yosys/passes/sat/formalff.cc

767 lines
23 KiB
C++
Raw Normal View History

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2022 Jannis Harder <jix@yosyshq.com> <me@jix.one>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/yosys.h"
#include "kernel/sigtools.h"
#include "kernel/ffinit.h"
#include "kernel/ff.h"
#include "kernel/modtools.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
// Finds signal values with known constant or known unused values in the initial state
struct InitValWorker
{
Module *module;
ModWalker modwalker;
SigMap &sigmap;
FfInitVals initvals;
dict<RTLIL::SigBit, RTLIL::State> initconst_bits;
dict<RTLIL::SigBit, bool> used_bits;
InitValWorker(Module *module) : module(module), modwalker(module->design), sigmap(modwalker.sigmap)
{
modwalker.setup(module);
initvals.set(&modwalker.sigmap, module);
for (auto wire : module->wires())
if (wire->name.isPublic() || wire->get_bool_attribute(ID::keep))
for (auto bit : SigSpec(wire))
used_bits[sigmap(bit)] = true;
}
// Sign/Zero-extended indexing of individual port bits
static SigBit bit_in_port(RTLIL::Cell *cell, RTLIL::IdString port, RTLIL::IdString sign, int index)
{
auto sig_port = cell->getPort(port);
if (index < GetSize(sig_port))
return sig_port[index];
else if (cell->getParam(sign).as_bool())
return GetSize(sig_port) > 0 ? sig_port[GetSize(sig_port) - 1] : State::Sx;
else
return State::S0;
}
// Has the signal a known constant value in the initial state?
//
// For sync-only FFs outputs, this is their initval. For logic loops,
// multiple drivers or unknown cells this is Sx. For a small number of
// handled cells we recurse through their inputs. All results are cached.
RTLIL::State initconst(SigBit bit)
{
sigmap.apply(bit);
if (!bit.is_wire())
return bit.data;
auto it = initconst_bits.find(bit);
if (it != initconst_bits.end())
return it->second;
// Setting this temporarily to x takes care of any logic loops
initconst_bits[bit] = State::Sx;
pool<ModWalker::PortBit> portbits;
modwalker.get_drivers(portbits, {bit});
if (portbits.size() != 1)
return State::Sx;
ModWalker::PortBit portbit = *portbits.begin();
RTLIL::Cell *cell = portbit.cell;
if (RTLIL::builtin_ff_cell_types().count(cell->type))
{
FfData ff(&initvals, cell);
if (ff.has_aload || ff.has_sr || ff.has_arst || (!ff.has_clk && !ff.has_gclk)) {
for (auto bit_q : ff.sig_q) {
initconst_bits[sigmap(bit_q)] = State::Sx;
}
return State::Sx;
}
for (int i = 0; i < ff.width; i++) {
initconst_bits[sigmap(ff.sig_q[i])] = ff.val_init[i];
}
return ff.val_init[portbit.offset];
}
if (cell->type.in(ID($mux), ID($and), ID($or), ID($eq), ID($eqx), ID($initstate)))
{
if (cell->type == ID($mux))
{
SigBit sig_s = sigmap(cell->getPort(ID::S));
State init_s = initconst(sig_s);
State init_y;
if (init_s == State::S0) {
init_y = initconst(cell->getPort(ID::A)[portbit.offset]);
} else if (init_s == State::S1) {
init_y = initconst(cell->getPort(ID::B)[portbit.offset]);
} else {
State init_a = initconst(cell->getPort(ID::A)[portbit.offset]);
State init_b = initconst(cell->getPort(ID::B)[portbit.offset]);
init_y = init_a == init_b ? init_a : State::Sx;
}
initconst_bits[bit] = init_y;
return init_y;
}
if (cell->type.in(ID($and), ID($or)))
{
State init_a = initconst(bit_in_port(cell, ID::A, ID::A_SIGNED, portbit.offset));
State init_b = initconst(bit_in_port(cell, ID::B, ID::B_SIGNED, portbit.offset));
State init_y;
if (init_a == init_b)
init_y = init_a;
else if (cell->type == ID($and) && (init_a == State::S0 || init_b == State::S0))
init_y = State::S0;
else if (cell->type == ID($or) && (init_a == State::S1 || init_b == State::S1))
init_y = State::S1;
else
init_y = State::Sx;
initconst_bits[bit] = init_y;
return init_y;
}
if (cell->type.in(ID($eq), ID($eqx))) // Treats $eqx as $eq
{
if (portbit.offset > 0) {
initconst_bits[bit] = State::S0;
return State::S0;
}
SigSpec sig_a = cell->getPort(ID::A);
SigSpec sig_b = cell->getPort(ID::B);
State init_y = State::S1;
for (int i = 0; init_y != State::S0 && i < GetSize(sig_a); i++) {
State init_ai = initconst(bit_in_port(cell, ID::A, ID::A_SIGNED, i));
if (init_ai == State::Sx) {
init_y = State::Sx;
continue;
}
State init_bi = initconst(bit_in_port(cell, ID::B, ID::B_SIGNED, i));
if (init_bi == State::Sx)
init_y = State::Sx;
else if (init_ai != init_bi)
init_y = State::S0;
}
initconst_bits[bit] = init_y;
return init_y;
}
if (cell->type == ID($initstate))
{
initconst_bits[bit] = State::S1;
return State::S1;
}
log_assert(false);
}
return State::Sx;
}
RTLIL::Const initconst(SigSpec sig)
{
std::vector<RTLIL::State> bits;
for (auto bit : sig)
bits.push_back(initconst(bit));
return bits;
}
// Is the initial value of this signal used?
//
// An initial value of a signal is considered as used if it a) aliases a
// wire with a public name, an output wire or with a keep attribute b)
// combinationally drives such a wire or c) drive an input to an unknown
// cell.
//
// This recurses into driven cells for a small number of known handled
// celltypes. Results are cached and initconst is used to detect unused
// inputs for the handled celltypes.
bool is_initval_used(SigBit bit)
{
if (!bit.is_wire())
return false;
auto it = used_bits.find(bit);
if (it != used_bits.end())
return it->second;
used_bits[bit] = true; // Temporarily set to guard against logic loops
pool<ModWalker::PortBit> portbits;
modwalker.get_consumers(portbits, {bit});
for (auto portbit : portbits) {
RTLIL::Cell *cell = portbit.cell;
if (!cell->type.in(ID($mux), ID($and), ID($or), ID($mem_v2)) && !RTLIL::builtin_ff_cell_types().count(cell->type)) {
return true;
}
}
for (auto portbit : portbits)
{
RTLIL::Cell *cell = portbit.cell;
if (RTLIL::builtin_ff_cell_types().count(cell->type))
{
FfData ff(&initvals, cell);
if (ff.has_aload || ff.has_sr || ff.has_arst || ff.has_gclk || !ff.has_clk)
return true;
if (ff.has_ce && initconst(ff.sig_ce.as_bit()) == (ff.pol_ce ? State::S0 : State::S1))
continue;
if (ff.has_srst && initconst(ff.sig_srst.as_bit()) == (ff.pol_srst ? State::S1 : State::S0))
continue;
return true;
}
else if (cell->type == ID($mux))
{
State init_s = initconst(cell->getPort(ID::S).as_bit());
if (init_s == State::S0 && portbit.port == ID::B)
continue;
if (init_s == State::S1 && portbit.port == ID::A)
continue;
auto sig_y = cell->getPort(ID::Y);
if (is_initval_used(sig_y[portbit.offset]))
return true;
}
else if (cell->type.in(ID($and), ID($or)))
{
auto sig_a = cell->getPort(ID::A);
auto sig_b = cell->getPort(ID::B);
auto sig_y = cell->getPort(ID::Y);
if (GetSize(sig_y) != GetSize(sig_a) || GetSize(sig_y) != GetSize(sig_b))
return true; // TODO handle more of this
State absorbing = cell->type == ID($and) ? State::S0 : State::S1;
if (portbit.port == ID::A && initconst(sig_b[portbit.offset]) == absorbing)
continue;
if (portbit.port == ID::B && initconst(sig_a[portbit.offset]) == absorbing)
continue;
if (is_initval_used(sig_y[portbit.offset]))
return true;
}
else if (cell->type == ID($mem_v2))
{
// TODO Use mem.h instead to uniformily cover all cases, most
// likely requires processing all memories when initializing
// the worker
if (!portbit.port.in(ID::WR_DATA, ID::WR_ADDR, ID::RD_ADDR))
return true;
if (portbit.port == ID::WR_DATA)
{
if (initconst(cell->getPort(ID::WR_EN)[portbit.offset]) == State::S0)
continue;
}
else if (portbit.port == ID::WR_ADDR)
{
int port = portbit.offset / cell->getParam(ID::ABITS).as_int();
auto sig_en = cell->getPort(ID::WR_EN);
int width = cell->getParam(ID::WIDTH).as_int();
for (int i = port * width; i < (port + 1) * width; i++)
if (initconst(sig_en[i]) != State::S0)
return true;
continue;
}
else if (portbit.port == ID::RD_ADDR)
{
int port = portbit.offset / cell->getParam(ID::ABITS).as_int();
auto sig_en = cell->getPort(ID::RD_EN);
if (initconst(sig_en[port]) != State::S0)
return true;
continue;
}
else
return true;
}
else
log_assert(false);
}
used_bits[bit] = false;
return false;
}
};
struct ReplacedPort {
IdString name;
int offset;
bool clk_pol;
};
struct HierarchyWorker
{
Design *design;
pool<Module *> pending;
dict<Module *, std::vector<ReplacedPort>> replaced_clk_inputs;
HierarchyWorker(Design *design) :
design(design)
{
for (auto module : design->modules())
pending.insert(module);
}
void propagate();
const std::vector<ReplacedPort> &find_replaced_clk_inputs(IdString cell_type);
};
// Propagates replaced clock signals
struct PropagateWorker
{
HierarchyWorker &hierarchy;
Module *module;
SigMap sigmap;
dict<SigBit, bool> replaced_clk_bits;
dict<SigBit, SigBit> not_drivers;
std::vector<ReplacedPort> replaced_clk_inputs;
std::vector<std::pair<SigBit, bool>> pending;
PropagateWorker(Module *module, HierarchyWorker &hierarchy) :
hierarchy(hierarchy), module(module), sigmap(module)
{
hierarchy.pending.erase(module);
for (auto wire : module->wires())
if (wire->has_attribute(ID::replaced_by_gclk))
replace_clk_bit(SigBit(wire), wire->attributes[ID::replaced_by_gclk].at(0) == State::S1, false);
for (auto cell : module->cells()) {
if (cell->type.in(ID($not), ID($_NOT_))) {
auto sig_a = cell->getPort(ID::A);
auto &sig_y = cell->getPort(ID::Y);
sig_a.extend_u0(GetSize(sig_y), cell->hasParam(ID::A_SIGNED) && cell->parameters.at(ID::A_SIGNED).as_bool());
for (int i = 0; i < GetSize(sig_a); i++)
if (sig_a[i].is_wire())
not_drivers.emplace(sigmap(sig_y[i]), sigmap(sig_a[i]));
} else {
for (auto &port_bit : hierarchy.find_replaced_clk_inputs(cell->type))
replace_clk_bit(cell->getPort(port_bit.name)[port_bit.offset], port_bit.clk_pol, true);
}
}
while (!pending.empty()) {
auto current = pending.back();
pending.pop_back();
auto it = not_drivers.find(current.first);
if (it == not_drivers.end())
continue;
replace_clk_bit(it->second, !current.second, true);
}
for (auto cell : module->cells()) {
if (cell->type.in(ID($not), ID($_NOT_)))
continue;
for (auto &conn : cell->connections()) {
if (!cell->output(conn.first))
continue;
for (SigBit bit : conn.second) {
sigmap.apply(bit);
if (replaced_clk_bits.count(bit))
log_error("derived signal %s driven by %s (%s) from module %s is used as clock, derived clocks are only supported with clk2fflogic.\n",
log_signal(bit), log_id(cell->name), log_id(cell->type), log_id(module));
}
}
}
for (auto port : module->ports) {
auto wire = module->wire(port);
if (!wire->port_input)
continue;
for (int i = 0; i < GetSize(wire); i++) {
SigBit bit(wire, i);
sigmap.apply(bit);
auto it = replaced_clk_bits.find(bit);
if (it == replaced_clk_bits.end())
continue;
replaced_clk_inputs.emplace_back(ReplacedPort {port, i, it->second});
if (it->second) {
bit = module->Not(NEW_ID, bit);
}
}
}
}
void replace_clk_bit(SigBit bit, bool polarity, bool add_attribute)
{
sigmap.apply(bit);
if (!bit.is_wire())
log_error("XXX todo\n");
auto it = replaced_clk_bits.find(bit);
if (it != replaced_clk_bits.end()) {
if (it->second != polarity)
log_error("signal %s from module %s is used as clock with different polarities, run clk2fflogic instead.\n",
log_signal(bit), log_id(module));
return;
}
replaced_clk_bits.emplace(bit, polarity);
if (add_attribute) {
Wire *clk_wire = bit.wire;
if (bit.offset != 0 || GetSize(bit.wire) != 1) {
clk_wire = module->addWire(NEW_ID);
module->connect(RTLIL::SigBit(clk_wire), bit);
}
clk_wire->attributes[ID::replaced_by_gclk] = polarity ? State::S1 : State::S0;
clk_wire->set_bool_attribute(ID::keep);
}
pending.emplace_back(bit, polarity);
}
};
const std::vector<ReplacedPort> &HierarchyWorker::find_replaced_clk_inputs(IdString cell_type)
{
static const std::vector<ReplacedPort> empty;
if (!cell_type.isPublic())
return empty;
Module *module = design->module(cell_type);
if (module == nullptr)
return empty;
auto it = replaced_clk_inputs.find(module);
if (it != replaced_clk_inputs.end())
return it->second;
if (pending.count(module)) {
PropagateWorker worker(module, *this);
return replaced_clk_inputs.emplace(module, std::move(worker.replaced_clk_inputs)).first->second;
}
return empty;
}
void HierarchyWorker::propagate()
{
while (!pending.empty())
PropagateWorker worker(pending.pop(), *this);
}
struct FormalFfPass : public Pass {
FormalFfPass() : Pass("formalff", "prepare FFs for formal") { }
void help() override
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" formalff [options] [selection]\n");
log("\n");
log("This pass transforms clocked flip-flops to prepare a design for formal\n");
log("verification. If a design contains latches and/or multiple different clocks run\n");
log("the async2sync or clk2fflogic passes before using this pass.\n");
log("\n");
log(" -clk2ff\n");
log(" Replace all clocked flip-flops with $ff cells that use the implicit\n");
log(" global clock. This assumes, without checking, that the design uses a\n");
log(" single global clock. If that is not the case, the clk2fflogic pass\n");
log(" should be used instead.\n");
log("\n");
log(" -ff2anyinit\n");
log(" Replace uninitialized bits of $ff cells with $anyinit cells. An\n");
log(" $anyinit cell behaves exactly like an $ff cell with an undefined\n");
log(" initialization value. The difference is that $anyinit inhibits\n");
log(" don't-care optimizations and is used to track solver-provided values\n");
log(" in witness traces.\n");
log("\n");
log(" If combined with -clk2ff this also affects newly created $ff cells.\n");
log("\n");
log(" -anyinit2ff\n");
log(" Replaces $anyinit cells with uninitialized $ff cells. This performs the\n");
log(" reverse of -ff2anyinit and can be used, before running a backend pass\n");
log(" (or similar) that is not yet aware of $anyinit cells.\n");
log("\n");
log(" Note that after running -anyinit2ff, in general, performing don't-care\n");
log(" optimizations is not sound in a formal verification setting.\n");
log("\n");
log(" -fine\n");
log(" Emit fine-grained $_FF_ cells instead of coarse-grained $ff cells for\n");
log(" -anyinit2ff. Cannot be combined with -clk2ff or -ff2anyinit.\n");
log("\n");
log(" -setundef\n");
log(" Find FFs with undefined initialization values for which changing the\n");
log(" initialization does not change the observable behavior and initialize\n");
log(" them. For -ff2anyinit, this reduces the number of generated $anyinit\n");
log(" cells that drive wires with private names.\n");
log("\n");
log(" -hierarchy\n");
log(" Propagates the 'replaced_by_gclk' attribute set by clk2ff upwards\n");
log(" through the design hierarchy towards the toplevel inputs. This option\n");
log(" works on the whole design and ignores the selection.\n");
log("\n");
log(" -assume\n");
log(" Add assumptions that constrain wires with the 'replaced_by_gclk'\n");
log(" attribute to the value they would have before an active clock edge.\n");
log("\n");
// TODO: An option to check whether all FFs use the same clock before changing it to the global clock
}
void execute(std::vector<std::string> args, RTLIL::Design *design) override
{
bool flag_clk2ff = false;
bool flag_ff2anyinit = false;
bool flag_anyinit2ff = false;
bool flag_fine = false;
bool flag_setundef = false;
bool flag_hierarchy = false;
bool flag_assume = false;
log_header(design, "Executing FORMALFF pass.\n");
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++)
{
if (args[argidx] == "-clk2ff") {
flag_clk2ff = true;
continue;
}
if (args[argidx] == "-ff2anyinit") {
flag_ff2anyinit = true;
continue;
}
if (args[argidx] == "-anyinit2ff") {
flag_anyinit2ff = true;
continue;
}
if (args[argidx] == "-fine") {
flag_fine = true;
continue;
}
if (args[argidx] == "-setundef") {
flag_setundef = true;
continue;
}
if (args[argidx] == "-hierarchy") {
flag_hierarchy = true;
continue;
}
if (args[argidx] == "-assume") {
flag_assume = true;
continue;
}
break;
}
extra_args(args, argidx, design);
if (!(flag_clk2ff || flag_ff2anyinit || flag_anyinit2ff || flag_hierarchy || flag_assume))
log_cmd_error("One of the options -clk2ff, -ff2anyinit, -anyinit2ff, -hierarchy or -assume must be specified.\n");
if (flag_ff2anyinit && flag_anyinit2ff)
log_cmd_error("The options -ff2anyinit and -anyinit2ff are exclusive.\n");
if (flag_fine && !flag_anyinit2ff)
log_cmd_error("The option -fine requries the -anyinit2ff option.\n");
if (flag_fine && flag_clk2ff)
log_cmd_error("The options -fine and -clk2ff are exclusive.\n");
for (auto module : design->selected_modules())
{
if (flag_setundef)
{
InitValWorker worker(module);
for (auto cell : module->selected_cells())
{
if (RTLIL::builtin_ff_cell_types().count(cell->type))
{
FfData ff(&worker.initvals, cell);
if (ff.has_aload || ff.has_sr || ff.has_arst || ff.val_init.is_fully_def())
continue;
if (ff.has_ce && // CE can make the initval stick around
worker.initconst(ff.sig_ce.as_bit()) != (ff.pol_ce ? State::S1 : State::S0) && // unless it's known active
(!ff.has_srst || ff.ce_over_srst ||
worker.initconst(ff.sig_srst.as_bit()) != (ff.pol_srst ? State::S1 : State::S0))) // or a srst with priority is known active
continue;
auto before = ff.val_init;
for (int i = 0; i < ff.width; i++)
if (ff.val_init[i] == State::Sx && !worker.is_initval_used(ff.sig_q[i]))
ff.val_init.bits()[i] = State::S0;
if (ff.val_init != before) {
log("Setting unused undefined initial value of %s.%s (%s) from %s to %s\n",
log_id(module), log_id(cell), log_id(cell->type),
log_const(before), log_const(ff.val_init));
worker.initvals.set_init(ff.sig_q, ff.val_init);
}
}
}
}
SigMap sigmap(module);
FfInitVals initvals(&sigmap, module);
for (auto cell : module->selected_cells())
{
if (flag_anyinit2ff && cell->type == ID($anyinit))
{
FfData ff(&initvals, cell);
ff.remove();
ff.is_anyinit = false;
ff.is_fine = flag_fine;
if (flag_fine)
for (int i = 0; i < ff.width; i++)
ff.slice({i}).emit();
else
ff.emit();
continue;
}
if (!RTLIL::builtin_ff_cell_types().count(cell->type))
continue;
FfData ff(&initvals, cell);
bool emit = false;
if (flag_clk2ff && ff.has_clk) {
if (ff.sig_clk.is_fully_const())
log_error("Const CLK on %s (%s) from module %s, run async2sync first.\n",
log_id(cell), log_id(cell->type), log_id(module));
if (ff.has_aload || ff.has_arst || ff.has_sr)
log_error("Async inputs on %s (%s) from module %s, run async2sync first.\n",
log_id(cell), log_id(cell->type), log_id(module));
auto clk_wire = ff.sig_clk.is_wire() ? ff.sig_clk.as_wire() : nullptr;
if (clk_wire == nullptr) {
clk_wire = module->addWire(NEW_ID);
module->connect(RTLIL::SigBit(clk_wire), ff.sig_clk);
}
auto clk_polarity = ff.pol_clk ? State::S1 : State::S0;
std::string attribute = clk_wire->get_string_attribute(ID::replaced_by_gclk);
auto &attr = clk_wire->attributes[ID::replaced_by_gclk];
if (!attr.empty() && attr != clk_polarity)
log_error("CLK %s on %s (%s) from module %s also used with opposite polarity, run clk2fflogic instead.\n",
log_id(clk_wire), log_id(cell), log_id(cell->type), log_id(module));
attr = clk_polarity;
clk_wire->set_bool_attribute(ID::keep);
// TODO propagate the replaced_by_gclk attribute upwards throughout the hierarchy
ff.unmap_ce_srst();
ff.has_clk = false;
ff.has_gclk = true;
emit = true;
}
if (!ff.has_gclk) {
continue;
}
if (flag_ff2anyinit && !ff.val_init.is_fully_def())
{
ff.remove();
emit = false;
int cursor = 0;
while (cursor < ff.val_init.size())
{
bool is_anyinit = ff.val_init[cursor] == State::Sx;
std::vector<int> bits;
bits.push_back(cursor++);
while (cursor < ff.val_init.size() && (ff.val_init[cursor] == State::Sx) == is_anyinit)
bits.push_back(cursor++);
if ((int)bits.size() == ff.val_init.size()) {
// This check is only to make the private names more helpful for debugging
ff.is_anyinit = true;
ff.is_fine = false;
emit = true;
break;
}
auto slice = ff.slice(bits);
slice.is_anyinit = is_anyinit;
slice.is_fine = false;
slice.emit();
}
}
if (emit)
ff.emit();
}
}
if (flag_hierarchy) {
HierarchyWorker worker(design);
worker.propagate();
}
if (flag_assume) {
for (auto module : design->selected_modules()) {
std::vector<pair<SigBit, bool>> found;
for (auto wire : module->wires()) {
if (!wire->has_attribute(ID::replaced_by_gclk))
continue;
bool clk_pol = wire->attributes[ID::replaced_by_gclk].at(0) == State::S1;
found.emplace_back(SigSpec(wire), clk_pol);
}
for (auto pair : found) {
SigBit clk = pair.first;
if (pair.second)
clk = module->Not(NEW_ID, clk);
module->addAssume(NEW_ID, clk, State::S1);
}
}
}
}
} FormalFfPass;
PRIVATE_NAMESPACE_END