write_xaiger to use scratchpad for stats; cleanup abc9

This commit is contained in:
Eddie Hung 2019-12-30 15:35:33 -08:00
parent fc4b8b8991
commit 0735572934
2 changed files with 20 additions and 190 deletions

View File

@ -93,7 +93,6 @@ struct XAigerWriter
dict<SigBit, int> ordered_outputs; dict<SigBit, int> ordered_outputs;
vector<Cell*> box_list; vector<Cell*> box_list;
bool omode = false;
int mkgate(int a0, int a1) int mkgate(int a0, int a1)
{ {
@ -579,11 +578,6 @@ struct XAigerWriter
aig_outputs.push_back(bit2aig(bit)); aig_outputs.push_back(bit2aig(bit));
} }
if (output_bits.empty()) {
output_bits.insert(State::S0);
omode = true;
}
for (auto bit : output_bits) { for (auto bit : output_bits) {
ordered_outputs[bit] = aig_o++; ordered_outputs[bit] = aig_o++;
aig_outputs.push_back(bit2aig(bit)); aig_outputs.push_back(bit2aig(bit));
@ -594,12 +588,6 @@ struct XAigerWriter
aig_o++; aig_o++;
aig_outputs.push_back(ff_aig_map.at(bit)); aig_outputs.push_back(ff_aig_map.at(bit));
} }
if (output_bits.empty()) {
aig_o++;
aig_outputs.push_back(0);
omode = true;
}
} }
void write_aiger(std::ostream &f, bool ascii_mode) void write_aiger(std::ostream &f, bool ascii_mode)
@ -661,7 +649,6 @@ struct XAigerWriter
f << "c"; f << "c";
log_assert(!output_bits.empty());
auto write_buffer = [](std::stringstream &buffer, int i32) { auto write_buffer = [](std::stringstream &buffer, int i32) {
int32_t i32_be = to_big_endian(i32); int32_t i32_be = to_big_endian(i32);
buffer.write(reinterpret_cast<const char*>(&i32_be), sizeof(i32_be)); buffer.write(reinterpret_cast<const char*>(&i32_be), sizeof(i32_be));
@ -922,6 +909,11 @@ struct XAigerWriter
//f.write(buffer_str.data(), buffer_str.size()); //f.write(buffer_str.data(), buffer_str.size());
f << stringf("Generated by %s\n", yosys_version_str); f << stringf("Generated by %s\n", yosys_version_str);
module->design->scratchpad_set_int("write_xaiger.num_ands", and_map.size());
module->design->scratchpad_set_int("write_xaiger.num_wires", aig_map.size());
module->design->scratchpad_set_int("write_xaiger.num_inputs", input_bits.size());
module->design->scratchpad_set_int("write_xaiger.num_outputs", output_bits.size());
} }
void write_map(std::ostream &f, bool verbose_map) void write_map(std::ostream &f, bool verbose_map)
@ -973,13 +965,9 @@ struct XAigerWriter
f << stringf("box %d %d %s\n", box_count++, 0, log_id(cell->name)); f << stringf("box %d %d %s\n", box_count++, 0, log_id(cell->name));
output_lines.sort(); output_lines.sort();
if (omode)
output_lines[State::S0] = "output 0 0 $__dummy__\n";
for (auto &it : output_lines) for (auto &it : output_lines)
f << it.second; f << it.second;
log_assert(output_lines.size() == output_bits.size()); log_assert(output_lines.size() == output_bits.size());
if (omode && output_bits.empty())
f << "output " << output_lines.size() << " 0 $__dummy__\n";
wire_lines.sort(); wire_lines.sort();
for (auto &it : wire_lines) for (auto &it : wire_lines)

View File

@ -268,13 +268,13 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *module, std::string scrip
if (!lut_costs.empty()) { if (!lut_costs.empty()) {
abc9_script += stringf("read_lut %s/lutdefs.txt; ", tempdir_name.c_str()); abc9_script += stringf("read_lut %s/lutdefs.txt; ", tempdir_name.c_str());
if (!box_file.empty()) if (!box_file.empty())
abc9_script += stringf("read_box -v %s; ", box_file.c_str()); abc9_script += stringf("read_box %s; ", box_file.c_str());
} }
else else
if (!lut_file.empty()) { if (!lut_file.empty()) {
abc9_script += stringf("read_lut %s; ", lut_file.c_str()); abc9_script += stringf("read_lut %s; ", lut_file.c_str());
if (!box_file.empty()) if (!box_file.empty())
abc9_script += stringf("read_box -v %s; ", box_file.c_str()); abc9_script += stringf("read_box %s; ", box_file.c_str());
} }
else else
log_abort(); log_abort();
@ -321,20 +321,22 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *module, std::string scrip
fprintf(f, "%s\n", abc9_script.c_str()); fprintf(f, "%s\n", abc9_script.c_str());
fclose(f); fclose(f);
//bool count_output = false;
log_push(); log_push();
//if (count_output) handle_loops(design, module);
{
handle_loops(design, module);
Pass::call(design, "aigmap -select"); Pass::call(design, "aigmap -select");
//log("Extracted %d gates and %d wires to a netlist network with %d inputs and %d outputs.\n", Pass::call(design, stringf("write_xaiger -map %s/input.sym %s/input.xaig", tempdir_name.c_str(), tempdir_name.c_str()));
// count_gates, GetSize(signal_list), count_input, count_output);
Pass::call(design, stringf("write_xaiger -map %s/input.sym %s/input.xaig", tempdir_name.c_str(), tempdir_name.c_str())); int count_outputs = design->scratchpad_get_int("write_xaiger.num_outputs");
log("Extracted %d AND gates and %d wires to a netlist network with %d inputs and %d outputs.\n",
design->scratchpad_get_int("write_xaiger.num_ands"),
design->scratchpad_get_int("write_xaiger.num_wires"),
design->scratchpad_get_int("write_xaiger.num_inputs"),
count_outputs);
if (count_outputs > 0) {
std::string buffer; std::string buffer;
std::ifstream ifs; std::ifstream ifs;
#if 0 #if 0
@ -1053,35 +1055,6 @@ struct Abc9Pass : public Pass {
dict<clkdomain_t, int> clk_to_mergeability; dict<clkdomain_t, int> clk_to_mergeability;
const std::vector<RTLIL::Cell*> all_cells = module->selected_cells(); const std::vector<RTLIL::Cell*> all_cells = module->selected_cells();
#if 0
pool<RTLIL::Cell*> unassigned_cells(all_cells.begin(), all_cells.end());
pool<RTLIL::Cell*> expand_queue, next_expand_queue;
pool<RTLIL::Cell*> expand_queue_up, next_expand_queue_up;
pool<RTLIL::Cell*> expand_queue_down, next_expand_queue_down;
std::map<clkdomain_t, pool<RTLIL::IdString>> assigned_cells;
std::map<RTLIL::Cell*, clkdomain_t> assigned_cells_reverse;
std::map<RTLIL::Cell*, pool<RTLIL::SigBit>> cell_to_bit, cell_to_bit_up, cell_to_bit_down;
std::map<RTLIL::SigBit, pool<RTLIL::Cell*>> bit_to_cell, bit_to_cell_up, bit_to_cell_down;
for (auto cell : all_cells)
for (auto &conn : cell->connections())
for (auto bit : assign_map(conn.second))
if (bit.wire != nullptr) {
cell_to_bit[cell].insert(bit);
bit_to_cell[bit].insert(cell);
if (ct.cell_input(cell->type, conn.first)) {
cell_to_bit_up[cell].insert(bit);
bit_to_cell_down[bit].insert(cell);
}
if (ct.cell_output(cell->type, conn.first)) {
cell_to_bit_down[cell].insert(bit);
bit_to_cell_up[bit].insert(cell);
}
}
#endif
for (auto cell : all_cells) { for (auto cell : all_cells) {
auto inst_module = design->module(cell->type); auto inst_module = design->module(cell->type);
@ -1095,12 +1068,6 @@ struct Abc9Pass : public Pass {
SigSpec abc9_clock = assign_map(abc9_clock_wire); SigSpec abc9_clock = assign_map(abc9_clock_wire);
clkdomain_t key(abc9_clock); clkdomain_t key(abc9_clock);
#if 0
unassigned_cells.erase(cell);
expand_queue_up.insert(cell);
assigned_cells[key].insert(cell->name);
assigned_cells_reverse[cell] = key;
#endif
auto r = clk_to_mergeability.insert(std::make_pair(abc9_clock, clk_to_mergeability.size() + 1)); auto r = clk_to_mergeability.insert(std::make_pair(abc9_clock, clk_to_mergeability.size() + 1));
auto r2 YS_ATTRIBUTE(unused) = cell->attributes.insert(std::make_pair(ID(abc9_mergeability), r.first->second)); auto r2 YS_ATTRIBUTE(unused) = cell->attributes.insert(std::make_pair(ID(abc9_mergeability), r.first->second));
@ -1115,137 +1082,12 @@ struct Abc9Pass : public Pass {
log_error("'%s.$abc9_init' is not a constant wire present in module '%s'.\n", cell->name.c_str(), log_id(module)); log_error("'%s.$abc9_init' is not a constant wire present in module '%s'.\n", cell->name.c_str(), log_id(module));
r2 = cell->attributes.insert(std::make_pair(ID(abc9_init), abc9_init.as_const())); r2 = cell->attributes.insert(std::make_pair(ID(abc9_init), abc9_init.as_const()));
log_assert(r2.second); log_assert(r2.second);
#if 0
// Also assign these special ABC9 cells to the
// same clock domain
for (auto b : cell_to_bit_down[cell])
for (auto c : bit_to_cell_down[b])
if (c->type == "$__ABC9_FF_") {
cell = c;
unassigned_cells.erase(cell);
assigned_cells[key].insert(cell->name);
assigned_cells_reverse[cell] = key;
break;
}
for (auto b : cell_to_bit_down[cell])
for (auto c : bit_to_cell_down[b])
if (c->type == "$__ABC9_ASYNC") {
cell = c;
unassigned_cells.erase(cell);
assigned_cells[key].insert(cell->name);
assigned_cells_reverse[cell] = key;
break;
}
expand_queue.insert(cell);
expand_queue_down.insert(cell);
#endif
} }
#if 0
while (!expand_queue_up.empty() || !expand_queue_down.empty())
{
if (!expand_queue_up.empty())
{
RTLIL::Cell *cell = *expand_queue_up.begin();
auto key = assigned_cells_reverse.at(cell);
expand_queue_up.erase(cell);
for (auto bit : cell_to_bit_up[cell])
for (auto c : bit_to_cell_up[bit])
if (unassigned_cells.count(c)) {
unassigned_cells.erase(c);
next_expand_queue_up.insert(c);
assigned_cells[key].insert(c->name);
assigned_cells_reverse[c] = key;
expand_queue.insert(c);
}
}
if (!expand_queue_down.empty())
{
RTLIL::Cell *cell = *expand_queue_down.begin();
auto key = assigned_cells_reverse.at(cell);
expand_queue_down.erase(cell);
for (auto bit : cell_to_bit_down[cell])
for (auto c : bit_to_cell_down[bit])
if (unassigned_cells.count(c)) {
unassigned_cells.erase(c);
next_expand_queue_up.insert(c);
assigned_cells[key].insert(c->name);
assigned_cells_reverse[c] = key;
expand_queue.insert(c);
}
}
if (expand_queue_up.empty() && expand_queue_down.empty()) {
expand_queue_up.swap(next_expand_queue_up);
expand_queue_down.swap(next_expand_queue_down);
}
}
while (!expand_queue.empty())
{
RTLIL::Cell *cell = *expand_queue.begin();
auto key = assigned_cells_reverse.at(cell);
expand_queue.erase(cell);
for (auto bit : cell_to_bit.at(cell)) {
for (auto c : bit_to_cell[bit])
if (unassigned_cells.count(c)) {
unassigned_cells.erase(c);
next_expand_queue.insert(c);
assigned_cells[key].insert(c->name);
assigned_cells_reverse[c] = key;
}
bit_to_cell[bit].clear();
}
if (expand_queue.empty())
expand_queue.swap(next_expand_queue);
}
clkdomain_t key;
for (auto cell : unassigned_cells) {
assigned_cells[key].insert(cell->name);
assigned_cells_reverse[cell] = key;
}
log_header(design, "Summary of detected clock domains:\n");
for (auto &it : assigned_cells) {
log(" %d cells in clk=%s\n", GetSize(it.second), log_signal(it.first));
}
#endif
design->selected_active_module = module->name.str(); design->selected_active_module = module->name.str();
#if 0 abc9_module(design, module, script_file, exe_file, cleanup, lut_costs,
design->selection_stack.emplace_back(false); delay_target, lutin_shared, fast_mode, all_cells, show_tempdir,
for (auto &it : assigned_cells) { box_file, lut_file, wire_delay, box_lookup, nomfs);
std::string target = delay_target;
if (target.empty()) {
for (auto b : assign_map(it.first))
if (b.wire) {
auto jt = b.wire->attributes.find("\\abc9_period");
if (jt != b.wire->attributes.end()) {
target = stringf("-D %d", jt->second.as_int());
log("Target period = %s ps for clock domain %s\n", target.c_str(), log_signal(it.first));
break;
}
}
}
RTLIL::Selection& sel = design->selection_stack.back();
sel.selected_members[module->name] = std::move(it.second);
#endif
abc9_module(design, module, script_file, exe_file, cleanup, lut_costs,
delay_target, lutin_shared, fast_mode, all_cells, show_tempdir,
box_file, lut_file, wire_delay, box_lookup, nomfs);
#if 0
assign_map.set(module);
}
design->selection_stack.pop_back();
#endif
design->selected_active_module.clear(); design->selected_active_module.clear();
} }