intel_alm: Documentation improvements

This commit is contained in:
Dan Ravensloft 2020-04-21 16:43:21 +01:00 committed by Marcelina Kościelnicka
parent 02f1c7b9af
commit 16a3048308
3 changed files with 127 additions and 14 deletions

View File

@ -1,3 +1,72 @@
// The core logic primitive of the Cyclone V/10GX is the Adaptive Logic Module
// (ALM). Each ALM is made up of an 8-input, 2-output look-up table, covered
// in this file, connected to combinational outputs, a carry chain, and four
// D flip-flops (which are covered as MISTRAL_FF in dff_sim.v).
//
// The ALM is vertically symmetric, so I find it helps to think in terms of
// half-ALMs, as that's predominantly the unit that synth_intel_alm uses.
//
// ALMs are quite flexible, having multiple modes.
//
// Normal (combinational) mode
// ---------------------------
// The ALM can implement:
// - a single 6-input function (with the other inputs usable for flip-flop access)
// - two 5-input functions that share two inputs
// - a 5-input and a 4-input function that share one input
// - a 5-input and a 3-or-less-input function that share no inputs
// - two 4-or-less-input functions that share no inputs
//
// Normal-mode functions are represented as MISTRAL_ALUTN cells with N inputs.
// It would be possible to represent a normal mode function as a single cell -
// the vendor cyclone{v,10gx}_lcell_comb cell does exactly that - but I felt
// it was more user-friendly to print out the specific function sizes
// separately.
//
// With the exception of MISTRAL_ALUT6, you can think of two normal-mode cells
// fitting inside a single ALM.
//
// Extended (7-input) mode
// -----------------------
// The ALM can also fit a 7-input function made of two 5-input functions that
// share four inputs, multiplexed by another input.
//
// Because this can't accept arbitrary 7-input functions, Yosys can't handle
// it, so it doesn't have a cell, but I would likely call it MISTRAL_ALUT7(E?)
// if it did, and it would take up a full ALM.
//
// It might be possible to add an extraction pass to examine all ALUT5 cells
// that feed into ALUT3 cells to see if they can be combined into an extended
// ALM, but I don't think it will be worth it.
//
// Arithmetic mode
// ---------------
// In arithmetic mode, each half-ALM uses its carry chain to perform fast addition
// of two four-input functions that share three inputs. Oddly, the result of
// one of the functions is inverted before being added (you can see this as
// the dot on a full-adder input of Figure 1-8 in the Handbook).
//
// The cell for an arithmetic-mode half-ALM is MISTRAL_ALM_ARITH. One idea
// I've had (or rather was suggested by mwk) is that functions that feed into
// arithmetic-mode cells could be packed directly into the arithmetic-mode
// cell as a function, which reduces the number of ALMs needed.
//
// Shared arithmetic mode
// ----------------------
// Shared arithmetic mode looks a lot like arithmetic mode, but here the
// output of every other four-input function goes to the input of the adder
// the next bit along. What this means is that adding three bits together can
// be done in an ALM, because functions can be used to implement addition that
// then feeds into the carry chain. This means that three bits can be added per
// ALM, as opposed to two in the arithmetic mode.
//
// Shared arithmetic mode doesn't currently have a cell, but I intend to add
// it as MISTRAL_ALM_SHARED, and have it occupy a full ALM. Because it adds
// three bits per cell, it makes addition shorter and use less ALMs, but
// I don't know enough to tell whether it's more efficient to use shared
// arithmetic mode to shorten the carry chain, or plain arithmetic mode with
// the functions packed in.
`default_nettype none
(* abc9_lut=2, lib_whitebox *)

View File

@ -6,7 +6,7 @@ parameter _TECHMAP_WIREINIT_Q_ = 1'b0;
if (_TECHMAP_WIREINIT_Q_ !== 1'b1) begin
wire _TECHMAP_REMOVEINIT_Q_ = 1'b1;
MISTRAL_FF _TECHMAP_REPLACE_(.DATAIN(D), .CLK(C), .ACLR(1'b1), .ENA(1'b1), .SCLR(1'b0), .SLOAD(1'b0), .SDATA(1'b0), .Q(Q));
end else $error("Unsupported flop: $_DFF_P_ with INIT=1");
end else $error("Cannot implement a flip-flop that initialises to one");
endmodule
module \$_DFF_N_ (input D, C, output Q);
@ -14,7 +14,7 @@ parameter _TECHMAP_WIREINIT_Q_ = 1'b0;
if (_TECHMAP_WIREINIT_Q_ !== 1'b1) begin
wire _TECHMAP_REMOVEINIT_Q_ = 1'b1;
MISTRAL_FF _TECHMAP_REPLACE_(.DATAIN(D), .CLK(~C), .ACLR(1'b1), .ENA(1'b1), .SCLR(1'b0), .SLOAD(1'b0), .SDATA(1'b0), .Q(Q));
end else $error("Unsupported flop: $_DFF_N_ with INIT=1");
end else $error("Cannot implement a flip-flop that initialises to one");
endmodule
// D flip-flops with reset
@ -23,7 +23,7 @@ parameter _TECHMAP_WIREINIT_Q_ = 1'b0;
if (_TECHMAP_WIREINIT_Q_ !== 1'b1) begin
wire _TECHMAP_REMOVEINIT_Q_ = 1'b1;
MISTRAL_FF _TECHMAP_REPLACE_(.DATAIN(D), .CLK(C), .ACLR(~R), .ENA(1'b1), .SCLR(1'b0), .SLOAD(1'b0), .SDATA(1'b0), .Q(Q));
end else $error("Unsupported flop: $_DFF_PP0_ with INIT=1");
end else $error("Cannot implement a flip-flop with reset that initialises to one");
endmodule
module \$_DFF_PN0_ (input D, C, R, output Q);
@ -31,7 +31,7 @@ parameter _TECHMAP_WIREINIT_Q_ = 1'b0;
if (_TECHMAP_WIREINIT_Q_ !== 1'b1) begin
wire _TECHMAP_REMOVEINIT_Q_ = 1'b1;
MISTRAL_FF _TECHMAP_REPLACE_(.DATAIN(D), .CLK(C), .ACLR(R), .ENA(1'b1), .SCLR(1'b0), .SLOAD(1'b0), .SDATA(1'b0), .Q(Q));
end else $error("Unsupported flop: $_DFF_PN0_ with INIT=1");
end else $error("Cannot implement a flip-flop with reset that initialises to one");
endmodule
module \$_DFF_NP0_ (input D, C, R, output Q);
@ -39,7 +39,7 @@ parameter _TECHMAP_WIREINIT_Q_ = 1'b0;
if (_TECHMAP_WIREINIT_Q_ !== 1'b1) begin
wire _TECHMAP_REMOVEINIT_Q_ = 1'b1;
MISTRAL_FF _TECHMAP_REPLACE_(.DATAIN(D), .CLK(~C), .ACLR(~R), .ENA(1'b1), .SCLR(1'b0), .SLOAD(1'b0), .SDATA(1'b0), .Q(Q));
end else $error("Unsupported flop: $_DFF_NP0_ with INIT=1");
end else $error("Cannot implement a flip-flop with reset that initialises to one");
endmodule
module \$_DFF_NN0_ (input D, C, R, output Q);
@ -47,7 +47,7 @@ parameter _TECHMAP_WIREINIT_Q_ = 1'b0;
if (_TECHMAP_WIREINIT_Q_ !== 1'b1) begin
wire _TECHMAP_REMOVEINIT_Q_ = 1'b1;
MISTRAL_FF _TECHMAP_REPLACE_(.DATAIN(D), .CLK(~C), .ACLR(R), .ENA(1'b1), .SCLR(1'b0), .SLOAD(1'b0), .SDATA(1'b0), .Q(Q));
end else $error("Unsupported flop: $_DFF_NN0_ with INIT=1");
end else $error("Cannot implement a flip-flop with reset that initialises to one");
endmodule
// D flip-flops with set
@ -58,7 +58,7 @@ if (_TECHMAP_WIREINIT_Q_ !== 1'b0) begin
wire Q_tmp;
MISTRAL_FF _TECHMAP_REPLACE_(.DATAIN(~D), .CLK(C), .ACLR(~R), .ENA(1'b1), .SCLR(1'b0), .SLOAD(1'b0), .SDATA(1'b0), .Q(Q_tmp));
assign Q = ~Q_tmp;
end else $error("Unsupported flop: $_DFF_PP1_ with INIT=0");
end else $error("Cannot implement a flip-flop with set that initialises to zero");
endmodule
module \$_DFF_PN1_ (input D, C, R, output Q);
@ -67,7 +67,7 @@ if (_TECHMAP_WIREINIT_Q_ !== 1'b0) begin
wire _TECHMAP_REMOVEINIT_Q_ = 1'b1;
wire Q_tmp;
MISTRAL_FF _TECHMAP_REPLACE_(.DATAIN(~D), .CLK(C), .ACLR(R), .ENA(1'b1), .SCLR(1'b0), .SLOAD(1'b0), .SDATA(1'b0), .Q(Q_tmp));
end else $error("Unsupported flop: $_DFF_PN1_ with INIT=0");
end else $error("Cannot implement a flip-flop with set that initialises to zero");
endmodule
module \$_DFF_NP1_ (input D, C, R, output Q);
@ -77,7 +77,7 @@ if (_TECHMAP_WIREINIT_Q_ !== 1'b0) begin
wire Q_tmp;
MISTRAL_FF _TECHMAP_REPLACE_(.DATAIN(~D), .CLK(~C), .ACLR(~R), .ENA(1'b1), .SCLR(1'b0), .SLOAD(1'b0), .SDATA(1'b0), .Q(Q_tmp));
assign Q = ~Q_tmp;
end else $error("Unsupported flop: $_DFF_NP1_ with INIT=0");
end else $error("Cannot implement a flip-flop with set that initialises to zero");
endmodule
module \$_DFF_NN1_ (input D, C, R, output Q);
@ -87,7 +87,7 @@ if (_TECHMAP_WIREINIT_Q_ !== 1'b0) begin
wire Q_tmp;
MISTRAL_FF _TECHMAP_REPLACE_(.DATAIN(~D), .CLK(~C), .ACLR(R), .ENA(1'b1), .SCLR(1'b0), .SLOAD(1'b0), .SDATA(1'b0), .Q(Q_tmp));
assign Q = ~Q_tmp;
end else $error("Unsupported flop: $_DFF_NN1_ with INIT=0");
end else $error("Cannot implement a flip-flop with set that initialises to zero");
endmodule
// D flip-flops with clock enable
@ -96,7 +96,7 @@ parameter _TECHMAP_WIREINIT_Q_ = 1'b0;
if (_TECHMAP_WIREINIT_Q_ !== 1'b1) begin
wire _TECHMAP_REMOVEINIT_Q_ = 1'b1;
MISTRAL_FF _TECHMAP_REPLACE_(.DATAIN(D), .CLK(C), .ACLR(1'b1), .ENA(E), .SCLR(1'b0), .SLOAD(1'b0), .SDATA(1'b0), .Q(Q));
end else $error("Unsupported flop: $_DFFE_PP_ with INIT=1");
end else $error("Cannot implement a flip-flop with enable that initialises to one");
endmodule
module \$_DFFE_PN_ (input D, C, E, output Q);
@ -104,7 +104,7 @@ parameter _TECHMAP_WIREINIT_Q_ = 1'b0;
if (_TECHMAP_WIREINIT_Q_ !== 1'b1) begin
wire _TECHMAP_REMOVEINIT_Q_ = 1'b1;
MISTRAL_FF _TECHMAP_REPLACE_(.DATAIN(D), .CLK(C), .ACLR(1'b1), .ENA(~E), .SCLR(1'b0), .SLOAD(1'b0), .SDATA(1'b0), .Q(Q));
end else $error("Unsupported flop: $_DFFE_PN_ with INIT=1");
end else $error("Cannot implement a flip-flop with enable that initialises to one");
endmodule
module \$_DFFE_NP_ (input D, C, E, output Q);
@ -112,7 +112,7 @@ parameter _TECHMAP_WIREINIT_Q_ = 1'b0;
if (_TECHMAP_WIREINIT_Q_ !== 1'b1) begin
wire _TECHMAP_REMOVEINIT_Q_ = 1'b1;
MISTRAL_FF _TECHMAP_REPLACE_(.DATAIN(D), .CLK(~C), .ACLR(1'b1), .ENA(E), .SCLR(1'b0), .SLOAD(1'b0), .SDATA(1'b0), .Q(Q));
end else $error("Unsupported flop: $_DFFE_NP_ with INIT=1");
end else $error("Cannot implement a flip-flop with enable that initialises to one");
endmodule
module \$_DFFE_NN_ (input D, C, E, output Q);
@ -120,5 +120,5 @@ parameter _TECHMAP_WIREINIT_Q_ = 1'b0;
if (_TECHMAP_WIREINIT_Q_ !== 1'b1) begin
wire _TECHMAP_REMOVEINIT_Q_ = 1'b1;
MISTRAL_FF _TECHMAP_REPLACE_(.DATAIN(D), .CLK(~C), .ACLR(1'b1), .ENA(~E), .SCLR(1'b0), .SLOAD(1'b0), .SDATA(1'b0), .Q(Q));
end else $error("Unsupported flop: $_DFFE_NN_ with INIT=1");
end else $error("Cannot implement a flip-flop with enable that initialises to one");
endmodule

View File

@ -1,3 +1,47 @@
// The four D flip-flops (DFFs) in a Cyclone V/10GX Adaptive Logic Module (ALM)
// act as one-bit memory cells that can be placed very flexibly (wherever there's
// an ALM); each flop is represented by a MISTRAL_FF cell.
//
// The flops in these chips are rather flexible in some ways, but in practice
// quite crippled by FPGA standards.
//
// What the flops can do
// ---------------------
// The core flop acts as a single-bit memory that initialises to zero at chip
// reset. It takes in data on the rising edge of CLK if ENA is high,
// and outputs it to Q. The ENA (clock enable) pin can therefore be used to
// capture the input only if a condition is true.
//
// The data itself is zero if SCLR (synchronous clear) is high, else it comes
// from SDATA (synchronous data) if SLOAD (synchronous load) is high, or DATAIN
// if SLOAD is low.
//
// If ACLR (asynchronous clear) is low then Q is forced to zero, regardless of
// the synchronous inputs or CLK edge. This is most often used for an FPGA-wide
// power-on reset.
//
// An asynchronous set that sets Q to one can be emulated by inverting the input
// and output of the flop, resulting in ACLR forcing Q to zero, which then gets
// inverted to produce one. Likewise, logic can operate on the falling edge of
// CLK if CLK is inverted before being passed as an input.
//
// What the flops *can't* do
// -------------------------
// The trickiest part of the above capabilities is the lack of configurable
// initialisation state. For example, it isn't possible to implement a flop with
// asynchronous clear that initialises to one, because the hardware initialises
// to zero. Likewise, you can't emulate a flop with asynchronous set that
// initialises to zero, because the inverters mean the flop initialises to one.
//
// If the input design requires one of these cells (which appears to be rare
// in practice) then synth_intel_alm will fail to synthesize the design where
// other Yosys synthesis scripts might succeed.
//
// This stands in notable contrast to e.g. Xilinx flip-flops, which have
// configurable initialisation state and native synchronous/asynchronous
// set/clear (although not at the same time), which means they can generally
// implement a much wider variety of logic.
// DATAIN: synchronous data input
// CLK: clock input (positive edge)
// ACLR: asynchronous clear (negative-true)