memory_bram: Use Mem helpers.

This commit is contained in:
Marcelina Kościelnicka 2020-10-17 22:20:55 +02:00
parent 1e8098279f
commit 21896e2a02
1 changed files with 90 additions and 121 deletions

View File

@ -18,6 +18,7 @@
*/ */
#include "kernel/yosys.h" #include "kernel/yosys.h"
#include "kernel/mem.h"
USING_YOSYS_NAMESPACE USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN PRIVATE_NAMESPACE_BEGIN
@ -400,9 +401,11 @@ struct rules_t
} }
}; };
bool replace_cell(Cell *cell, const rules_t &rules, const rules_t::bram_t &bram, const rules_t::match_t &match, dict<string, int> &match_properties, int mode) bool replace_memory(Mem &orig_mem, const rules_t &rules, const rules_t::bram_t &bram, const rules_t::match_t &match, dict<string, int> &match_properties, int mode)
{ {
Module *module = cell->module; // We will modify ports — make a copy of the structure.
Mem mem(orig_mem);
Module *module = mem.module;
auto portinfos = bram.make_portinfos(); auto portinfos = bram.make_portinfos();
int dup_count = 1; int dup_count = 1;
@ -437,46 +440,17 @@ bool replace_cell(Cell *cell, const rules_t &rules, const rules_t::bram_t &bram,
log(" Mapping to bram type %s (variant %d):\n", log_id(bram.name), bram.variant); log(" Mapping to bram type %s (variant %d):\n", log_id(bram.name), bram.variant);
// bram.dump_config(); // bram.dump_config();
int mem_size = cell->getParam(ID::SIZE).as_int(); bool cell_init = !mem.inits.empty();
int mem_abits = cell->getParam(ID::ABITS).as_int();
int mem_width = cell->getParam(ID::WIDTH).as_int();
// int mem_offset = cell->getParam(ID::OFFSET).as_int();
bool cell_init = !SigSpec(cell->getParam(ID::INIT)).is_fully_undef();
vector<Const> initdata; vector<Const> initdata;
if (cell_init) { if (cell_init) {
Const initparam = cell->getParam(ID::INIT); Const initparam = mem.get_init_data();
initdata.reserve(mem_size); initdata.reserve(mem.size);
for (int i=0; i < mem_size; i++) for (int i=0; i < mem.size; i++)
initdata.push_back(initparam.extract(mem_width*i, mem_width, State::Sx)); initdata.push_back(initparam.extract(mem.width*i, mem.width, State::Sx));
} }
int wr_ports = cell->getParam(ID::WR_PORTS).as_int(); if (match.shuffle_enable && bram.dbits >= portinfos.at(match.shuffle_enable - 'A').enable*2 && portinfos.at(match.shuffle_enable - 'A').enable > 0 && !mem.wr_ports.empty())
auto wr_clken = SigSpec(cell->getParam(ID::WR_CLK_ENABLE));
auto wr_clkpol = SigSpec(cell->getParam(ID::WR_CLK_POLARITY));
wr_clken.extend_u0(wr_ports);
wr_clkpol.extend_u0(wr_ports);
SigSpec wr_en = cell->getPort(ID::WR_EN);
SigSpec wr_clk = cell->getPort(ID::WR_CLK);
SigSpec wr_data = cell->getPort(ID::WR_DATA);
SigSpec wr_addr = cell->getPort(ID::WR_ADDR);
int rd_ports = cell->getParam(ID::RD_PORTS).as_int();
auto rd_clken = SigSpec(cell->getParam(ID::RD_CLK_ENABLE));
auto rd_clkpol = SigSpec(cell->getParam(ID::RD_CLK_POLARITY));
auto rd_transp = SigSpec(cell->getParam(ID::RD_TRANSPARENT));
rd_clken.extend_u0(rd_ports);
rd_clkpol.extend_u0(rd_ports);
rd_transp.extend_u0(rd_ports);
SigSpec rd_en = cell->getPort(ID::RD_EN);
SigSpec rd_clk = cell->getPort(ID::RD_CLK);
SigSpec rd_data = cell->getPort(ID::RD_DATA);
SigSpec rd_addr = cell->getPort(ID::RD_ADDR);
if (match.shuffle_enable && bram.dbits >= portinfos.at(match.shuffle_enable - 'A').enable*2 && portinfos.at(match.shuffle_enable - 'A').enable > 0 && wr_ports > 0)
{ {
int bucket_size = bram.dbits / portinfos.at(match.shuffle_enable - 'A').enable; int bucket_size = bram.dbits / portinfos.at(match.shuffle_enable - 'A').enable;
log(" Shuffle bit order to accommodate enable buckets of size %d..\n", bucket_size); log(" Shuffle bit order to accommodate enable buckets of size %d..\n", bucket_size);
@ -487,23 +461,23 @@ bool replace_cell(Cell *cell, const rules_t &rules, const rules_t::bram_t &bram,
std::vector<SigSpec> old_wr_data; std::vector<SigSpec> old_wr_data;
std::vector<SigSpec> old_rd_data; std::vector<SigSpec> old_rd_data;
for (int i = 0; i < wr_ports; i++) { for (auto &port : mem.wr_ports) {
old_wr_en.push_back(wr_en.extract(i*mem_width, mem_width)); old_wr_en.push_back(port.en);
old_wr_data.push_back(wr_data.extract(i*mem_width, mem_width)); old_wr_data.push_back(port.data);
} }
for (int i = 0; i < rd_ports; i++) for (auto &port : mem.rd_ports)
old_rd_data.push_back(rd_data.extract(i*mem_width, mem_width)); old_rd_data.push_back(port.data);
// analyze enable structure // analyze enable structure
std::vector<SigSpec> en_order; std::vector<SigSpec> en_order;
dict<SigSpec, vector<int>> bits_wr_en; dict<SigSpec, vector<int>> bits_wr_en;
for (int i = 0; i < mem_width; i++) { for (int i = 0; i < mem.width; i++) {
SigSpec sig; SigSpec sig;
for (int j = 0; j < wr_ports; j++) for (auto &port : mem.wr_ports)
sig.append(old_wr_en[j][i]); sig.append(port.en[i]);
if (bits_wr_en.count(sig) == 0) if (bits_wr_en.count(sig) == 0)
en_order.push_back(sig); en_order.push_back(sig);
bits_wr_en[sig].push_back(i); bits_wr_en[sig].push_back(i);
@ -518,7 +492,7 @@ bool replace_cell(Cell *cell, const rules_t &rules, const rules_t::bram_t &bram,
std::vector<int> shuffle_map; std::vector<int> shuffle_map;
if (cell_init) if (cell_init)
new_initdata.resize(mem_size); new_initdata.resize(mem.size);
for (auto &it : en_order) for (auto &it : en_order)
{ {
@ -528,29 +502,29 @@ bool replace_cell(Cell *cell, const rules_t &rules, const rules_t::bram_t &bram,
SigBit fillbit; SigBit fillbit;
for (int i = 0; i < GetSize(bits); i++) { for (int i = 0; i < GetSize(bits); i++) {
for (int j = 0; j < wr_ports; j++) { for (int j = 0; j < GetSize(mem.wr_ports); j++) {
new_wr_en[j].append(old_wr_en[j][bits[i]]); new_wr_en[j].append(old_wr_en[j][bits[i]]);
new_wr_data[j].append(old_wr_data[j][bits[i]]); new_wr_data[j].append(old_wr_data[j][bits[i]]);
fillbit = old_wr_en[j][bits[i]]; fillbit = old_wr_en[j][bits[i]];
} }
for (int j = 0; j < rd_ports; j++) for (int j = 0; j < GetSize(mem.rd_ports); j++)
new_rd_data[j].append(old_rd_data[j][bits[i]]); new_rd_data[j].append(old_rd_data[j][bits[i]]);
if (cell_init) { if (cell_init) {
for (int j = 0; j < mem_size; j++) for (int j = 0; j < mem.size; j++)
new_initdata[j].push_back(initdata[j][bits[i]]); new_initdata[j].push_back(initdata[j][bits[i]]);
} }
shuffle_map.push_back(bits[i]); shuffle_map.push_back(bits[i]);
} }
for (int i = 0; i < fillbits; i++) { for (int i = 0; i < fillbits; i++) {
for (int j = 0; j < wr_ports; j++) { for (int j = 0; j < GetSize(mem.wr_ports); j++) {
new_wr_en[j].append(fillbit); new_wr_en[j].append(fillbit);
new_wr_data[j].append(State::S0); new_wr_data[j].append(State::S0);
} }
for (int j = 0; j < rd_ports; j++) for (int j = 0; j < GetSize(mem.rd_ports); j++)
new_rd_data[j].append(State::Sx); new_rd_data[j].append(State::Sx);
if (cell_init) { if (cell_init) {
for (int j = 0; j < mem_size; j++) for (int j = 0; j < mem.size; j++)
new_initdata[j].push_back(State::Sx); new_initdata[j].push_back(State::Sx);
} }
shuffle_map.push_back(-1); shuffle_map.push_back(-1);
@ -564,40 +538,38 @@ bool replace_cell(Cell *cell, const rules_t &rules, const rules_t::bram_t &bram,
// update mem_*, wr_*, and rd_* variables // update mem_*, wr_*, and rd_* variables
mem_width = GetSize(new_wr_en.front()); mem.width = GetSize(new_wr_en.front());
wr_en = SigSpec(0, wr_ports * mem_width);
wr_data = SigSpec(0, wr_ports * mem_width);
rd_data = SigSpec(0, rd_ports * mem_width);
for (int i = 0; i < wr_ports; i++) { for (int i = 0; i < GetSize(mem.wr_ports); i++) {
wr_en.replace(i*mem_width, new_wr_en[i]); auto &port = mem.wr_ports[i];
wr_data.replace(i*mem_width, new_wr_data[i]); port.en = new_wr_en[i];
port.data = new_wr_data[i];
} }
for (int i = 0; i < rd_ports; i++) for (int i = 0; i < GetSize(mem.rd_ports); i++) {
rd_data.replace(i*mem_width, new_rd_data[i]); auto &port = mem.rd_ports[i];
port.data = new_rd_data[i];
}
if (cell_init) { if (cell_init) {
for (int i = 0; i < mem_size; i++) for (int i = 0; i < mem.size; i++)
initdata[i] = Const(new_initdata[i]); initdata[i] = Const(new_initdata[i]);
} }
} }
// assign write ports // assign write ports
pair<SigBit, bool> wr_clkdom; pair<SigBit, bool> wr_clkdom;
for (int cell_port_i = 0, bram_port_i = 0; cell_port_i < wr_ports; cell_port_i++) for (int cell_port_i = 0, bram_port_i = 0; cell_port_i < GetSize(mem.wr_ports); cell_port_i++)
{ {
bool clken = wr_clken[cell_port_i] == State::S1; auto &port = mem.wr_ports[cell_port_i];
bool clkpol = wr_clkpol[cell_port_i] == State::S1;
SigBit clksig = wr_clk[cell_port_i];
pair<SigBit, bool> clkdom(clksig, clkpol); pair<SigBit, bool> clkdom(port.clk, port.clk_polarity);
if (!clken) if (!port.clk_enable)
clkdom = pair<SigBit, bool>(State::S1, false); clkdom = pair<SigBit, bool>(State::S1, false);
wr_clkdom = clkdom; wr_clkdom = clkdom;
log(" Write port #%d is in clock domain %s%s.\n", log(" Write port #%d is in clock domain %s%s.\n",
cell_port_i, clkdom.second ? "" : "!", cell_port_i, clkdom.second ? "" : "!",
clken ? log_signal(clkdom.first) : "~async~"); port.clk_enable ? log_signal(clkdom.first) : "~async~");
for (; bram_port_i < GetSize(portinfos); bram_port_i++) for (; bram_port_i < GetSize(portinfos); bram_port_i++)
{ {
@ -609,7 +581,7 @@ bool replace_cell(Cell *cell, const rules_t &rules, const rules_t::bram_t &bram,
skip_bram_wport: skip_bram_wport:
continue; continue;
if (clken) { if (port.clk_enable) {
if (pi.clocks == 0) { if (pi.clocks == 0) {
log(" Bram port %c%d has incompatible clock type.\n", pi.group + 'A', pi.index + 1); log(" Bram port %c%d has incompatible clock type.\n", pi.group + 'A', pi.index + 1);
goto skip_bram_wport; goto skip_bram_wport;
@ -618,7 +590,7 @@ bool replace_cell(Cell *cell, const rules_t &rules, const rules_t::bram_t &bram,
log(" Bram port %c%d is in a different clock domain.\n", pi.group + 'A', pi.index + 1); log(" Bram port %c%d is in a different clock domain.\n", pi.group + 'A', pi.index + 1);
goto skip_bram_wport; goto skip_bram_wport;
} }
if (clock_polarities.count(pi.clkpol) && clock_polarities.at(pi.clkpol) != clkpol) { if (clock_polarities.count(pi.clkpol) && clock_polarities.at(pi.clkpol) != port.clk_polarity) {
log(" Bram port %c%d has incompatible clock polarity.\n", pi.group + 'A', pi.index + 1); log(" Bram port %c%d has incompatible clock polarity.\n", pi.group + 'A', pi.index + 1);
goto skip_bram_wport; goto skip_bram_wport;
} }
@ -631,12 +603,12 @@ bool replace_cell(Cell *cell, const rules_t &rules, const rules_t::bram_t &bram,
SigSpec sig_en; SigSpec sig_en;
SigBit last_en_bit = State::S1; SigBit last_en_bit = State::S1;
for (int i = 0; i < mem_width; i++) { for (int i = 0; i < mem.width; i++) {
if (pi.enable && i % (bram.dbits / pi.enable) == 0) { if (pi.enable && i % (bram.dbits / pi.enable) == 0) {
last_en_bit = wr_en[i + cell_port_i*mem_width]; last_en_bit = port.en[i];
sig_en.append(last_en_bit); sig_en.append(last_en_bit);
} }
if (last_en_bit != wr_en[i + cell_port_i*mem_width]) { if (last_en_bit != port.en[i]) {
log(" Bram port %c%d has incompatible enable structure.\n", pi.group + 'A', pi.index + 1); log(" Bram port %c%d has incompatible enable structure.\n", pi.group + 'A', pi.index + 1);
goto skip_bram_wport; goto skip_bram_wport;
} }
@ -645,7 +617,7 @@ bool replace_cell(Cell *cell, const rules_t &rules, const rules_t::bram_t &bram,
log(" Mapped to bram port %c%d.\n", pi.group + 'A', pi.index + 1); log(" Mapped to bram port %c%d.\n", pi.group + 'A', pi.index + 1);
pi.mapped_port = cell_port_i; pi.mapped_port = cell_port_i;
if (clken) { if (port.clk_enable) {
clock_domains[pi.clocks] = clkdom; clock_domains[pi.clocks] = clkdom;
clock_polarities[pi.clkpol] = clkdom.second; clock_polarities[pi.clkpol] = clkdom.second;
pi.sig_clock = clkdom.first; pi.sig_clock = clkdom.first;
@ -653,8 +625,8 @@ bool replace_cell(Cell *cell, const rules_t &rules, const rules_t::bram_t &bram,
} }
pi.sig_en = sig_en; pi.sig_en = sig_en;
pi.sig_addr = wr_addr.extract(cell_port_i*mem_abits, mem_abits); pi.sig_addr = port.addr;
pi.sig_data = wr_data.extract(cell_port_i*mem_width, mem_width); pi.sig_data = port.data;
bram_port_i++; bram_port_i++;
goto mapped_wr_port; goto mapped_wr_port;
@ -710,23 +682,21 @@ grow_read_ports:;
// assign read ports // assign read ports
for (int cell_port_i = 0; cell_port_i < rd_ports; cell_port_i++) for (int cell_port_i = 0; cell_port_i < GetSize(mem.rd_ports); cell_port_i++)
{ {
bool clken = rd_clken[cell_port_i] == State::S1; auto &port = mem.rd_ports[cell_port_i];
bool clkpol = rd_clkpol[cell_port_i] == State::S1; bool transp = port.transparent;
bool transp = rd_transp[cell_port_i] == State::S1;
SigBit clksig = rd_clk[cell_port_i];
if (wr_ports == 0) if (mem.wr_ports.empty())
transp = false; transp = false;
pair<SigBit, bool> clkdom(clksig, clkpol); pair<SigBit, bool> clkdom(port.clk, port.clk_polarity);
if (!clken) if (!port.clk_enable)
clkdom = pair<SigBit, bool>(State::S1, false); clkdom = pair<SigBit, bool>(State::S1, false);
log(" Read port #%d is in clock domain %s%s.\n", log(" Read port #%d is in clock domain %s%s.\n",
cell_port_i, clkdom.second ? "" : "!", cell_port_i, clkdom.second ? "" : "!",
clken ? log_signal(clkdom.first) : "~async~"); port.clk_enable ? log_signal(clkdom.first) : "~async~");
for (int bram_port_i = 0; bram_port_i < GetSize(portinfos); bram_port_i++) for (int bram_port_i = 0; bram_port_i < GetSize(portinfos); bram_port_i++)
{ {
@ -736,7 +706,7 @@ grow_read_ports:;
skip_bram_rport: skip_bram_rport:
continue; continue;
if (clken) { if (port.clk_enable) {
if (pi.clocks == 0) { if (pi.clocks == 0) {
if (match.make_outreg) { if (match.make_outreg) {
pi.make_outreg = true; pi.make_outreg = true;
@ -749,20 +719,20 @@ grow_read_ports:;
log(" Bram port %c%d.%d is in a different clock domain.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1); log(" Bram port %c%d.%d is in a different clock domain.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
goto skip_bram_rport; goto skip_bram_rport;
} }
if (clock_polarities.count(pi.clkpol) && clock_polarities.at(pi.clkpol) != clkpol) { if (clock_polarities.count(pi.clkpol) && clock_polarities.at(pi.clkpol) != port.clk_polarity) {
log(" Bram port %c%d.%d has incompatible clock polarity.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1); log(" Bram port %c%d.%d has incompatible clock polarity.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
goto skip_bram_rport; goto skip_bram_rport;
} }
if (rd_en[cell_port_i] != State::S1 && pi.enable == 0) { if (port.en != State::S1 && pi.enable == 0) {
log(" Bram port %c%d.%d has no read enable input.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1); log(" Bram port %c%d.%d has no read enable input.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
goto skip_bram_rport; goto skip_bram_rport;
} }
skip_bram_rport_clkcheck: skip_bram_rport_clkcheck:
if (read_transp.count(pi.transp) && read_transp.at(pi.transp) != transp) { if (read_transp.count(pi.transp) && read_transp.at(pi.transp) != transp) {
if (match.make_transp && wr_ports <= 1) { if (match.make_transp && GetSize(mem.wr_ports) <= 1) {
pi.make_transp = true; pi.make_transp = true;
if (pi.clocks != 0) { if (pi.clocks != 0) {
if (wr_ports == 1 && wr_clkdom != clkdom) { if (GetSize(mem.wr_ports) == 1 && wr_clkdom != clkdom) {
log(" Bram port %c%d.%d cannot have soft transparency logic added as read and write clock domains differ.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1); log(" Bram port %c%d.%d cannot have soft transparency logic added as read and write clock domains differ.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
goto skip_bram_rport; goto skip_bram_rport;
} }
@ -783,18 +753,18 @@ grow_read_ports:;
log(" Mapped to bram port %c%d.%d.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1); log(" Mapped to bram port %c%d.%d.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
pi.mapped_port = cell_port_i; pi.mapped_port = cell_port_i;
if (clken) { if (port.clk_enable) {
clock_domains[pi.clocks] = clkdom; clock_domains[pi.clocks] = clkdom;
clock_polarities[pi.clkpol] = clkdom.second; clock_polarities[pi.clkpol] = clkdom.second;
if (!pi.make_transp) if (!pi.make_transp)
read_transp[pi.transp] = transp; read_transp[pi.transp] = transp;
pi.sig_clock = clkdom.first; pi.sig_clock = clkdom.first;
pi.sig_en = rd_en[cell_port_i]; pi.sig_en = port.en;
pi.effective_clkpol = clkdom.second; pi.effective_clkpol = clkdom.second;
} }
pi.sig_addr = rd_addr.extract(cell_port_i*mem_abits, mem_abits); pi.sig_addr = port.addr;
pi.sig_data = rd_data.extract(cell_port_i*mem_width, mem_width); pi.sig_data = port.data;
if (grow_read_ports_cursor < cell_port_i) { if (grow_read_ports_cursor < cell_port_i) {
grow_read_ports_cursor = cell_port_i; grow_read_ports_cursor = cell_port_i;
@ -820,11 +790,11 @@ grow_read_ports:;
match_properties["dups"] = dup_count; match_properties["dups"] = dup_count;
match_properties["waste"] = match_properties["dups"] * match_properties["bwaste"]; match_properties["waste"] = match_properties["dups"] * match_properties["bwaste"];
int cells = ((mem_width + bram.dbits - 1) / bram.dbits) * ((mem_size + (1 << bram.abits) - 1) / (1 << bram.abits)); int cells = ((mem.width + bram.dbits - 1) / bram.dbits) * ((mem.size + (1 << bram.abits) - 1) / (1 << bram.abits));
match_properties["efficiency"] = (100 * match_properties["bits"]) / (dup_count * cells * bram.dbits * (1 << bram.abits)); match_properties["efficiency"] = (100 * match_properties["bits"]) / (dup_count * cells * bram.dbits * (1 << bram.abits));
match_properties["dcells"] = ((mem_width + bram.dbits - 1) / bram.dbits); match_properties["dcells"] = ((mem.width + bram.dbits - 1) / bram.dbits);
match_properties["acells"] = ((mem_size + (1 << bram.abits) - 1) / (1 << bram.abits)); match_properties["acells"] = ((mem.size + (1 << bram.abits) - 1) / (1 << bram.abits));
match_properties["cells"] = match_properties["dcells"] * match_properties["acells"] * match_properties["dups"]; match_properties["cells"] = match_properties["dcells"] * match_properties["acells"] * match_properties["dups"];
log(" Updated properties: dups=%d waste=%d efficiency=%d\n", log(" Updated properties: dups=%d waste=%d efficiency=%d\n",
@ -857,8 +827,8 @@ grow_read_ports:;
bool exists = std::get<0>(term); bool exists = std::get<0>(term);
IdString key = std::get<1>(term); IdString key = std::get<1>(term);
const Const &value = std::get<2>(term); const Const &value = std::get<2>(term);
auto it = cell->attributes.find(key); auto it = mem.attributes.find(key);
if (it == cell->attributes.end()) { if (it == mem.attributes.end()) {
if (exists) if (exists)
continue; continue;
found = true; found = true;
@ -902,7 +872,7 @@ grow_read_ports:;
dict<SigSpec, pair<SigSpec, SigSpec>> dout_cache; dict<SigSpec, pair<SigSpec, SigSpec>> dout_cache;
for (int grid_d = 0; grid_d*bram.dbits < mem_width; grid_d++) for (int grid_d = 0; grid_d*bram.dbits < mem.width; grid_d++)
{ {
SigSpec mktr_wraddr, mktr_wrdata, mktr_wrdata_q; SigSpec mktr_wraddr, mktr_wrdata, mktr_wrdata_q;
vector<SigSpec> mktr_wren; vector<SigSpec> mktr_wren;
@ -912,14 +882,14 @@ grow_read_ports:;
mktr_wrdata = module->addWire(NEW_ID, bram.dbits); mktr_wrdata = module->addWire(NEW_ID, bram.dbits);
mktr_wrdata_q = module->addWire(NEW_ID, bram.dbits); mktr_wrdata_q = module->addWire(NEW_ID, bram.dbits);
module->addDff(NEW_ID, make_transp_clk.first, mktr_wrdata, mktr_wrdata_q, make_transp_clk.second); module->addDff(NEW_ID, make_transp_clk.first, mktr_wrdata, mktr_wrdata_q, make_transp_clk.second);
for (int grid_a = 0; grid_a*(1 << bram.abits) < mem_size; grid_a++) for (int grid_a = 0; grid_a*(1 << bram.abits) < mem.size; grid_a++)
mktr_wren.push_back(module->addWire(NEW_ID, make_transp_enbits)); mktr_wren.push_back(module->addWire(NEW_ID, make_transp_enbits));
} }
for (int grid_a = 0; grid_a*(1 << bram.abits) < mem_size; grid_a++) for (int grid_a = 0; grid_a*(1 << bram.abits) < mem.size; grid_a++)
for (int dupidx = 0; dupidx < dup_count; dupidx++) for (int dupidx = 0; dupidx < dup_count; dupidx++)
{ {
Cell *c = module->addCell(module->uniquify(stringf("%s.%d.%d.%d", cell->name.c_str(), grid_d, grid_a, dupidx)), bram.name); Cell *c = module->addCell(module->uniquify(stringf("%s.%d.%d.%d", mem.memid.c_str(), grid_d, grid_a, dupidx)), bram.name);
log(" Creating %s cell at grid position <%d %d %d>: %s\n", log_id(bram.name), grid_d, grid_a, dupidx, log_id(c)); log(" Creating %s cell at grid position <%d %d %d>: %s\n", log_id(bram.name), grid_d, grid_a, dupidx, log_id(c));
for (auto &vp : variant_params) for (auto &vp : variant_params)
@ -1063,22 +1033,22 @@ grow_read_ports:;
} }
} }
module->remove(cell); mem.remove();
return true; return true;
} }
void handle_cell(Cell *cell, const rules_t &rules) void handle_memory(Mem &mem, const rules_t &rules)
{ {
log("Processing %s.%s:\n", log_id(cell->module), log_id(cell)); log("Processing %s.%s:\n", log_id(mem.module), log_id(mem.memid));
bool cell_init = !SigSpec(cell->getParam(ID::INIT)).is_fully_undef(); bool cell_init = !mem.inits.empty();
dict<string, int> match_properties; dict<string, int> match_properties;
match_properties["words"] = cell->getParam(ID::SIZE).as_int(); match_properties["words"] = mem.size;
match_properties["abits"] = cell->getParam(ID::ABITS).as_int(); match_properties["abits"] = ceil_log2(mem.size);
match_properties["dbits"] = cell->getParam(ID::WIDTH).as_int(); match_properties["dbits"] = mem.width;
match_properties["wports"] = cell->getParam(ID::WR_PORTS).as_int(); match_properties["wports"] = GetSize(mem.wr_ports);
match_properties["rports"] = cell->getParam(ID::RD_PORTS).as_int(); match_properties["rports"] = GetSize(mem.rd_ports);
match_properties["bits"] = match_properties["words"] * match_properties["dbits"]; match_properties["bits"] = match_properties["words"] * match_properties["dbits"];
match_properties["ports"] = match_properties["wports"] + match_properties["rports"]; match_properties["ports"] = match_properties["wports"] + match_properties["rports"];
@ -1181,8 +1151,8 @@ void handle_cell(Cell *cell, const rules_t &rules)
bool exists = std::get<0>(term); bool exists = std::get<0>(term);
IdString key = std::get<1>(term); IdString key = std::get<1>(term);
const Const &value = std::get<2>(term); const Const &value = std::get<2>(term);
auto it = cell->attributes.find(key); auto it = mem.attributes.find(key);
if (it == cell->attributes.end()) { if (it == mem.attributes.end()) {
if (exists) if (exists)
continue; continue;
found = true; found = true;
@ -1219,7 +1189,7 @@ void handle_cell(Cell *cell, const rules_t &rules)
if (or_next_if_better && i+1 == GetSize(rules.matches) && vi+1 == GetSize(rules.brams.at(match.name))) if (or_next_if_better && i+1 == GetSize(rules.matches) && vi+1 == GetSize(rules.brams.at(match.name)))
log_error("Found 'or_next_if_better' in last match rule.\n"); log_error("Found 'or_next_if_better' in last match rule.\n");
if (!replace_cell(cell, rules, bram, match, match_properties, 1)) { if (!replace_memory(mem, rules, bram, match, match_properties, 1)) {
log(" Mapping to bram type %s failed.\n", log_id(match.name)); log(" Mapping to bram type %s failed.\n", log_id(match.name));
failed_brams.insert(pair<IdString, int>(bram.name, bram.variant)); failed_brams.insert(pair<IdString, int>(bram.name, bram.variant));
goto next_match_rule; goto next_match_rule;
@ -1246,12 +1216,12 @@ void handle_cell(Cell *cell, const rules_t &rules)
best_rule_cache.clear(); best_rule_cache.clear();
auto &best_bram = rules.brams.at(rules.matches.at(best_rule.first).name).at(best_rule.second); auto &best_bram = rules.brams.at(rules.matches.at(best_rule.first).name).at(best_rule.second);
if (!replace_cell(cell, rules, best_bram, rules.matches.at(best_rule.first), match_properties, 2)) if (!replace_memory(mem, rules, best_bram, rules.matches.at(best_rule.first), match_properties, 2))
log_error("Mapping to bram type %s (variant %d) after pre-selection failed.\n", log_id(best_bram.name), best_bram.variant); log_error("Mapping to bram type %s (variant %d) after pre-selection failed.\n", log_id(best_bram.name), best_bram.variant);
return; return;
} }
if (!replace_cell(cell, rules, bram, match, match_properties, 0)) { if (!replace_memory(mem, rules, bram, match, match_properties, 0)) {
log(" Mapping to bram type %s failed.\n", log_id(match.name)); log(" Mapping to bram type %s failed.\n", log_id(match.name));
failed_brams.insert(pair<IdString, int>(bram.name, bram.variant)); failed_brams.insert(pair<IdString, int>(bram.name, bram.variant));
goto next_match_rule; goto next_match_rule;
@ -1384,9 +1354,8 @@ struct MemoryBramPass : public Pass {
extra_args(args, argidx, design); extra_args(args, argidx, design);
for (auto mod : design->selected_modules()) for (auto mod : design->selected_modules())
for (auto cell : mod->selected_cells()) for (auto &mem : Mem::get_selected_memories(mod))
if (cell->type == ID($mem)) handle_memory(mem, rules);
handle_cell(cell, rules);
} }
} MemoryBramPass; } MemoryBramPass;