yosys/frontends/verific/verificsva.cc

626 lines
18 KiB
C++
Raw Normal View History

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/yosys.h"
#include "frontends/verific/verific.h"
USING_YOSYS_NAMESPACE
#ifdef VERIFIC_NAMESPACE
using namespace Verific;
#endif
YOSYS_NAMESPACE_BEGIN
pool<int> verific_sva_prims = {
// Copy&paste from Verific 3.16_484_32_170630 Netlist.h
PRIM_SVA_IMMEDIATE_ASSERT, PRIM_SVA_ASSERT, PRIM_SVA_COVER, PRIM_SVA_ASSUME,
PRIM_SVA_EXPECT, PRIM_SVA_POSEDGE, PRIM_SVA_NOT, PRIM_SVA_FIRST_MATCH,
PRIM_SVA_ENDED, PRIM_SVA_MATCHED, PRIM_SVA_CONSECUTIVE_REPEAT,
PRIM_SVA_NON_CONSECUTIVE_REPEAT, PRIM_SVA_GOTO_REPEAT,
PRIM_SVA_MATCH_ITEM_TRIGGER, PRIM_SVA_AND, PRIM_SVA_OR, PRIM_SVA_SEQ_AND,
PRIM_SVA_SEQ_OR, PRIM_SVA_EVENT_OR, PRIM_SVA_OVERLAPPED_IMPLICATION,
PRIM_SVA_NON_OVERLAPPED_IMPLICATION, PRIM_SVA_OVERLAPPED_FOLLOWED_BY,
PRIM_SVA_NON_OVERLAPPED_FOLLOWED_BY, PRIM_SVA_INTERSECT, PRIM_SVA_THROUGHOUT,
PRIM_SVA_WITHIN, PRIM_SVA_AT, PRIM_SVA_DISABLE_IFF, PRIM_SVA_SAMPLED,
PRIM_SVA_ROSE, PRIM_SVA_FELL, PRIM_SVA_STABLE, PRIM_SVA_PAST,
PRIM_SVA_MATCH_ITEM_ASSIGN, PRIM_SVA_SEQ_CONCAT, PRIM_SVA_IF,
PRIM_SVA_RESTRICT, PRIM_SVA_TRIGGERED, PRIM_SVA_STRONG, PRIM_SVA_WEAK,
PRIM_SVA_NEXTTIME, PRIM_SVA_S_NEXTTIME, PRIM_SVA_ALWAYS, PRIM_SVA_S_ALWAYS,
PRIM_SVA_S_EVENTUALLY, PRIM_SVA_EVENTUALLY, PRIM_SVA_UNTIL, PRIM_SVA_S_UNTIL,
PRIM_SVA_UNTIL_WITH, PRIM_SVA_S_UNTIL_WITH, PRIM_SVA_IMPLIES, PRIM_SVA_IFF,
PRIM_SVA_ACCEPT_ON, PRIM_SVA_REJECT_ON, PRIM_SVA_SYNC_ACCEPT_ON,
PRIM_SVA_SYNC_REJECT_ON, PRIM_SVA_GLOBAL_CLOCKING_DEF,
PRIM_SVA_GLOBAL_CLOCKING_REF, PRIM_SVA_IMMEDIATE_ASSUME,
PRIM_SVA_IMMEDIATE_COVER, OPER_SVA_SAMPLED, OPER_SVA_STABLE
};
struct VerificSvaImporter
{
VerificImporter *importer = nullptr;
Module *module = nullptr;
Netlist *netlist = nullptr;
Instance *root = nullptr;
SigBit clock = State::Sx;
bool clock_posedge = false;
SigBit disable_iff = State::S0;
bool mode_assert = false;
bool mode_assume = false;
bool mode_cover = false;
bool eventually = false;
bool did_something = false;
Instance *net_to_ast_driver(Net *n)
{
if (n == nullptr)
return nullptr;
if (n->IsMultipleDriven())
return nullptr;
Instance *inst = n->Driver();
if (inst == nullptr)
return nullptr;
if (!verific_sva_prims.count(inst->Type()))
return nullptr;
if (inst->Type() == PRIM_SVA_ROSE || inst->Type() == PRIM_SVA_FELL ||
inst->Type() == PRIM_SVA_STABLE || inst->Type() == OPER_SVA_STABLE || inst->Type() == PRIM_SVA_PAST)
return nullptr;
return inst;
}
Instance *get_ast_input(Instance *inst) { return net_to_ast_driver(inst->GetInput()); }
Instance *get_ast_input1(Instance *inst) { return net_to_ast_driver(inst->GetInput1()); }
Instance *get_ast_input2(Instance *inst) { return net_to_ast_driver(inst->GetInput2()); }
Instance *get_ast_input3(Instance *inst) { return net_to_ast_driver(inst->GetInput3()); }
Instance *get_ast_control(Instance *inst) { return net_to_ast_driver(inst->GetControl()); }
// ----------------------------------------------------------
// SVA AST Types
struct svatype_t
{
bool flag_linear = true;
};
std::map<Instance*, svatype_t> svatype_cache;
void svatype_visit_child(svatype_t &entry, Instance *inst)
{
if (inst == nullptr)
return;
const svatype_t &child_entry = svatype(inst);
entry.flag_linear &= child_entry.flag_linear;
}
const svatype_t &svatype(Instance *inst)
{
if (svatype_cache.count(inst) != 0)
return svatype_cache.at(inst);
svatype_t &entry = svatype_cache[inst];
if (inst == nullptr)
return entry;
if (inst->Type() == PRIM_SVA_SEQ_CONCAT || inst->Type() == PRIM_SVA_CONSECUTIVE_REPEAT)
{
const char *sva_low_s = inst->GetAttValue("sva:low");
const char *sva_high_s = inst->GetAttValue("sva:high");
int sva_low = atoi(sva_low_s);
int sva_high = atoi(sva_high_s);
bool sva_inf = !strcmp(sva_high_s, "$");
if (sva_inf || sva_low != sva_high)
entry.flag_linear = false;
}
svatype_visit_child(entry, get_ast_input(inst));
svatype_visit_child(entry, get_ast_input1(inst));
svatype_visit_child(entry, get_ast_input2(inst));
svatype_visit_child(entry, get_ast_input3(inst));
svatype_visit_child(entry, get_ast_control(inst));
return entry;
}
// ----------------------------------------------------------
// SVA Preprocessor
Net *rewrite_input(Instance *inst) { return rewrite(get_ast_input(inst), inst->GetInput()); }
Net *rewrite_input1(Instance *inst) { return rewrite(get_ast_input1(inst), inst->GetInput1()); }
Net *rewrite_input2(Instance *inst) { return rewrite(get_ast_input2(inst), inst->GetInput2()); }
Net *rewrite_input3(Instance *inst) { return rewrite(get_ast_input3(inst), inst->GetInput3()); }
Net *rewrite_control(Instance *inst) { return rewrite(get_ast_control(inst), inst->GetControl()); }
Net *rewrite(Instance *inst, Net *default_net = nullptr)
{
if (inst == nullptr)
return default_net;
if (inst->Type() == PRIM_SVA_ASSERT || inst->Type() == PRIM_SVA_COVER || inst->Type() == PRIM_SVA_ASSUME ||
inst->Type() == PRIM_SVA_IMMEDIATE_ASSERT || inst->Type() == PRIM_SVA_IMMEDIATE_COVER || inst->Type() == PRIM_SVA_IMMEDIATE_ASSUME) {
Net *new_net = rewrite(get_ast_input(inst));
if (new_net) {
inst->Disconnect(inst->View()->GetInput());
inst->Connect(inst->View()->GetInput(), new_net);
}
return default_net;
}
if (inst->Type() == PRIM_SVA_AT || inst->Type() == PRIM_SVA_DISABLE_IFF) {
Net *new_net = rewrite(get_ast_input2(inst));
if (new_net) {
inst->Disconnect(inst->View()->GetInput2());
inst->Connect(inst->View()->GetInput2(), new_net);
}
return default_net;
}
if (inst->Type() == PRIM_SVA_NON_OVERLAPPED_IMPLICATION)
{
if (mode_cover) {
did_something = true;
Net *new_in1 = rewrite_input1(inst);
Net *new_in2 = rewrite_input2(inst);
return netlist->SvaBinary(PRIM_SVA_SEQ_CONCAT, new_in1, new_in2, inst->Linefile());
}
return default_net;
}
if (inst->Type() == PRIM_SVA_NOT)
{
if (mode_assert || mode_assume) {
did_something = true;
Net *new_in = rewrite_input(inst);
Net *net_zero = netlist->Gnd(inst->Linefile());
return netlist->SvaBinary(PRIM_SVA_OVERLAPPED_IMPLICATION, new_in, net_zero, inst->Linefile());
}
return default_net;
}
return default_net;
}
void rewrite()
{
netlist = root->Owner();
do {
did_something = false;
rewrite(root);
} while (did_something);
}
// ----------------------------------------------------------
// SVA Importer
vector<SigBit> sva_until_list_inclusive;
vector<SigBit> sva_until_list_exclusive;
vector<vector<SigBit>*> sva_sequence_alive_list;
struct sequence_t {
int length = 0;
SigBit sig_a = State::S1;
SigBit sig_en = State::S1;
};
void sequence_cond(sequence_t &seq, SigBit cond)
{
seq.sig_a = module->And(NEW_ID, seq.sig_a, cond);
}
void sequence_ff(sequence_t &seq)
{
if (disable_iff != State::S0)
seq.sig_en = module->Mux(NEW_ID, seq.sig_en, State::S0, disable_iff);
for (auto &expr : sva_until_list_exclusive)
seq.sig_a = module->LogicAnd(NEW_ID, seq.sig_a, expr);
Wire *sig_a_q = module->addWire(NEW_ID);
sig_a_q->attributes["\\init"] = Const(0, 1);
Wire *sig_en_q = module->addWire(NEW_ID);
sig_en_q->attributes["\\init"] = Const(0, 1);
for (auto list : sva_sequence_alive_list)
list->push_back(module->LogicAnd(NEW_ID, seq.sig_a, seq.sig_en));
module->addDff(NEW_ID, clock, seq.sig_a, sig_a_q, clock_posedge);
module->addDff(NEW_ID, clock, seq.sig_en, sig_en_q, clock_posedge);
if (seq.length >= 0)
seq.length++;
seq.sig_a = sig_a_q;
seq.sig_en = sig_en_q;
for (auto &expr : sva_until_list_inclusive)
seq.sig_a = module->LogicAnd(NEW_ID, seq.sig_a, expr);
}
void combine_seq(sequence_t &seq, const sequence_t &other_seq)
{
if (seq.length != other_seq.length)
seq.length = -1;
SigBit filtered_a = module->LogicAnd(NEW_ID, seq.sig_a, seq.sig_en);
SigBit other_filtered_a = module->LogicAnd(NEW_ID, other_seq.sig_a, other_seq.sig_en);
seq.sig_a = module->LogicOr(NEW_ID, filtered_a, other_filtered_a);
seq.sig_en = module->LogicOr(NEW_ID, seq.sig_en, other_seq.sig_en);
}
void combine_seq(sequence_t &seq, SigBit other_a, SigBit other_en)
{
SigBit filtered_a = module->LogicAnd(NEW_ID, seq.sig_a, seq.sig_en);
SigBit other_filtered_a = module->LogicAnd(NEW_ID, other_a, other_en);
seq.length = -1;
seq.sig_a = module->LogicOr(NEW_ID, filtered_a, other_filtered_a);
seq.sig_en = module->LogicOr(NEW_ID, seq.sig_en, other_en);
}
SigBit make_temporal_one_hot(SigBit enable = State::S1, SigBit *latched = nullptr)
{
Wire *state = module->addWire(NEW_ID);
state->attributes["\\init"] = State::S0;
SigBit any = module->Anyseq(NEW_ID);
if (enable != State::S1)
any = module->LogicAnd(NEW_ID, any, enable);
SigBit next_state = module->LogicOr(NEW_ID, state, any);
module->addDff(NEW_ID, clock, next_state, state, clock_posedge);
if (latched != nullptr)
*latched = state;
SigBit not_state = module->LogicNot(NEW_ID, state);
return module->LogicAnd(NEW_ID, next_state, not_state);
}
SigBit make_permanent_latch(SigBit enable, bool async = false)
{
Wire *state = module->addWire(NEW_ID);
state->attributes["\\init"] = State::S0;
SigBit next_state = module->LogicOr(NEW_ID, state, enable);
module->addDff(NEW_ID, clock, next_state, state, clock_posedge);
return async ? next_state : state;
}
void parse_sequence(sequence_t &seq, Net *n)
{
Instance *inst = net_to_ast_driver(n);
// Regular expression
if (inst == nullptr) {
sequence_cond(seq, importer->net_map_at(n));
return;
}
// SVA Primitives
if (inst->Type() == PRIM_SVA_OVERLAPPED_IMPLICATION ||
inst->Type() == PRIM_SVA_NON_OVERLAPPED_IMPLICATION)
{
Instance *consequent = get_ast_input2(inst);
bool linear_consequent = svatype(consequent).flag_linear;
parse_sequence(seq, inst->GetInput1());
seq.sig_en = module->And(NEW_ID, seq.sig_en, seq.sig_a);
if (inst->Type() == PRIM_SVA_NON_OVERLAPPED_IMPLICATION)
sequence_ff(seq);
if (!linear_consequent && mode_assume)
log_error("Non-linear consequent is currently not supported in SVA assumptions.\n");
if (linear_consequent)
{
parse_sequence(seq, inst->GetInput2());
}
else
{
SigBit activated;
seq.sig_en = make_temporal_one_hot(seq.sig_en, &activated);
SigBit pass_latch_en = module->addWire(NEW_ID);
SigBit pass_latch = make_permanent_latch(pass_latch_en, true);
vector<SigBit> alive_list;
sva_sequence_alive_list.push_back(&alive_list);
parse_sequence(seq, inst->GetInput2());
sva_sequence_alive_list.pop_back();
module->addLogicAnd(NEW_ID, seq.sig_a, seq.sig_en, pass_latch_en);
alive_list.push_back(pass_latch);
seq.length = -1;
seq.sig_a = module->ReduceOr(NEW_ID, SigSpec(alive_list));
seq.sig_en = module->ReduceOr(NEW_ID, activated);
}
return;
}
if (inst->Type() == PRIM_SVA_SEQ_CONCAT)
{
const char *sva_low_s = inst->GetAttValue("sva:low");
const char *sva_high_s = inst->GetAttValue("sva:high");
int sva_low = atoi(sva_low_s);
int sva_high = atoi(sva_high_s);
bool sva_inf = !strcmp(sva_high_s, "$");
parse_sequence(seq, inst->GetInput1());
for (int i = 0; i < sva_low; i++)
sequence_ff(seq);
if (sva_inf)
{
SigBit latched_a = module->addWire(NEW_ID);
SigBit latched_en = module->addWire(NEW_ID);
combine_seq(seq, latched_a, latched_en);
sequence_t seq_latched = seq;
sequence_ff(seq_latched);
module->connect(latched_a, seq_latched.sig_a);
module->connect(latched_en, seq_latched.sig_en);
}
else
{
for (int i = sva_low; i < sva_high; i++)
{
sequence_t last_seq = seq;
sequence_ff(seq);
combine_seq(seq, last_seq);
}
}
parse_sequence(seq, inst->GetInput2());
return;
}
if (inst->Type() == PRIM_SVA_CONSECUTIVE_REPEAT)
{
const char *sva_low_s = inst->GetAttValue("sva:low");
const char *sva_high_s = inst->GetAttValue("sva:high");
int sva_low = atoi(sva_low_s);
int sva_high = atoi(sva_high_s);
bool sva_inf = !strcmp(sva_high_s, "$");
parse_sequence(seq, inst->GetInput());
for (int i = 1; i < sva_low; i++) {
sequence_ff(seq);
parse_sequence(seq, inst->GetInput());
}
if (sva_inf)
{
SigBit latched_a = module->addWire(NEW_ID);
SigBit latched_en = module->addWire(NEW_ID);
combine_seq(seq, latched_a, latched_en);
sequence_t seq_latched = seq;
sequence_ff(seq_latched);
parse_sequence(seq_latched, inst->GetInput());
module->connect(latched_a, seq_latched.sig_a);
module->connect(latched_en, seq_latched.sig_en);
}
else
{
for (int i = sva_low; i < sva_high; i++)
{
sequence_t last_seq = seq;
sequence_ff(seq);
parse_sequence(seq, inst->GetInput());
combine_seq(seq, last_seq);
}
}
return;
}
if (inst->Type() == PRIM_SVA_THROUGHOUT || inst->Type() == PRIM_SVA_UNTIL || inst->Type() == PRIM_SVA_S_UNTIL ||
inst->Type() == PRIM_SVA_UNTIL_WITH || inst->Type() == PRIM_SVA_S_UNTIL_WITH)
{
bool flag_with = inst->Type() == PRIM_SVA_THROUGHOUT || inst->Type() == PRIM_SVA_UNTIL_WITH || inst->Type() == PRIM_SVA_S_UNTIL_WITH;
if (get_ast_input1(inst) != nullptr)
log_error("Currently only simple expression properties are supported as first operand to SVA_UNTIL.\n");
SigBit expr = importer->net_map_at(inst->GetInput1());
if (flag_with)
{
seq.sig_a = module->LogicAnd(NEW_ID, seq.sig_a, expr);
sva_until_list_inclusive.push_back(expr);
parse_sequence(seq, inst->GetInput2());
sva_until_list_inclusive.pop_back();
}
else
{
sva_until_list_exclusive.push_back(expr);
parse_sequence(seq, inst->GetInput2());
sva_until_list_exclusive.pop_back();
}
return;
}
// Handle unsupported primitives
if (!importer->mode_keep)
log_error("Verific SVA primitive %s (%s) is currently unsupported in this context.\n", inst->View()->Owner()->Name(), inst->Name());
log_warning("Verific SVA primitive %s (%s) is currently unsupported in this context.\n", inst->View()->Owner()->Name(), inst->Name());
}
void import()
{
module = importer->module;
netlist = root->Owner();
RTLIL::IdString root_name = module->uniquify(importer->mode_names || root->IsUserDeclared() ? RTLIL::escape_id(root->Name()) : NEW_ID);
// parse SVA property clock event
Instance *at_node = get_ast_input(root);
// asynchronous immediate assertion/assumption/cover
if (at_node == nullptr && (root->Type() == PRIM_SVA_IMMEDIATE_ASSERT ||
root->Type() == PRIM_SVA_IMMEDIATE_COVER || root->Type() == PRIM_SVA_IMMEDIATE_ASSUME))
{
SigSpec sig_a = importer->net_map_at(root->GetInput());
RTLIL::Cell *c = nullptr;
if (eventually) {
if (mode_assert) c = module->addLive(root_name, sig_a, State::S1);
if (mode_assume) c = module->addFair(root_name, sig_a, State::S1);
} else {
if (mode_assert) c = module->addAssert(root_name, sig_a, State::S1);
if (mode_assume) c = module->addAssume(root_name, sig_a, State::S1);
if (mode_cover) c = module->addCover(root_name, sig_a, State::S1);
}
importer->import_attributes(c->attributes, root);
return;
}
log_assert(at_node && at_node->Type() == PRIM_SVA_AT);
VerificClockEdge clock_edge(importer, get_ast_input1(at_node));
clock = clock_edge.clock_sig;
clock_posedge = clock_edge.posedge;
// parse disable_iff expression
Net *sequence_net = at_node->GetInput2();
while (1)
{
Instance *sequence_node = net_to_ast_driver(sequence_net);
if (sequence_node && sequence_node->Type() == PRIM_SVA_S_EVENTUALLY) {
eventually = true;
sequence_net = sequence_node->GetInput();
continue;
}
if (sequence_node && sequence_node->Type() == PRIM_SVA_DISABLE_IFF) {
disable_iff = importer->net_map_at(sequence_node->GetInput1());
sequence_net = sequence_node->GetInput2();
continue;
}
break;
}
// parse SVA sequence into trigger signal
sequence_t seq;
parse_sequence(seq, sequence_net);
sequence_ff(seq);
// generate assert/assume/cover cell
RTLIL::Cell *c = nullptr;
if (eventually) {
if (mode_assert) c = module->addLive(root_name, seq.sig_a, seq.sig_en);
if (mode_assume) c = module->addFair(root_name, seq.sig_a, seq.sig_en);
} else {
if (mode_assert) c = module->addAssert(root_name, seq.sig_a, seq.sig_en);
if (mode_assume) c = module->addAssume(root_name, seq.sig_a, seq.sig_en);
if (mode_cover) c = module->addCover(root_name, seq.sig_a, seq.sig_en);
}
importer->import_attributes(c->attributes, root);
}
};
void svapp_assert(Instance *inst)
{
VerificSvaImporter worker;
worker.root = inst;
worker.mode_assert = true;
worker.rewrite();
}
void svapp_assume(Instance *inst)
{
VerificSvaImporter worker;
worker.root = inst;
worker.mode_assume = true;
worker.rewrite();
}
void svapp_cover(Instance *inst)
{
VerificSvaImporter worker;
worker.root = inst;
worker.mode_cover = true;
worker.rewrite();
}
void import_sva_assert(VerificImporter *importer, Instance *inst)
{
VerificSvaImporter worker;
worker.importer = importer;
worker.root = inst;
worker.mode_assert = true;
worker.import();
}
void import_sva_assume(VerificImporter *importer, Instance *inst)
{
VerificSvaImporter worker;
worker.importer = importer;
worker.root = inst;
worker.mode_assume = true;
worker.import();
}
void import_sva_cover(VerificImporter *importer, Instance *inst)
{
VerificSvaImporter worker;
worker.importer = importer;
worker.root = inst;
worker.mode_cover = true;
worker.import();
}
YOSYS_NAMESPACE_END