Performance improvements in freduce pass

This commit is contained in:
Clifford Wolf 2014-01-03 21:29:28 +01:00
parent c44e1bec6d
commit 10f45b8c8e
1 changed files with 69 additions and 27 deletions

View File

@ -59,12 +59,10 @@ struct CountBitUsage
CountBitUsage(SigMap &sigmap, std::map<RTLIL::SigBit, int> &cache) : sigmap(sigmap), cache(cache) { } CountBitUsage(SigMap &sigmap, std::map<RTLIL::SigBit, int> &cache) : sigmap(sigmap), cache(cache) { }
void operator()(RTLIL::SigSpec &sig) void operator()(RTLIL::SigSpec &sig) {
{
std::vector<RTLIL::SigBit> vec = sigmap(sig).to_sigbit_vector(); std::vector<RTLIL::SigBit> vec = sigmap(sig).to_sigbit_vector();
for (auto &bit : vec) { for (auto &bit : vec)
log("%s %d\n", log_signal(bit), cache[bit]++); cache[bit]++;
}
} }
}; };
@ -116,10 +114,10 @@ struct FindReducedInputs
pi.insert(pi.end(), pi_set.begin(), pi_set.end()); pi.insert(pi.end(), pi_set.begin(), pi_set.end());
} }
void analyze(std::vector<RTLIL::SigBit> &reduced_inputs, RTLIL::SigBit output) void analyze(std::vector<RTLIL::SigBit> &reduced_inputs, RTLIL::SigBit output, int prec)
{ {
if (verbose_level >= 1) if (verbose_level >= 1)
log(" Analyzing input cone for signal %s:\n", log_signal(output)); log("[%2d%%] Analyzing input cone for signal %s:\n", prec, log_signal(output));
std::vector<RTLIL::SigBit> pi; std::vector<RTLIL::SigBit> pi;
register_cone(pi, output); register_cone(pi, output);
@ -235,25 +233,28 @@ struct PerformReduction
out_inverted = std::vector<bool>(sat_out.size(), false); out_inverted = std::vector<bool>(sat_out.size(), false);
} }
void analyze(std::vector<std::set<int>> &results, std::map<int, int> &results_map, std::vector<int> &bucket, int level) void analyze(std::vector<std::set<int>> &results, std::map<int, int> &results_map, std::vector<int> &bucket, std::string indent1, std::string indent2)
{ {
std::string indent = indent1 + indent2;
const char *indt = indent.c_str();
if (bucket.size() <= 1) if (bucket.size() <= 1)
return; return;
if (verbose_level == 1) if (verbose_level == 1)
log("%*s Trying to shatter bucket with %d signals.\n", 2*level, "", int(bucket.size())); log("%s Trying to shatter bucket with %d signals.\n", indt, int(bucket.size()));
if (verbose_level > 1) { if (verbose_level > 1) {
std::vector<RTLIL::SigBit> bucket_sigbits; std::vector<RTLIL::SigBit> bucket_sigbits;
for (int idx : bucket) for (int idx : bucket)
bucket_sigbits.push_back(out_bits[idx]); bucket_sigbits.push_back(out_bits[idx]);
log("%*s Trying to shatter bucket with %d signals: %s\n", 2*level, "", int(bucket.size()), log_signal(RTLIL::SigSpec(bucket_sigbits).optimized())); log("%s Trying to shatter bucket with %d signals: %s\n", indt, int(bucket.size()), log_signal(RTLIL::SigSpec(bucket_sigbits).optimized()));
} }
std::vector<int> sat_list, sat_inv_list; std::vector<int> sat_set_list, sat_clr_list;
for (int idx : bucket) { for (int idx : bucket) {
sat_list.push_back(ez.AND(sat_out[idx], sat_def[idx])); sat_set_list.push_back(ez.AND(sat_out[idx], sat_def[idx]));
sat_inv_list.push_back(ez.AND(ez.NOT(sat_out[idx]), sat_def[idx])); sat_clr_list.push_back(ez.AND(ez.NOT(sat_out[idx]), sat_def[idx]));
} }
std::vector<int> modelVars = sat_out; std::vector<int> modelVars = sat_out;
@ -263,13 +264,47 @@ struct PerformReduction
if (verbose_level >= 2) if (verbose_level >= 2)
modelVars.insert(modelVars.end(), sat_pi.begin(), sat_pi.end()); modelVars.insert(modelVars.end(), sat_pi.begin(), sat_pi.end());
if (ez.solve(modelVars, model, ez.expression(ezSAT::OpOr, sat_list), ez.expression(ezSAT::OpOr, sat_inv_list))) if (ez.solve(modelVars, model, ez.expression(ezSAT::OpOr, sat_set_list), ez.expression(ezSAT::OpOr, sat_clr_list)))
{ {
int iter_count = 1;
while (1)
{
sat_set_list.clear();
sat_clr_list.clear();
std::vector<int> sat_def_list;
for (int idx : bucket)
if (!model[sat_out.size() + idx]) {
sat_set_list.push_back(ez.AND(sat_out[idx], sat_def[idx]));
sat_clr_list.push_back(ez.AND(ez.NOT(sat_out[idx]), sat_def[idx]));
} else {
sat_def_list.push_back(sat_def[idx]);
}
if (!ez.solve(modelVars, model, ez.expression(ezSAT::OpOr, sat_set_list), ez.expression(ezSAT::OpOr, sat_clr_list), ez.expression(ezSAT::OpAnd, sat_def_list)))
break;
iter_count++;
}
if (verbose_level >= 1) {
int count_set = 0, count_clr = 0, count_undef = 0;
for (int idx : bucket)
if (!model[sat_out.size() + idx])
count_undef++;
else if (model[idx])
count_set++;
else
count_clr++;
log("%s After %d iterations: %d set vs. %d clr vs %d undef\n", indt, iter_count, count_set, count_clr, count_undef);
}
if (verbose_level >= 2) { if (verbose_level >= 2) {
for (size_t i = 0; i < pi_bits.size(); i++) for (size_t i = 0; i < pi_bits.size(); i++)
log("%*s -> PI %c == %s\n", 2*level, "", model[2*sat_out.size() + i] ? '1' : '0', log_signal(pi_bits[i])); log("%s -> PI %c == %s\n", indt, model[2*sat_out.size() + i] ? '1' : '0', log_signal(pi_bits[i]));
for (int idx : bucket) for (int idx : bucket)
log("%*s -> OUT %c == %s%s\n", 2*level, "", model[sat_out.size() + idx] ? model[idx] ? '1' : '0' : 'x', log("%s -> OUT %c == %s%s\n", indt, model[sat_out.size() + idx] ? model[idx] ? '1' : '0' : 'x',
out_inverted.at(idx) ? "~" : "", log_signal(out_bits[idx])); out_inverted.at(idx) ? "~" : "", log_signal(out_bits[idx]));
} }
@ -282,8 +317,8 @@ struct PerformReduction
if (!model[sat_out.size() + idx] || !model[idx]) if (!model[sat_out.size() + idx] || !model[idx])
buckets_b.push_back(idx); buckets_b.push_back(idx);
} }
analyze(results, results_map, buckets_a, level+1); analyze(results, results_map, buckets_a, indent1 + ".", indent2 + " ");
analyze(results, results_map, buckets_b, level+1); analyze(results, results_map, buckets_b, indent1 + "x", indent2 + " ");
} }
else else
{ {
@ -300,7 +335,7 @@ struct PerformReduction
if (undef_slaves.size() == bucket.size()) { if (undef_slaves.size() == bucket.size()) {
if (verbose_level >= 1) if (verbose_level >= 1)
log("%*s Complex undef overlap. None of the signals covers the others.\n", 2*level, ""); log("%s Complex undef overlap. None of the signals covers the others.\n", indt);
// FIXME: We could try to further shatter a group with complex undef overlaps // FIXME: We could try to further shatter a group with complex undef overlaps
return; return;
} }
@ -309,7 +344,7 @@ struct PerformReduction
out_depth[idx] = std::numeric_limits<int>::max(); out_depth[idx] = std::numeric_limits<int>::max();
if (verbose_level >= 1) { if (verbose_level >= 1) {
log("%*s Found %d equivialent signals:", 2*level, "", int(bucket.size())); log("%s Found %d equivialent signals:", indt, int(bucket.size()));
for (int idx : bucket) for (int idx : bucket)
log("%s%s%s", idx == bucket.front() ? " " : ", ", out_inverted[idx] ? "~" : "", log_signal(out_bits[idx])); log("%s%s%s", idx == bucket.front() ? " " : ", ", out_inverted[idx] ? "~" : "", log_signal(out_bits[idx]));
log("\n"); log("\n");
@ -347,7 +382,7 @@ struct PerformReduction
std::vector<std::set<int>> results_buf; std::vector<std::set<int>> results_buf;
std::map<int, int> results_map; std::map<int, int> results_map;
analyze(results_buf, results_map, bucket, 1); analyze(results_buf, results_map, bucket, "", "");
for (auto &r : results_buf) for (auto &r : results_buf)
{ {
@ -432,10 +467,13 @@ struct FreduceWorker
ct.setup_internals(); ct.setup_internals();
ct.setup_stdcells(); ct.setup_stdcells();
int bits_full_total = 0;
std::vector<std::set<RTLIL::SigBit>> batches; std::vector<std::set<RTLIL::SigBit>> batches;
for (auto &it : module->wires) for (auto &it : module->wires)
if (it.second->port_input) if (it.second->port_input) {
batches.push_back(sigmap(it.second).to_sigbit_set()); batches.push_back(sigmap(it.second).to_sigbit_set());
bits_full_total += it.second->width;
}
for (auto &it : module->cells) { for (auto &it : module->cells) {
if (ct.cell_known(it.second->type)) { if (ct.cell_known(it.second->type)) {
std::set<RTLIL::SigBit> inputs, outputs; std::set<RTLIL::SigBit> inputs, outputs;
@ -450,18 +488,21 @@ struct FreduceWorker
for (auto &bit : outputs) for (auto &bit : outputs)
drivers[bit] = drv; drivers[bit] = drv;
batches.push_back(outputs); batches.push_back(outputs);
bits_full_total += outputs.size();
} }
if (inv_mode && it.second->type == "$_INV_") if (inv_mode && it.second->type == "$_INV_")
inv_pairs.insert(std::pair<RTLIL::SigBit, RTLIL::SigBit>(sigmap(it.second->connections.at("\\A")), sigmap(it.second->connections.at("\\Y")))); inv_pairs.insert(std::pair<RTLIL::SigBit, RTLIL::SigBit>(sigmap(it.second->connections.at("\\A")), sigmap(it.second->connections.at("\\Y"))));
} }
int bits_count = 0; int bits_count = 0;
int bits_full_count = 0;
std::map<std::vector<RTLIL::SigBit>, std::vector<RTLIL::SigBit>> buckets; std::map<std::vector<RTLIL::SigBit>, std::vector<RTLIL::SigBit>> buckets;
for (auto &batch : batches) for (auto &batch : batches)
{ {
for (auto &bit : batch) for (auto &bit : batch)
if (bit.wire != NULL && design->selected(module, bit.wire)) if (bit.wire != NULL && design->selected(module, bit.wire))
goto found_selected_wire; goto found_selected_wire;
bits_full_count += batch.size();
continue; continue;
found_selected_wire: found_selected_wire:
@ -471,8 +512,9 @@ struct FreduceWorker
FindReducedInputs infinder(sigmap, drivers); FindReducedInputs infinder(sigmap, drivers);
for (auto &bit : batch) { for (auto &bit : batch) {
std::vector<RTLIL::SigBit> inputs; std::vector<RTLIL::SigBit> inputs;
infinder.analyze(inputs, bit); infinder.analyze(inputs, bit, 100 * bits_full_count / bits_full_total);
buckets[inputs].push_back(bit); buckets[inputs].push_back(bit);
bits_full_count++;
bits_count++; bits_count++;
} }
} }