Merge branch 'master' of https://github.com/ahmedirfan1983/yosys into btor

This commit is contained in:
Ahmed Irfan 2014-01-14 11:25:06 +01:00
commit 1091c24d00
7 changed files with 364 additions and 72 deletions

View File

@ -1065,7 +1065,7 @@ skip_dynamic_range_lvalue_expansion:;
{
AstNode *buf = children[0]->clone();
while (buf->simplify(true, false, false, stage, width_hint, sign_hint)) { }
if (!buf->type == AST_CONSTANT)
if (buf->type != AST_CONSTANT)
log_error("Failed to evaluate system function `%s' with non-constant value at %s:%d.\n", str.c_str(), filename.c_str(), linenum);
RTLIL::Const arg_value = buf->bitsAsConst();

View File

@ -25,6 +25,7 @@
%{
#include "kernel/rtlil.h"
#include "parser.tab.h"
void update_autoidx(const char *p);
%}
%option yylineno
@ -68,7 +69,7 @@
[a-z]+ { return TOK_INVALID; }
"\\"[^ \t\r\n]+ { rtlil_frontend_ilang_yylval.string = strdup(yytext); return TOK_ID; }
"$"[^ \t\r\n]+ { rtlil_frontend_ilang_yylval.string = strdup(yytext); return TOK_ID; }
"$"[^ \t\r\n]+ { rtlil_frontend_ilang_yylval.string = strdup(yytext); update_autoidx(yytext); return TOK_ID; }
"."[0-9]+ { rtlil_frontend_ilang_yylval.string = strdup(yytext); return TOK_ID; }
[0-9]+'[01xzm-]* { rtlil_frontend_ilang_yylval.string = strdup(yytext); return TOK_VALUE; }
@ -116,6 +117,27 @@
%%
void update_autoidx(const char *p)
{
if (*p != '$')
return;
while (*p) {
if (*(p++) != '$')
continue;
if ('0' <= *p && *p <= '9') {
const char *q = p;
while ('0' <= *q && *q <= '9')
q++;
if ((q - p) < 10) {
int idx = atoi(p);
if (idx > RTLIL::autoidx)
RTLIL::autoidx = idx;
}
}
}
}
// this is a hack to avoid the 'yyinput defined but not used' error msgs
void *rtlil_frontend_ilang_avoid_input_warnings() {
return (void*)&yyinput;

View File

@ -110,6 +110,7 @@ struct ConstEval
if (cell->type == "$mux" || cell->type == "$pmux" || cell->type == "$safe_pmux" || cell->type == "$_MUX_")
{
std::vector<RTLIL::SigSpec> y_candidates;
int count_maybe_set_s_bits = 0;
int count_set_s_bits = 0;
for (int i = 0; i < sig_s.width; i++)
@ -120,16 +121,17 @@ struct ConstEval
if (s_bit == RTLIL::State::Sx || s_bit == RTLIL::State::S1)
y_candidates.push_back(b_slice);
if (s_bit == RTLIL::State::S1 || s_bit == RTLIL::State::Sx)
count_maybe_set_s_bits++;
if (s_bit == RTLIL::State::S1)
count_set_s_bits++;
}
if (cell->type == "$safe_pmux" && count_set_s_bits > 1) {
if (cell->type == "$safe_pmux" && count_set_s_bits > 1)
y_candidates.clear();
count_set_s_bits = 0;
}
if (count_set_s_bits == 0)
if ((cell->type == "$safe_pmux" && count_maybe_set_s_bits > 1) || count_set_s_bits == 0)
y_candidates.push_back(sig_a);
std::vector<RTLIL::Const> y_values;

View File

@ -318,14 +318,45 @@ struct SatGen
std::vector<int> undef_s = importUndefSigSpec(cell->connections.at("\\S"), timestep);
std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
tmp = a;
for (size_t i = 0; i < s.size(); i++) {
int maybe_one_hot = ez->FALSE;
int maybe_many_hot = ez->FALSE;
int sure_one_hot = ez->FALSE;
int sure_many_hot = ez->FALSE;
std::vector<int> bits_set = std::vector<int>(undef_y.size(), ez->FALSE);
std::vector<int> bits_clr = std::vector<int>(undef_y.size(), ez->FALSE);
for (size_t i = 0; i < s.size(); i++)
{
std::vector<int> part_of_b(b.begin()+i*a.size(), b.begin()+(i+1)*a.size());
std::vector<int> part_of_undef_b(undef_b.begin()+i*a.size(), undef_b.begin()+(i+1)*a.size());
tmp = ez->vec_ite(s.at(i), part_of_undef_b, tmp);
int maybe_s = ez->OR(s.at(i), undef_s.at(i));
int sure_s = ez->AND(s.at(i), ez->NOT(undef_s.at(i)));
maybe_one_hot = ez->OR(maybe_one_hot, maybe_s);
maybe_many_hot = ez->OR(maybe_many_hot, ez->AND(maybe_one_hot, maybe_s));
sure_one_hot = ez->OR(sure_one_hot, sure_s);
sure_many_hot = ez->OR(sure_many_hot, ez->AND(sure_one_hot, sure_s));
bits_set = ez->vec_ite(maybe_s, ez->vec_or(bits_set, ez->vec_or(bits_set, ez->vec_or(part_of_b, part_of_undef_b))), bits_set);
bits_clr = ez->vec_ite(maybe_s, ez->vec_or(bits_clr, ez->vec_or(bits_clr, ez->vec_or(ez->vec_not(part_of_b), part_of_undef_b))), bits_clr);
}
tmp = ez->vec_ite(ez->onehot(s, true), tmp, cell->type == "$safe_pmux" ? a : std::vector<int>(tmp.size(), ez->TRUE));
tmp = ez->vec_ite(ez->expression(ezSAT::OpOr, undef_s), std::vector<int>(tmp.size(), ez->TRUE), tmp);
ez->assume(ez->vec_eq(tmp, undef_y));
int maybe_a = ez->NOT(maybe_one_hot);
if (cell->type == "$safe_pmux") {
maybe_a = ez->OR(maybe_a, maybe_many_hot);
bits_set = ez->vec_ite(sure_many_hot, ez->vec_or(a, undef_a), bits_set);
bits_clr = ez->vec_ite(sure_many_hot, ez->vec_or(ez->vec_not(a), undef_a), bits_clr);
}
bits_set = ez->vec_ite(maybe_a, ez->vec_or(bits_set, ez->vec_or(bits_set, ez->vec_or(a, undef_a))), bits_set);
bits_clr = ez->vec_ite(maybe_a, ez->vec_or(bits_clr, ez->vec_or(bits_clr, ez->vec_or(ez->vec_not(a), undef_a))), bits_clr);
ez->assume(ez->vec_eq(ez->vec_not(ez->vec_xor(bits_set, bits_clr)), undef_y));
undefGating(y, yy, undef_y);
}
return true;

View File

@ -42,7 +42,7 @@ void replace_cell(RTLIL::Module *module, RTLIL::Cell *cell, std::string info, st
did_something = true;
}
void replace_const_cells(RTLIL::Design *design, RTLIL::Module *module, bool consume_x)
void replace_const_cells(RTLIL::Design *design, RTLIL::Module *module, bool consume_x, bool mux_undef)
{
if (!design->selected(module))
return;
@ -139,8 +139,16 @@ void replace_const_cells(RTLIL::Design *design, RTLIL::Module *module, bool cons
cell->connections.erase("\\S");
goto next_cell;
}
if (input.match("11 ")) ACTION_DO_Y(1);
if (input.match("00 ")) ACTION_DO_Y(0);
if (input.match("** ")) ACTION_DO_Y(x);
if (input.match("01*")) ACTION_DO_Y(x);
if (input.match("10*")) ACTION_DO_Y(x);
if (mux_undef) {
if (input.match("* ")) ACTION_DO("\\Y", input.extract(1, 1));
if (input.match(" * ")) ACTION_DO("\\Y", input.extract(2, 1));
if (input.match(" *")) ACTION_DO("\\Y", input.extract(2, 1));
}
}
if (cell->type == "$eq" || cell->type == "$ne" || cell->type == "$eqx" || cell->type == "$nex")
@ -216,6 +224,51 @@ void replace_const_cells(RTLIL::Design *design, RTLIL::Module *module, bool cons
}
}
if (mux_undef && (cell->type == "$mux" || cell->type == "$pmux")) {
RTLIL::SigSpec new_a, new_b, new_s;
int width = cell->connections.at("\\A").width;
if ((cell->connections.at("\\A").is_fully_undef() && cell->connections.at("\\B").is_fully_undef()) ||
cell->connections.at("\\S").is_fully_undef()) {
replace_cell(module, cell, "mux undef", "\\Y", cell->connections.at("\\A"));
goto next_cell;
}
for (int i = 0; i < cell->connections.at("\\S").width; i++) {
RTLIL::SigSpec old_b = cell->connections.at("\\B").extract(i*width, width);
RTLIL::SigSpec old_s = cell->connections.at("\\S").extract(i, 1);
if (old_b.is_fully_undef() || old_s.is_fully_undef())
continue;
new_b.append(old_b);
new_s.append(old_s);
}
new_a = cell->connections.at("\\A");
if (new_a.is_fully_undef() && new_s.width > 0) {
new_a = new_b.extract((new_s.width-1)*width, width);
new_b = new_b.extract(0, (new_s.width-1)*width);
new_s = new_s.extract(0, new_s.width-1);
}
if (new_s.width == 0) {
replace_cell(module, cell, "mux undef", "\\Y", new_a);
goto next_cell;
}
if (new_a == RTLIL::SigSpec(RTLIL::State::S0) && new_b == RTLIL::SigSpec(RTLIL::State::S1)) {
replace_cell(module, cell, "mux undef", "\\Y", new_s);
goto next_cell;
}
if (cell->connections.at("\\S").width != new_s.width) {
cell->connections.at("\\A") = new_a;
cell->connections.at("\\B") = new_b;
cell->connections.at("\\S") = new_s;
if (new_s.width > 1) {
cell->type = "$pmux";
cell->parameters["\\S_WIDTH"] = new_s.width;
} else {
cell->type = "$mux";
cell->parameters.erase("\\S_WIDTH");
}
did_something = true;
}
}
#define FOLD_1ARG_CELL(_t) \
if (cell->type == "$" #_t) { \
RTLIL::SigSpec a = cell->connections["\\A"]; \
@ -312,25 +365,38 @@ struct OptConstPass : public Pass {
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" opt_const [selection]\n");
log(" opt_const [options] [selection]\n");
log("\n");
log("This pass performs const folding on internal cell types with constant inputs.\n");
log("\n");
log(" -mux_undef\n");
log(" remove 'undef' inputs from $mux, $pmux and $_MUX_ cells\n");
log("\n");
}
virtual void execute(std::vector<std::string> args, RTLIL::Design *design)
{
bool mux_undef = false;
log_header("Executing OPT_CONST pass (perform const folding).\n");
log_push();
extra_args(args, 1, design);
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
if (args[argidx] == "-mux_undef") {
mux_undef = true;
continue;
}
break;
}
extra_args(args, argidx, design);
for (auto &mod_it : design->modules)
do {
do {
did_something = false;
replace_const_cells(design, mod_it.second, false);
replace_const_cells(design, mod_it.second, false, mux_undef);
} while (did_something);
replace_const_cells(design, mod_it.second, true);
replace_const_cells(design, mod_it.second, true, mux_undef);
} while (did_something);
log_pop();

View File

@ -186,9 +186,6 @@ static void append_pmux(RTLIL::Module *mod, const RTLIL::SigSpec &signal, const
assert(last_mux_cell != NULL);
assert(when_signal.width == last_mux_cell->connections["\\A"].width);
std::stringstream sstr;
sstr << "$procmux$" << (RTLIL::autoidx++);
RTLIL::SigSpec ctrl_sig = gen_cmp(mod, signal, compare, sw);
assert(ctrl_sig.width == 1);
last_mux_cell->type = "$pmux";

View File

@ -52,6 +52,20 @@ struct equiv_bit_t
}
};
struct CountBitUsage
{
SigMap &sigmap;
std::map<RTLIL::SigBit, int> &cache;
CountBitUsage(SigMap &sigmap, std::map<RTLIL::SigBit, int> &cache) : sigmap(sigmap), cache(cache) { }
void operator()(RTLIL::SigSpec &sig) {
std::vector<RTLIL::SigBit> vec = sigmap(sig).to_sigbit_vector();
for (auto &bit : vec)
cache[bit]++;
}
};
struct FindReducedInputs
{
SigMap &sigmap;
@ -61,12 +75,59 @@ struct FindReducedInputs
std::set<RTLIL::Cell*> ez_cells;
SatGen satgen;
std::map<RTLIL::SigBit, int> sat_pi;
std::vector<int> sat_pi_uniq_bitvec;
FindReducedInputs(SigMap &sigmap, drivers_t &drivers) :
sigmap(sigmap), drivers(drivers), satgen(&ez, &sigmap)
{
satgen.model_undef = true;
}
int get_bits(int val)
{
int bits = 0;
for (int i = 8*sizeof(int); val; i = i >> 1)
if (val >> (i-1)) {
bits += i;
val = val >> i;
}
return bits;
}
void register_pi_bit(RTLIL::SigBit bit)
{
if (sat_pi.count(bit) != 0)
return;
satgen.setContext(&sigmap, "A");
int sat_a = satgen.importSigSpec(bit).front();
ez.assume(ez.NOT(satgen.importUndefSigSpec(bit).front()));
satgen.setContext(&sigmap, "B");
int sat_b = satgen.importSigSpec(bit).front();
ez.assume(ez.NOT(satgen.importUndefSigSpec(bit).front()));
int idx = sat_pi.size();
size_t idx_bits = get_bits(idx);
if (sat_pi_uniq_bitvec.size() != idx_bits) {
sat_pi_uniq_bitvec.push_back(ez.literal(stringf("uniq_%d", int(idx_bits)-1)));
for (auto &it : sat_pi)
ez.assume(ez.OR(ez.NOT(it.second), ez.NOT(sat_pi_uniq_bitvec.back())));
}
log_assert(sat_pi_uniq_bitvec.size() == idx_bits);
sat_pi[bit] = ez.literal(stringf("pi_%s", log_signal(bit)));
ez.assume(ez.IFF(ez.XOR(sat_a, sat_b), sat_pi[bit]));
for (size_t i = 0; i < idx_bits; i++)
if ((idx & (1 << i)) == 0)
ez.assume(ez.OR(ez.NOT(sat_pi[bit]), ez.NOT(sat_pi_uniq_bitvec[i])));
else
ez.assume(ez.OR(ez.NOT(sat_pi[bit]), sat_pi_uniq_bitvec[i]));
}
void register_cone_worker(std::set<RTLIL::SigBit> &pi, std::set<RTLIL::SigBit> &sigdone, RTLIL::SigBit out)
{
if (out.wire == NULL)
@ -88,9 +149,11 @@ struct FindReducedInputs
}
for (auto &bit : drv.second)
register_cone_worker(pi, sigdone, bit);
} else
} else {
register_pi_bit(out);
pi.insert(out);
}
}
void register_cone(std::vector<RTLIL::SigBit> &pi, RTLIL::SigBit out)
{
@ -100,10 +163,10 @@ struct FindReducedInputs
pi.insert(pi.end(), pi_set.begin(), pi_set.end());
}
void analyze(std::vector<RTLIL::SigBit> &reduced_inputs, RTLIL::SigBit output)
void analyze(std::vector<RTLIL::SigBit> &reduced_inputs, RTLIL::SigBit output, int prec)
{
if (verbose_level >= 1)
log(" Analyzing input cone for signal %s:\n", log_signal(output));
log("[%2d%%] Analyzing input cone for signal %s:\n", prec, log_signal(output));
std::vector<RTLIL::SigBit> pi;
register_cone(pi, output);
@ -114,39 +177,45 @@ struct FindReducedInputs
satgen.setContext(&sigmap, "A");
int output_a = satgen.importSigSpec(output).front();
int output_undef_a = satgen.importUndefSigSpec(output).front();
ez.assume(ez.NOT(ez.expression(ezSAT::OpOr, satgen.importUndefSigSpec(pi))));
satgen.setContext(&sigmap, "B");
int output_b = satgen.importSigSpec(output).front();
int output_undef_b = satgen.importUndefSigSpec(output).front();
ez.assume(ez.NOT(ez.expression(ezSAT::OpOr, satgen.importUndefSigSpec(pi))));
std::set<int> unused_pi_idx;
for (size_t i = 0; i < pi.size(); i++)
unused_pi_idx.insert(i);
while (1)
{
RTLIL::SigSpec test_sig(pi[i]);
RTLIL::SigSpec rest_sig(pi);
rest_sig.remove(i, 1);
std::vector<int> model_pi_idx;
std::vector<int> model_expr;
std::vector<bool> model;
int test_sig_a, test_sig_b;
std::vector<int> rest_sig_a, rest_sig_b;
for (size_t i = 0; i < pi.size(); i++)
if (unused_pi_idx.count(i) != 0) {
model_pi_idx.push_back(i);
model_expr.push_back(sat_pi.at(pi[i]));
}
satgen.setContext(&sigmap, "A");
test_sig_a = satgen.importSigSpec(test_sig).front();
rest_sig_a = satgen.importSigSpec(rest_sig);
if (!ez.solve(model_expr, model, ez.expression(ezSAT::OpOr, model_expr), ez.XOR(output_a, output_b), ez.NOT(output_undef_a), ez.NOT(output_undef_b)))
break;
satgen.setContext(&sigmap, "B");
test_sig_b = satgen.importSigSpec(test_sig).front();
rest_sig_b = satgen.importSigSpec(rest_sig);
if (ez.solve(ez.vec_eq(rest_sig_a, rest_sig_b), ez.XOR(output_a, output_b), ez.XOR(test_sig_a, test_sig_b), ez.NOT(output_undef_a), ez.NOT(output_undef_b))) {
int found_count = 0;
for (size_t i = 0; i < model_pi_idx.size(); i++)
if (model[i]) {
if (verbose_level >= 2)
log(" Result for input %s: pass\n", log_signal(test_sig));
log(" Found relevant input: %s\n", log_signal(pi[model_pi_idx[i]]));
unused_pi_idx.erase(model_pi_idx[i]);
found_count++;
}
log_assert(found_count == 1);
}
for (size_t i = 0; i < pi.size(); i++)
if (unused_pi_idx.count(i) == 0)
reduced_inputs.push_back(pi[i]);
} else {
if (verbose_level >= 2)
log(" Result for input %s: strip\n", log_signal(test_sig));
}
}
if (verbose_level >= 1)
log(" Reduced input cone contains %d inputs.\n", int(reduced_inputs.size()));
@ -166,6 +235,7 @@ struct PerformReduction
std::vector<RTLIL::SigBit> out_bits, pi_bits;
std::vector<bool> out_inverted;
std::vector<int> out_depth;
int cone_size;
int register_cone_worker(std::set<RTLIL::Cell*> &celldone, std::map<RTLIL::SigBit, int> &sigdepth, RTLIL::SigBit out)
{
@ -195,8 +265,8 @@ struct PerformReduction
return sigdepth[out];
}
PerformReduction(SigMap &sigmap, drivers_t &drivers, std::set<std::pair<RTLIL::SigBit, RTLIL::SigBit>> &inv_pairs, std::vector<RTLIL::SigBit> &bits) :
sigmap(sigmap), drivers(drivers), inv_pairs(inv_pairs), satgen(&ez, &sigmap), out_bits(bits)
PerformReduction(SigMap &sigmap, drivers_t &drivers, std::set<std::pair<RTLIL::SigBit, RTLIL::SigBit>> &inv_pairs, std::vector<RTLIL::SigBit> &bits, int cone_size) :
sigmap(sigmap), drivers(drivers), inv_pairs(inv_pairs), satgen(&ez, &sigmap), out_bits(bits), cone_size(cone_size)
{
satgen.model_undef = true;
@ -209,7 +279,7 @@ struct PerformReduction
sat_def.push_back(ez.NOT(satgen.importUndefSigSpec(bit).front()));
}
if (inv_mode) {
if (inv_mode && cone_size > 0) {
if (!ez.solve(sat_out, out_inverted, ez.expression(ezSAT::OpAnd, sat_def)))
log_error("Solving for initial model failed!\n");
for (size_t i = 0; i < sat_out.size(); i++)
@ -219,25 +289,72 @@ struct PerformReduction
out_inverted = std::vector<bool>(sat_out.size(), false);
}
void analyze(std::vector<std::set<int>> &results, std::map<int, int> &results_map, std::vector<int> &bucket, int level)
void analyze_const(std::vector<std::vector<equiv_bit_t>> &results, int idx)
{
if (verbose_level == 1)
log(" Finding const value for %s.\n", log_signal(out_bits[idx]));
bool can_be_set = ez.solve(ez.AND(sat_out[idx], sat_def[idx]));
bool can_be_clr = ez.solve(ez.AND(ez.NOT(sat_out[idx]), sat_def[idx]));
log_assert(!can_be_set || !can_be_clr);
RTLIL::SigBit value(RTLIL::State::Sx);
if (can_be_set)
value = RTLIL::State::S1;
if (can_be_clr)
value = RTLIL::State::S0;
if (verbose_level == 1)
log(" Constant value for this signal: %s\n", log_signal(value));
int result_idx = -1;
for (size_t i = 0; i < results.size(); i++) {
if (results[i].front().bit == value) {
result_idx = i;
break;
}
}
if (result_idx == -1) {
result_idx = results.size();
results.push_back(std::vector<equiv_bit_t>());
equiv_bit_t bit;
bit.depth = 0;
bit.inverted = false;
bit.drv = NULL;
bit.bit = value;
results.back().push_back(bit);
}
equiv_bit_t bit;
bit.depth = 1;
bit.inverted = false;
bit.drv = drivers.count(out_bits[idx]) ? drivers.at(out_bits[idx]).first : NULL;
bit.bit = out_bits[idx];
results[result_idx].push_back(bit);
}
void analyze(std::vector<std::set<int>> &results, std::map<int, int> &results_map, std::vector<int> &bucket, std::string indent1, std::string indent2)
{
std::string indent = indent1 + indent2;
const char *indt = indent.c_str();
if (bucket.size() <= 1)
return;
if (verbose_level == 1)
log("%*s Trying to shatter bucket with %d signals.\n", 2*level, "", int(bucket.size()));
log("%s Trying to shatter bucket with %d signals.\n", indt, int(bucket.size()));
if (verbose_level > 1) {
std::vector<RTLIL::SigBit> bucket_sigbits;
for (int idx : bucket)
bucket_sigbits.push_back(out_bits[idx]);
log("%*s Trying to shatter bucket with %d signals: %s\n", 2*level, "", int(bucket.size()), log_signal(RTLIL::SigSpec(bucket_sigbits).optimized()));
log("%s Trying to shatter bucket with %d signals: %s\n", indt, int(bucket.size()), log_signal(RTLIL::SigSpec(bucket_sigbits).optimized()));
}
std::vector<int> sat_list, sat_inv_list;
std::vector<int> sat_set_list, sat_clr_list;
for (int idx : bucket) {
sat_list.push_back(ez.AND(sat_out[idx], sat_def[idx]));
sat_inv_list.push_back(ez.AND(ez.NOT(sat_out[idx]), sat_def[idx]));
sat_set_list.push_back(ez.AND(sat_out[idx], sat_def[idx]));
sat_clr_list.push_back(ez.AND(ez.NOT(sat_out[idx]), sat_def[idx]));
}
std::vector<int> modelVars = sat_out;
@ -247,13 +364,47 @@ struct PerformReduction
if (verbose_level >= 2)
modelVars.insert(modelVars.end(), sat_pi.begin(), sat_pi.end());
if (ez.solve(modelVars, model, ez.expression(ezSAT::OpOr, sat_list), ez.expression(ezSAT::OpOr, sat_inv_list)))
if (ez.solve(modelVars, model, ez.expression(ezSAT::OpOr, sat_set_list), ez.expression(ezSAT::OpOr, sat_clr_list)))
{
int iter_count = 1;
while (1)
{
sat_set_list.clear();
sat_clr_list.clear();
std::vector<int> sat_def_list;
for (int idx : bucket)
if (!model[sat_out.size() + idx]) {
sat_set_list.push_back(ez.AND(sat_out[idx], sat_def[idx]));
sat_clr_list.push_back(ez.AND(ez.NOT(sat_out[idx]), sat_def[idx]));
} else {
sat_def_list.push_back(sat_def[idx]);
}
if (!ez.solve(modelVars, model, ez.expression(ezSAT::OpOr, sat_set_list), ez.expression(ezSAT::OpOr, sat_clr_list), ez.expression(ezSAT::OpAnd, sat_def_list)))
break;
iter_count++;
}
if (verbose_level >= 1) {
int count_set = 0, count_clr = 0, count_undef = 0;
for (int idx : bucket)
if (!model[sat_out.size() + idx])
count_undef++;
else if (model[idx])
count_set++;
else
count_clr++;
log("%s After %d iterations: %d set vs. %d clr vs %d undef\n", indt, iter_count, count_set, count_clr, count_undef);
}
if (verbose_level >= 2) {
for (size_t i = 0; i < pi_bits.size(); i++)
log("%*s -> PI %c == %s\n", 2*level, "", model[2*sat_out.size() + i] ? '1' : '0', log_signal(pi_bits[i]));
log("%s -> PI %c == %s\n", indt, model[2*sat_out.size() + i] ? '1' : '0', log_signal(pi_bits[i]));
for (int idx : bucket)
log("%*s -> OUT %c == %s%s\n", 2*level, "", model[sat_out.size() + idx] ? model[idx] ? '1' : '0' : 'x',
log("%s -> OUT %c == %s%s\n", indt, model[sat_out.size() + idx] ? model[idx] ? '1' : '0' : 'x',
out_inverted.at(idx) ? "~" : "", log_signal(out_bits[idx]));
}
@ -266,8 +417,8 @@ struct PerformReduction
if (!model[sat_out.size() + idx] || !model[idx])
buckets_b.push_back(idx);
}
analyze(results, results_map, buckets_a, level+1);
analyze(results, results_map, buckets_b, level+1);
analyze(results, results_map, buckets_a, indent1 + ".", indent2 + " ");
analyze(results, results_map, buckets_b, indent1 + "x", indent2 + " ");
}
else
{
@ -284,7 +435,7 @@ struct PerformReduction
if (undef_slaves.size() == bucket.size()) {
if (verbose_level >= 1)
log("%*s Complex undef overlap. None of the signals covers the others.\n", 2*level, "");
log("%s Complex undef overlap. None of the signals covers the others.\n", indt);
// FIXME: We could try to further shatter a group with complex undef overlaps
return;
}
@ -293,7 +444,7 @@ struct PerformReduction
out_depth[idx] = std::numeric_limits<int>::max();
if (verbose_level >= 1) {
log("%*s Found %d equivialent signals:", 2*level, "", int(bucket.size()));
log("%s Found %d equivialent signals:", indt, int(bucket.size()));
for (int idx : bucket)
log("%s%s%s", idx == bucket.front() ? " " : ", ", out_inverted[idx] ? "~" : "", log_signal(out_bits[idx]));
log("\n");
@ -323,7 +474,7 @@ struct PerformReduction
}
}
void analyze(std::vector<std::vector<equiv_bit_t>> &results)
void analyze(std::vector<std::vector<equiv_bit_t>> &results, int perc)
{
std::vector<int> bucket;
for (size_t i = 0; i < sat_out.size(); i++)
@ -331,7 +482,7 @@ struct PerformReduction
std::vector<std::set<int>> results_buf;
std::map<int, int> results_map;
analyze(results_buf, results_map, bucket, 1);
analyze(results_buf, results_map, bucket, stringf("[%2d%%] %d ", perc, cone_size), "");
for (auto &r : results_buf)
{
@ -416,10 +567,13 @@ struct FreduceWorker
ct.setup_internals();
ct.setup_stdcells();
int bits_full_total = 0;
std::vector<std::set<RTLIL::SigBit>> batches;
for (auto &it : module->wires)
if (it.second->port_input)
if (it.second->port_input) {
batches.push_back(sigmap(it.second).to_sigbit_set());
bits_full_total += it.second->width;
}
for (auto &it : module->cells) {
if (ct.cell_known(it.second->type)) {
std::set<RTLIL::SigBit> inputs, outputs;
@ -434,20 +588,21 @@ struct FreduceWorker
for (auto &bit : outputs)
drivers[bit] = drv;
batches.push_back(outputs);
bits_full_total += outputs.size();
}
if (inv_mode && it.second->type == "$_INV_")
inv_pairs.insert(std::pair<RTLIL::SigBit, RTLIL::SigBit>(sigmap(it.second->connections.at("\\A")), sigmap(it.second->connections.at("\\Y"))));
}
int bits_count = 0;
int bits_full_count = 0;
std::map<std::vector<RTLIL::SigBit>, std::vector<RTLIL::SigBit>> buckets;
buckets[std::vector<RTLIL::SigBit>()].push_back(RTLIL::SigBit(RTLIL::State::S0));
buckets[std::vector<RTLIL::SigBit>()].push_back(RTLIL::SigBit(RTLIL::State::S1));
for (auto &batch : batches)
{
for (auto &bit : batch)
if (bit.wire != NULL && design->selected(module, bit.wire))
goto found_selected_wire;
bits_full_count += batch.size();
continue;
found_selected_wire:
@ -457,23 +612,37 @@ struct FreduceWorker
FindReducedInputs infinder(sigmap, drivers);
for (auto &bit : batch) {
std::vector<RTLIL::SigBit> inputs;
infinder.analyze(inputs, bit);
infinder.analyze(inputs, bit, 100 * bits_full_count / bits_full_total);
buckets[inputs].push_back(bit);
bits_full_count++;
bits_count++;
}
}
log(" Sorted %d signal bits into %d buckets.\n", bits_count, int(buckets.size()));
int bucket_count = 0;
std::vector<std::vector<equiv_bit_t>> equiv;
for (auto &bucket : buckets)
{
bucket_count++;
if (bucket.second.size() == 1)
continue;
if (bucket.first.size() == 0) {
log(" Finding const values for bucket %s%c\n", log_signal(RTLIL::SigSpec(bucket.second).optimized()), verbose_level ? ':' : '.');
PerformReduction worker(sigmap, drivers, inv_pairs, bucket.second, bucket.first.size());
for (size_t idx = 0; idx < bucket.second.size(); idx++)
worker.analyze_const(equiv, idx);
} else {
log(" Trying to shatter bucket %s%c\n", log_signal(RTLIL::SigSpec(bucket.second).optimized()), verbose_level ? ':' : '.');
PerformReduction worker(sigmap, drivers, inv_pairs, bucket.second);
worker.analyze(equiv);
PerformReduction worker(sigmap, drivers, inv_pairs, bucket.second, bucket.first.size());
worker.analyze(equiv, 100 * bucket_count / (buckets.size() + 1));
}
}
std::map<RTLIL::SigBit, int> bitusage;
module->rewrite_sigspecs(CountBitUsage(sigmap, bitusage));
log(" Rewiring %d equivialent groups:\n", int(equiv.size()));
int rewired_sigbits = 0;
@ -489,6 +658,11 @@ struct FreduceWorker
continue;
}
if (grp[i].bit.wire->port_id == 0 && bitusage[grp[i].bit] <= 1) {
log(" Skipping unused slave: %s\n", log_signal(grp[i].bit));
continue;
}
log(" Connect slave%s: %s\n", grp[i].inverted ? " using inverter" : "", log_signal(grp[i].bit));
RTLIL::Cell *drv = drivers.at(grp[i].bit).first;