abc9 to do clock partitioning again

This commit is contained in:
Eddie Hung 2019-12-05 17:26:22 -08:00
parent 02786b0aa0
commit 01a3cc29ba
1 changed files with 144 additions and 37 deletions

View File

@ -752,10 +752,6 @@ struct Abc9Pass : public Pass {
log("This pass uses the ABC tool [1] for technology mapping of yosys's internal gate\n");
log("library to a target architecture.\n");
log("\n");
log("Selection must only contain fully selected modules. It is assumed that such\n");
log("modules contain only cells belonging to the same clock domain, as produced by\n");
log("the 'clkpart' command.\n");
log("\n");
log(" -exe <command>\n");
#ifdef ABCEXTERNAL
log(" use the specified command instead of \"" ABCEXTERNAL "\" to execute ABC.\n");
@ -1076,6 +1072,8 @@ struct Abc9Pass : public Pass {
}
}
SigMap assign_map;
CellTypes ct(design);
for (auto module : design->selected_modules())
{
if (module->attributes.count(ID(abc9_box_id)))
@ -1086,65 +1084,174 @@ struct Abc9Pass : public Pass {
continue;
}
if (!design->selected_whole_module(module)) {
log("Skipping module %s as it is partially selected.\n", log_id(module));
continue;
}
assign_map.set(module);
SigMap sigmap(module);
std::vector<RTLIL::Cell*> all_cells = module->selected_cells();
std::set<RTLIL::Cell*> unassigned_cells(all_cells.begin(), all_cells.end());
std::set<RTLIL::Cell*> expand_queue, next_expand_queue;
std::set<RTLIL::Cell*> expand_queue_up, next_expand_queue_up;
std::set<RTLIL::Cell*> expand_queue_down, next_expand_queue_down;
std::map<SigSpec, pool<RTLIL::IdString>> assigned_cells;
std::map<RTLIL::Cell*, SigSpec> assigned_cells_reverse;
std::map<RTLIL::Cell*, std::set<RTLIL::SigBit>> cell_to_bit, cell_to_bit_up, cell_to_bit_down;
std::map<RTLIL::SigBit, std::set<RTLIL::Cell*>> bit_to_cell, bit_to_cell_up, bit_to_cell_down;
typedef std::pair<IdString, SigSpec> ctrldomain_t;
std::map<ctrldomain_t, int> mergeability_class;
pool<Wire*> clocks;
std::string target = delay_target;
for (auto cell : module->cells()) {
for (auto cell : all_cells) {
for (auto &conn : cell->connections())
for (auto bit : assign_map(conn.second))
if (bit.wire != nullptr) {
cell_to_bit[cell].insert(bit);
bit_to_cell[bit].insert(cell);
if (ct.cell_input(cell->type, conn.first)) {
cell_to_bit_up[cell].insert(bit);
bit_to_cell_down[bit].insert(cell);
}
if (ct.cell_output(cell->type, conn.first)) {
cell_to_bit_down[cell].insert(bit);
bit_to_cell_up[bit].insert(cell);
}
}
auto inst_module = design->module(cell->type);
if (!inst_module || !inst_module->attributes.count("\\abc9_flop"))
continue;
if (delay_target.empty()) {
Wire *abc9_clock_wire = module->wire(stringf("%s.$abc9_clock", cell->name.c_str()));
if (abc9_clock_wire == NULL)
log_error("'%s.$abc9_clock' is not a wire present in module '%s'.\n", cell->name.c_str(), log_id(module));
log_assert(GetSize(abc9_clock_wire) == 1);
SigBit abc9_clock = sigmap(abc9_clock_wire);
auto r = clocks.insert(abc9_clock.wire);
if (r.second) {
auto it = abc9_clock.wire->attributes.find("\\abc9_period");
if (it != abc9_clock.wire->attributes.end()) {
int period = it->second.as_int();
log("Identified target period = %d ps for clock %s\n", period, log_signal(abc9_clock));
target = stringf("-D %d", period);
}
}
}
Wire *abc9_clock_wire = module->wire(stringf("%s.$abc9_clock", cell->name.c_str()));
if (abc9_clock_wire == NULL)
log_error("'%s$abc9_clock' is not a wire present in module '%s'.\n", cell->name.c_str(), log_id(module));
SigSpec abc9_clock = assign_map(abc9_clock_wire);
Wire *abc9_control_wire = module->wire(stringf("%s.$abc9_control", cell->name.c_str()));
if (abc9_control_wire == NULL)
log_error("'%s.$abc9_control' is not a wire present in module '%s'.\n", cell->name.c_str(), log_id(module));
SigSpec abc9_control = sigmap(abc9_control_wire);
log_error("'%s$abc9_control' is not a wire present in module '%s'.\n", cell->name.c_str(), log_id(module));
SigSpec abc9_control = assign_map(abc9_control_wire);
unassigned_cells.erase(cell);
expand_queue.insert(cell);
expand_queue_up.insert(cell);
expand_queue_down.insert(cell);
assigned_cells[abc9_clock].insert(cell->name);
assigned_cells_reverse[cell] = abc9_clock;
ctrldomain_t key(cell->type, abc9_control);
auto r = mergeability_class.emplace(key, mergeability_class.size() + 1);
auto YS_ATTRIBUTE(unused) r2 = cell->attributes.insert(std::make_pair(ID(abc9_mergeability), r.first->second));
auto YS_ATTRIBUTE(unused) r2 = cell->attributes.insert(std::make_pair(ID(abc9_mergeability), r.first->second));
log_assert(r2.second);
Wire *abc9_init_wire = module->wire(stringf("%s.$abc9_init", cell->name.c_str()));
if (abc9_init_wire == NULL)
log_error("'%s.$abc9_init' is not a wire present in module '%s'.\n", cell->name.c_str(), log_id(module));
log_error("'%s.$abc9_init' is not a wire present in module '%s'.\n", cell->name.c_str(), log_id(module));
log_assert(GetSize(abc9_init_wire) == 1);
SigSpec abc9_init = sigmap(abc9_init_wire);
SigSpec abc9_init = assign_map(abc9_init_wire);
if (!abc9_init.is_fully_const())
log_error("'%s.$abc9_init' is not a constant wire present in module '%s'.\n", cell->name.c_str(), log_id(module));
log_error("'%s.$abc9_init' is not a constant wire present in module '%s'.\n", cell->name.c_str(), log_id(module));
r2 = cell->attributes.insert(std::make_pair(ID(abc9_init), abc9_init.as_const()));
log_assert(r2.second);
}
while (!expand_queue_up.empty() || !expand_queue_down.empty())
{
if (!expand_queue_up.empty())
{
RTLIL::Cell *cell = *expand_queue_up.begin();
SigSpec key = assigned_cells_reverse.at(cell);
expand_queue_up.erase(cell);
for (auto bit : cell_to_bit_up[cell])
for (auto c : bit_to_cell_up[bit])
if (unassigned_cells.count(c) && !c->type.in("$__ABC9_FF_", "$__ABC9_ASYNC_")) {
unassigned_cells.erase(c);
next_expand_queue_up.insert(c);
assigned_cells[key].insert(c->name);
assigned_cells_reverse[c] = key;
expand_queue.insert(c);
}
}
if (!expand_queue_down.empty())
{
RTLIL::Cell *cell = *expand_queue_down.begin();
SigSpec key = assigned_cells_reverse.at(cell);
expand_queue_down.erase(cell);
for (auto bit : cell_to_bit_down[cell])
for (auto c : bit_to_cell_down[bit])
if (unassigned_cells.count(c)) {
unassigned_cells.erase(c);
next_expand_queue_up.insert(c);
assigned_cells[key].insert(c->name);
assigned_cells_reverse[c] = key;
expand_queue.insert(c);
}
}
if (expand_queue_up.empty() && expand_queue_down.empty()) {
expand_queue_up.swap(next_expand_queue_up);
expand_queue_down.swap(next_expand_queue_down);
}
}
while (!expand_queue.empty())
{
RTLIL::Cell *cell = *expand_queue.begin();
SigSpec key = assigned_cells_reverse.at(cell);
expand_queue.erase(cell);
for (auto bit : cell_to_bit.at(cell)) {
for (auto c : bit_to_cell[bit])
if (unassigned_cells.count(c)) {
unassigned_cells.erase(c);
next_expand_queue.insert(c);
assigned_cells[key].insert(c->name);
assigned_cells_reverse[c] = key;
}
bit_to_cell[bit].clear();
}
if (expand_queue.empty())
expand_queue.swap(next_expand_queue);
}
SigSpec key;
for (auto cell : unassigned_cells) {
assigned_cells[key].insert(cell->name);
assigned_cells_reverse[cell] = key;
}
log_header(design, "Summary of detected clock domains:\n");
for (auto &it : assigned_cells)
log(" %d cells in clk=%s\n", GetSize(it.second), log_signal(it.first));
design->selection_stack.emplace_back(false);
design->selected_active_module = module->name.str();
abc9_module(design, module, script_file, exe_file, cleanup, lut_costs, false, "$",
keepff, target, lutin_shared, fast_mode, show_tempdir,
box_file, lut_file, wire_delay, box_lookup, nomfs);
for (auto &it : assigned_cells) {
std::string target = delay_target;
if (target.empty()) {
for (auto b : assign_map(it.first))
if (b.wire) {
auto jt = b.wire->attributes.find("\\abc9_period");
if (jt != b.wire->attributes.end()) {
target = stringf("-D %d", jt->second.as_int());
log("Target period = %s ps for clock domain %s\n", target.c_str(), log_signal(it.first));
break;
}
}
}
RTLIL::Selection& sel = design->selection_stack.back();
sel.selected_members[module->name] = std::move(it.second);
abc9_module(design, module, script_file, exe_file, cleanup, lut_costs, false, "$",
keepff, target, lutin_shared, fast_mode, show_tempdir,
box_file, lut_file, wire_delay, box_lookup, nomfs);
assign_map.set(module);
}
design->selection_stack.pop_back();
design->selected_active_module.clear();
}