ^= xorshift32_state >> 17;
xorshift32_state ^= xorshift32_state << 5;
return xorshift32_state;
FreduceHelper(RTLIL::Module *module) : module(module), sigmap(module)
{
}
FreduceHelper(RTLIL::Design *design, RTLIL::Module *module, bool try_mode) :
design(design), module(module), try_mode(try_mode),
sigmap(module), satgen(&ez, design, &sigmap), ce(module)
int run()
{
log("Running functional reduction on module %s:\n", RTLIL::id2cstr(module->name));
CellTypes ct;
ct.setup_internals();
ct.setup_stdcells();
xorshift32_state = 123456789;
xorshift32();
xorshift32();
xorshift32();
}
bool run_test(RTLIL::SigSpec test_vec)
{
ce.clear();
ce.set(input_sigs, test_vec.as_const());
for (auto &bit : nodes.bits) {
RTLIL::SigSpec nodesig(bit.first, 1, bit.second), nodeval = nodesig;
if (!ce.eval(nodeval)) {
if (!try_mode)
log_error("Evaluation of node %s failed!\n", log_signal(nodesig));
log("FAILED: Evaluation of node %s failed!\n", log_signal(nodesig));
return false;
std::vector<std::set<RTLIL::SigBit>> batches;
for (auto &it : module->cells)
if (ct.cell_known(it.second->type)) {
std::set<RTLIL::SigBit> inputs, outputs;
for (auto &port : it.second->connections) {
std::vector<RTLIL::SigBit> bits = sigmap(port.second).to_sigbit_vector();
if (ct.cell_output(it.second->type, port.first))
outputs.insert(bits.begin(), bits.end());
else
inputs.insert(bits.begin(), bits.end());
}
std::pair<RTLIL::Cell*, std::set<RTLIL::SigBit>> drv(it.second, inputs);
for (auto &bit : outputs)
drivers[bit] = drv;
batches.push_back(outputs);
}
node_to_data[nodesig].bits.push_back(nodeval.as_const().bits.at(0));
}
return true;
}
void dump_node_data()
{
int max_node_len = 20;
for (auto &it : node_to_data)
max_node_len = std::max(max_node_len, int(strlen(log_signal(it.first))));
log(" full node fingerprints:\n");
for (auto &it : node_to_data)
log(" %-*s %s\n", max_node_len+5, log_signal(it.first), log_signal(it.second));
}
bool check(RTLIL::SigSpec sig1, RTLIL::SigSpec sig2)
{
log(" performing SAT proof: %s == %s ->", log_signal(sig1), log_signal(sig2));
std::vector<int> vec1 = satgen.importSigSpec(sig1);
std::vector<int> vec2 = satgen.importSigSpec(sig2);
std::vector<int> model = satgen.importSigSpec(input_sigs);
std::vector<bool> testvect;
if (ez.solve(model, testvect, ez.vec_ne(vec1, vec2))) {
RTLIL::SigSpec testvect_sig;
for (int i = 0; i < input_sigs.width; i++)
testvect_sig.append(testvect.at(i) ? RTLIL::State::S1 : RTLIL::State::S0);
testvect_sig.optimize();
log(" failed: %s\n", log_signal(testvect_sig));
test_vectors.push_back(testvect_sig.as_const());
if (!run_test(testvect_sig))
return false;
} else {
log(" success.\n");
if (!sig1.is_fully_const())
node_result[sig1].append(sig2);
if (!sig2.is_fully_const())
node_result[sig2].append(sig1);
}
return true;
}
bool analyze_const()
{
for (auto &it : node_to_data)
int bits_count = 0;
std::map<std::vector<RTLIL::SigBit>, std::vector<RTLIL::SigBit>> buckets;
for (auto &batch : batches)
{
if (node_result.count(it.first))
continue;
if (it.second == RTLIL::Const(RTLIL::State::S0, it.second.bits.size()))
if (!check(it.first, RTLIL::SigSpec(RTLIL::State::S0)))
return false;
if (it.second == RTLIL::Const(RTLIL::State::S1, it.second.bits.size()))
if (!check(it.first, RTLIL::SigSpec(RTLIL::State::S1)))
return false;
RTLIL::SigSpec batch_sig(std::vector<RTLIL::SigBit>(batch.begin(), batch.end()));
batch_sig.optimize();
log(" Finding reduced input cone for signal batch %s%c\n", log_signal(batch_sig), verbose_level ? ':' : '.');
FindReducedInputs infinder(sigmap, drivers);
for (auto &bit : batch) {
std::vector<RTLIL::SigBit> inputs;
infinder.analyze(inputs, bit);
buckets[inputs].push_back(bit);
bits_count++;
}
}
return true;
}
log(" Sorted %d signal bits into %d buckets.\n", bits_count, int(buckets.size()));
bool analyze_alias()
{
restart:
std::map<RTLIL::Const, RTLIL::SigSpec> reverse_map;
for (auto &it : node_to_data) {
if (node_result.count(it.first) && node_result.at(it.first).is_fully_const())
continue;
reverse_map[it.second].append(it.first);
}
for (auto &it : reverse_map)
std::vector<std::vector<equiv_bit_t>> equiv;
for (auto &bucket : buckets)
{
if (it.second.width <= 1)
if (bucket.second.size() == 1)
continue;
it.second.expand();
for (int i = 0; i < it.second.width; i++)
for (int j = i+1; j < it.second.width; j++) {
RTLIL::SigSpec sig1 = it.second.chunks.at(i), sig2 = it.second.chunks.at(j);
if (node_result.count(sig1) && node_result.count(sig2))
RTLIL::SigSpec bucket_sig(bucket.second);
bucket_sig.optimize();
log(" Trying to shatter bucket %s%c\n", log_signal(bucket_sig), verbose_level ? ':' : '.');
PerformReduction worker(sigmap, drivers, bucket.second);
worker.analyze(equiv);
}
log(" Rewiring %d equivialent groups:\n", int(equiv.size()));
int rewired_sigbits = 0;
for (auto &grp : equiv)
{
log(" Using as master for group: %s\n", log_signal(grp.front().bit));
RTLIL::SigSpec inv_sig;
for (size_t i = 1; i < grp.size(); i++)
{
RTLIL::Cell *drv = drivers.at(grp[i].bit).first;
if (grp[i].inverted && drv->type == "$_INV_" && sigmap(drv->connections.at("\\A")) == grp[0].bit) {
log(" Skipping inverted slave %s: already in reduced form\n", log_signal(grp[i].bit));
continue;
if (node_to_data.at(sig1) != node_to_data.at(sig2))
goto restart;
if (!check(it.second.chunks.at(i), it.second.chunks.at(j)))
return false;
}
}
return true;
}
}
bool toproot_helper(RTLIL::SigSpec cursor, RTLIL::SigSpec stoplist, RTLIL::SigSpec &donelist, int level)
{
// log(" %*schecking %s: %s\n", level*2, "", log_signal(cursor), log_signal(stoplist));
log(" Connect slave%s: %s\n", grp[i].inverted ? " using inverter" : "", log_signal(grp[i].bit));
if (stoplist.extract(cursor).width != 0) {
// log(" %*s STOP\n", level*2, "");
return false;
}
RTLIL::Wire *dummy_wire = module->new_wire(1, NEW_ID);
for (auto &port : drv->connections) {
RTLIL::SigSpec mapped = sigmap(port.second);
mapped.replace(grp[i].bit, dummy_wire, &port.second);
}
if (donelist.extract(cursor).width != 0)
return true;
if (grp[i].inverted)
{
if (inv_sig.width == 0)
{
inv_sig = module->new_wire(1, NEW_ID);
stoplist.append(cursor);
std::set<RTLIL::SigSpec> next = source_signals.find(cursor);
for (auto &it : next)
if (!toproot_helper(it, stoplist, donelist, level+1))
return false;
donelist.append(cursor);
return true;
}
// KISS topological sort of bits in signal. return one element of sig
// without dependencies to the others (or empty if input is not a DAG).
RTLIL::SigSpec toproot(RTLIL::SigSpec sig)
{
sig.expand();
// log(" finding topological root in %s:\n", log_signal(sig));
for (auto &c : sig.chunks) {
RTLIL::SigSpec stoplist = sig, donelist;
stoplist.remove(c);
// log(" testing %s as root:\n", log_signal(c));
if (toproot_helper(c, stoplist, donelist, 0))
return c;
}
return RTLIL::SigSpec();
}
void update_design_for_group(RTLIL::SigSpec root, RTLIL::SigSpec rest)
{
SigPool unlink;
unlink.add(rest);
for (auto &cell_it : module->cells) {
RTLIL::Cell *cell = cell_it.second;
if (!ct.cell_known(cell->type))
continue;
for (auto &conn : cell->connections)
if (ct.cell_output(cell->type, conn.first)) {
RTLIL::SigSpec sig = sigmap(conn.second);
sig.expand();
bool did_something = false;
for (auto &c : sig.chunks) {
if (c.wire == NULL || !unlink.check_any(c))
continue;
c.wire = new RTLIL::Wire;
c.wire->name = NEW_ID;
module->add(c.wire);
assert(c.width == 1);
c.offset = 0;
did_something = true;
RTLIL::Cell *inv_cell = new RTLIL::Cell;
inv_cell->name = NEW_ID;
inv_cell->type = "$_INV_";
inv_cell->connections["\\A"] = grp[0].bit;
inv_cell->connections["\\Y"] = inv_sig;
module->add(inv_cell);
}
if (did_something) {
sig.optimize();
conn.second = sig;
}
}
}
rest.expand();
for (auto &c : rest.chunks) {
if (c.wire != NULL && !root.is_fully_const()) {
source_signals.erase(c);
source_signals.insert(c, root);
module->connections.push_back(RTLIL::SigSig(grp[i].bit, inv_sig));
}
else
module->connections.push_back(RTLIL::SigSig(grp[i].bit, grp[0].bit));
rewired_sigbits++;
}
module->connections.push_back(RTLIL::SigSig(c, root));
}
}
void analyze_groups()
{
SigMap to_group_major;
for (auto &it : node_result) {
it.second.expand();
for (auto &c : it.second.chunks)
to_group_major.add(it.first, c);
}
std::map<RTLIL::SigSpec, RTLIL::SigSpec> major_to_rest;
for (auto &it : node_result)
major_to_rest[to_group_major(it.first)].append(it.first);
for (auto &it : major_to_rest)
{
RTLIL::SigSig group = it;
if (!it.first.is_fully_const()) {
group.first = toproot(it.second);
if (group.first.width == 0) {
log("Operating on non-DAG input: failed to find topological root for `%s'.\n", log_signal(it.second));
return;
}
group.second.remove(group.first);
}
group.first.optimize();
group.second.sort_and_unify();
log(" found group: %s -> %s\n", log_signal(group.first), log_signal(group.second));
update_design_for_group(group.first, group.second);
}
}
void run()
{
log("\nFunctionally reduce module %s:\n", RTLIL::id2cstr(module->name));
// find inputs and nodes (nets driven by internal cells)
// add all internal cells to sat solver
for (auto &cell_it : module->cells) {
RTLIL::Cell *cell = cell_it.second;
if (!ct.cell_known(cell->type))
continue;
RTLIL::SigSpec cell_inputs, cell_outputs;
for (auto &conn : cell->connections)
if (ct.cell_output(cell->type, conn.first)) {
nodes.add(sigmap(conn.second));
cell_outputs.append(sigmap(conn.second));
} else {
inputs.add(sigmap(conn.second));
cell_inputs.append(sigmap(conn.second));
}
cell_inputs.sort_and_unify();
cell_outputs.sort_and_unify();
cell_inputs.expand();
for (auto &c : cell_inputs.chunks)
if (c.wire != NULL)
source_signals.insert(cell_outputs, c);
if (!satgen.importCell(cell))
log_error("Failed to import cell to SAT solver: %s (%s)\n",
RTLIL::id2cstr(cell->name), RTLIL::id2cstr(cell->type));
}
inputs.del(nodes);
nodes.add(inputs);
log(" found %d nodes (%d inputs).\n", int(nodes.size()), int(inputs.size()));
// initialise input_sigs and add all-zero, all-one and a few random test vectors
input_sigs = inputs.export_all();
test_vectors.push_back(RTLIL::SigSpec(RTLIL::State::S0, input_sigs.width).as_const());
test_vectors.push_back(RTLIL::SigSpec(RTLIL::State::S1, input_sigs.width).as_const());
for (int i = 0; i < NUM_INITIAL_RANDOM_TEST_VECTORS; i++) {
RTLIL::SigSpec sig;
for (int j = 0; j < input_sigs.width; j++)
sig.append(xorshift32() % 2 ? RTLIL::State::S1 : RTLIL::State::S0);
sig.optimize();
assert(sig.width == input_sigs.width);
test_vectors.push_back(sig.as_const());
}
for (auto &test_vec : test_vectors)
if (!run_test(test_vec))
return;
// run the analysis and update design
if (!analyze_const())
return;
if (!analyze_alias())
return;
log(" input vector: %s\n", log_signal(input_sigs));
for (auto &test_vec : test_vectors)
log(" test vector: %s\n", log_signal(test_vec));
dump_node_data();
analyze_groups();
log(" Rewired a total of %d signal bits in module %s.\n", rewired_sigbits, RTLIL::id2cstr(module->name));
return rewired_sigbits;
}
};
@ -376,41 +425,46 @@ struct FreducePass : public Pass {
log("equivialent, they are merged to one node and one of the redundant drivers is\n");
log("removed.\n");
log("\n");
log(" -try\n");
log(" do not issue an error when the analysis fails.\n");
log(" (usually beacause of logic loops in the design)\n");
log(" -v, -vv\n");
log(" enable verbose or very verbose output\n");
log("\n");
log(" -noinv\n");
log(" do not consolidate inverted signals\n");
log("\n");
// log(" -enable_invert\n");
// log(" also detect nodes that are inverse to each other.\n");
// log("\n");
}
virtual void execute(std::vector<std::string> args, RTLIL::Design *design)
{
bool enable_invert = false;
bool try_mode = false;
verbose_level = 0;
noinv_mode = false;
log_header("Executing FREDUCE pass (perform functional reduction).\n");
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
if (args[argidx] == "-enable_invert") {
enable_invert = true;
if (args[argidx] == "-v") {
verbose_level = 1;
continue;
}
if (args[argidx] == "-try") {
try_mode = true;
if (args[argidx] == "-vv") {
verbose_level = 2;
continue;
}
if (args[argidx] == "-noinv") {
noinv_mode = true;
continue;
}
break;
}
extra_args(args, argidx, design);
for (auto &mod_it : design->modules)
{
int bitcount = 0;
for (auto &mod_it : design->modules) {
RTLIL::Module *module = mod_it.second;
if (design->selected(module))
FreduceHelper(design, module, try_mode).run();
bitcount += FreduceHelper(module).run();
}
log("Rewired a total of %d signal bits.\n", bitcount);
}
} FreducePass;

View File

@ -61,7 +61,7 @@ struct SatHelper
bool gotTimeout;
SatHelper(RTLIL::Design *design, RTLIL::Module *module, bool enable_undef) :
design(design), module(module), sigmap(module), ct(design), satgen(&ez, design, &sigmap)
design(design), module(module), sigmap(module), ct(design), satgen(&ez, &sigmap)
{
this->enable_undef = enable_undef;
satgen.model_undef = enable_undef;