yosys/passes/fsm/fsm_map.cc

376 lines
12 KiB
C++
Raw Normal View History

2013-01-05 04:13:26 -06:00
/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/log.h"
#include "kernel/register.h"
#include "kernel/sigtools.h"
#include "kernel/consteval.h"
#include "kernel/celltypes.h"
#include "fsmdata.h"
#include <string.h>
static void implement_pattern_cache(RTLIL::Module *module, std::map<RTLIL::Const, std::set<int>> &pattern_cache, std::set<int> &fullstate_cache, int num_states, RTLIL::Wire *state_onehot, RTLIL::SigSpec &ctrl_in, RTLIL::SigSpec output)
{
RTLIL::SigSpec cases_vector;
for (int in_state : fullstate_cache)
cases_vector.append(RTLIL::SigSpec(state_onehot, 1, in_state));
for (auto &it : pattern_cache)
{
RTLIL::Const pattern = it.first;
RTLIL::SigSpec eq_sig_a, eq_sig_b, or_sig;
for (size_t j = 0; j < pattern.bits.size(); j++)
if (pattern.bits[j] == RTLIL::State::S0 || pattern.bits[j] == RTLIL::State::S1) {
eq_sig_a.append(ctrl_in.extract(j, 1));
eq_sig_b.append(RTLIL::SigSpec(pattern.bits[j]));
}
eq_sig_a.optimize();
eq_sig_b.optimize();
for (int in_state : it.second)
if (fullstate_cache.count(in_state) == 0)
or_sig.append(RTLIL::SigSpec(state_onehot, 1, in_state));
or_sig.optimize();
if (or_sig.width == 0)
continue;
RTLIL::SigSpec and_sig;
if (eq_sig_a.width > 0)
{
RTLIL::Wire *eq_wire = new RTLIL::Wire;
eq_wire->name = NEW_ID;
module->add(eq_wire);
RTLIL::Cell *eq_cell = new RTLIL::Cell;
eq_cell->name = NEW_ID;
eq_cell->type = "$eq";
eq_cell->connections["\\A"] = eq_sig_a;
eq_cell->connections["\\B"] = eq_sig_b;
eq_cell->connections["\\Y"] = RTLIL::SigSpec(eq_wire);
eq_cell->parameters["\\A_SIGNED"] = RTLIL::Const(false);
eq_cell->parameters["\\B_SIGNED"] = RTLIL::Const(false);
eq_cell->parameters["\\A_WIDTH"] = RTLIL::Const(eq_sig_a.width);
eq_cell->parameters["\\B_WIDTH"] = RTLIL::Const(eq_sig_b.width);
eq_cell->parameters["\\Y_WIDTH"] = RTLIL::Const(1);
module->add(eq_cell);
and_sig.append(RTLIL::SigSpec(eq_wire));
}
if (or_sig.width < num_states-int(fullstate_cache.size()))
2013-01-05 04:13:26 -06:00
{
if (or_sig.width == 1)
{
and_sig.append(or_sig);
}
else
{
RTLIL::Wire *or_wire = new RTLIL::Wire;
or_wire->name = NEW_ID;
module->add(or_wire);
RTLIL::Cell *or_cell = new RTLIL::Cell;
or_cell->name = NEW_ID;
or_cell->type = "$reduce_or";
or_cell->connections["\\A"] = or_sig;
or_cell->connections["\\Y"] = RTLIL::SigSpec(or_wire);
or_cell->parameters["\\A_SIGNED"] = RTLIL::Const(false);
or_cell->parameters["\\A_WIDTH"] = RTLIL::Const(or_sig.width);
or_cell->parameters["\\Y_WIDTH"] = RTLIL::Const(1);
module->add(or_cell);
and_sig.append(RTLIL::SigSpec(or_wire));
}
2013-01-05 04:13:26 -06:00
}
switch (and_sig.width)
{
case 2:
{
RTLIL::Wire *and_wire = new RTLIL::Wire;
and_wire->name = NEW_ID;
module->add(and_wire);
RTLIL::Cell *and_cell = new RTLIL::Cell;
and_cell->name = NEW_ID;
and_cell->type = "$and";
and_cell->connections["\\A"] = and_sig.extract(0, 1);
and_cell->connections["\\B"] = and_sig.extract(1, 1);
and_cell->connections["\\Y"] = RTLIL::SigSpec(and_wire);
and_cell->parameters["\\A_SIGNED"] = RTLIL::Const(false);
and_cell->parameters["\\B_SIGNED"] = RTLIL::Const(false);
and_cell->parameters["\\A_WIDTH"] = RTLIL::Const(1);
and_cell->parameters["\\B_WIDTH"] = RTLIL::Const(1);
and_cell->parameters["\\Y_WIDTH"] = RTLIL::Const(1);
module->add(and_cell);
cases_vector.append(RTLIL::SigSpec(and_wire));
break;
}
case 1:
cases_vector.append(and_sig);
break;
case 0:
cases_vector.append(RTLIL::SigSpec(1, 1));
break;
default:
log_abort();
2013-01-05 04:13:26 -06:00
}
}
if (cases_vector.width > 1) {
RTLIL::Cell *or_cell = new RTLIL::Cell;
or_cell->name = NEW_ID;
or_cell->type = "$reduce_or";
or_cell->connections["\\A"] = cases_vector;
or_cell->connections["\\Y"] = output;
or_cell->parameters["\\A_SIGNED"] = RTLIL::Const(false);
or_cell->parameters["\\A_WIDTH"] = RTLIL::Const(cases_vector.width);
or_cell->parameters["\\Y_WIDTH"] = RTLIL::Const(1);
module->add(or_cell);
} else if (cases_vector.width == 1) {
module->connections.push_back(RTLIL::SigSig(output, cases_vector));
} else {
module->connections.push_back(RTLIL::SigSig(output, RTLIL::SigSpec(0, 1)));
}
}
static void map_fsm(RTLIL::Cell *fsm_cell, RTLIL::Module *module)
{
log("Mapping FSM `%s' from module `%s'.\n", fsm_cell->name.c_str(), module->name.c_str());
FsmData fsm_data;
fsm_data.copy_from_cell(fsm_cell);
RTLIL::SigSpec ctrl_in = fsm_cell->connections["\\CTRL_IN"];
RTLIL::SigSpec ctrl_out = fsm_cell->connections["\\CTRL_OUT"];
// create state register
RTLIL::Wire *state_wire = new RTLIL::Wire;
state_wire->name = fsm_cell->parameters["\\NAME"].decode_string();
2013-01-05 04:13:26 -06:00
while (module->count_id(state_wire->name) > 0)
state_wire->name += "_";
state_wire->width = fsm_data.state_bits;
module->add(state_wire);
RTLIL::Wire *next_state_wire = new RTLIL::Wire;
next_state_wire->name = NEW_ID;
next_state_wire->width = fsm_data.state_bits;
module->add(next_state_wire);
RTLIL::Cell *state_dff = new RTLIL::Cell;
state_dff->name = NEW_ID;
if (fsm_cell->connections["\\ARST"].is_fully_const()) {
state_dff->type = "$dff";
} else {
state_dff->type = "$adff";
state_dff->parameters["\\ARST_POLARITY"] = fsm_cell->parameters["\\ARST_POLARITY"];
state_dff->parameters["\\ARST_VALUE"] = fsm_data.state_table[fsm_data.reset_state];
for (auto &bit : state_dff->parameters["\\ARST_VALUE"].bits)
if (bit != RTLIL::State::S1)
bit = RTLIL::State::S0;
2013-01-05 04:13:26 -06:00
state_dff->connections["\\ARST"] = fsm_cell->connections["\\ARST"];
}
state_dff->parameters["\\WIDTH"] = RTLIL::Const(fsm_data.state_bits);
state_dff->parameters["\\CLK_POLARITY"] = fsm_cell->parameters["\\CLK_POLARITY"];
state_dff->connections["\\CLK"] = fsm_cell->connections["\\CLK"];
state_dff->connections["\\D"] = RTLIL::SigSpec(next_state_wire);
state_dff->connections["\\Q"] = RTLIL::SigSpec(state_wire);
module->add(state_dff);
// decode state register
bool encoding_is_onehot = true;
RTLIL::Wire *state_onehot = new RTLIL::Wire;
state_onehot->name = NEW_ID;
state_onehot->width = fsm_data.state_table.size();
module->add(state_onehot);
for (size_t i = 0; i < fsm_data.state_table.size(); i++)
{
RTLIL::Const state = fsm_data.state_table[i];
RTLIL::SigSpec sig_a, sig_b;
for (size_t j = 0; j < state.bits.size(); j++)
if (state.bits[j] == RTLIL::State::S0 || state.bits[j] == RTLIL::State::S1) {
sig_a.append(RTLIL::SigSpec(state_wire, 1, j));
sig_b.append(RTLIL::SigSpec(state.bits[j]));
}
sig_a.optimize();
sig_b.optimize();
if (sig_b == RTLIL::SigSpec(RTLIL::State::S1))
{
module->connections.push_back(RTLIL::SigSig(RTLIL::SigSpec(state_onehot, 1, i), sig_a));
}
else
{
encoding_is_onehot = false;
2013-01-05 04:13:26 -06:00
RTLIL::Cell *eq_cell = new RTLIL::Cell;
eq_cell->name = NEW_ID;
eq_cell->type = "$eq";
eq_cell->connections["\\A"] = sig_a;
eq_cell->connections["\\B"] = sig_b;
eq_cell->connections["\\Y"] = RTLIL::SigSpec(state_onehot, 1, i);
eq_cell->parameters["\\A_SIGNED"] = RTLIL::Const(false);
eq_cell->parameters["\\B_SIGNED"] = RTLIL::Const(false);
eq_cell->parameters["\\A_WIDTH"] = RTLIL::Const(sig_a.width);
eq_cell->parameters["\\B_WIDTH"] = RTLIL::Const(sig_b.width);
eq_cell->parameters["\\Y_WIDTH"] = RTLIL::Const(1);
module->add(eq_cell);
}
}
// generate next_state signal
RTLIL::Wire *next_state_onehot = new RTLIL::Wire;
next_state_onehot->name = NEW_ID;
next_state_onehot->width = fsm_data.state_table.size();
module->add(next_state_onehot);
for (size_t i = 0; i < fsm_data.state_table.size(); i++)
{
std::map<RTLIL::Const, std::set<int>> pattern_cache;
std::set<int> fullstate_cache;
for (size_t j = 0; j < fsm_data.state_table.size(); j++)
fullstate_cache.insert(j);
for (auto &tr : fsm_data.transition_table) {
if (tr.state_out == int(i))
pattern_cache[tr.ctrl_in].insert(tr.state_in);
else
fullstate_cache.erase(tr.state_in);
}
implement_pattern_cache(module, pattern_cache, fullstate_cache, fsm_data.state_table.size(), state_onehot, ctrl_in, RTLIL::SigSpec(next_state_onehot, 1, i));
}
if (encoding_is_onehot)
{
RTLIL::SigSpec next_state_sig(RTLIL::State::Sm, next_state_wire->width);
2013-01-05 04:13:26 -06:00
for (size_t i = 0; i < fsm_data.state_table.size(); i++) {
RTLIL::Const state = fsm_data.state_table[i];
int bit_idx = -1;
for (size_t j = 0; j < state.bits.size(); j++)
if (state.bits[j] == RTLIL::State::S1)
bit_idx = j;
if (bit_idx >= 0)
next_state_sig.replace(bit_idx, RTLIL::SigSpec(next_state_onehot, 1, i));
2013-01-05 04:13:26 -06:00
}
log_assert(!next_state_sig.has_marked_bits());
module->connections.push_back(RTLIL::SigSig(next_state_wire, next_state_sig));
2013-01-05 04:13:26 -06:00
}
else
{
RTLIL::SigSpec sig_a, sig_b, sig_s;
int reset_state = fsm_data.reset_state;
if (reset_state < 0)
reset_state = 0;
for (size_t i = 0; i < fsm_data.state_table.size(); i++) {
RTLIL::Const state = fsm_data.state_table[i];
if (int(i) == fsm_data.reset_state) {
sig_a = RTLIL::SigSpec(state);
} else {
sig_b.append(RTLIL::SigSpec(state));
sig_s.append(RTLIL::SigSpec(next_state_onehot, 1, i));
}
}
RTLIL::Cell *mux_cell = new RTLIL::Cell;
mux_cell->name = NEW_ID;
mux_cell->type = "$safe_pmux";
mux_cell->connections["\\A"] = sig_a;
mux_cell->connections["\\B"] = sig_b;
mux_cell->connections["\\S"] = sig_s;
mux_cell->connections["\\Y"] = RTLIL::SigSpec(next_state_wire);
mux_cell->parameters["\\WIDTH"] = RTLIL::Const(sig_a.width);
mux_cell->parameters["\\S_WIDTH"] = RTLIL::Const(sig_s.width);
module->add(mux_cell);
}
// Generate ctrl_out signal
RTLIL::Wire *ctrl_out_wire = new RTLIL::Wire;
ctrl_out_wire->name = NEW_ID;
ctrl_out_wire->width = fsm_data.num_outputs;
module->add(ctrl_out_wire);
for (int i = 0; i < fsm_data.num_outputs; i++)
{
std::map<RTLIL::Const, std::set<int>> pattern_cache;
std::set<int> fullstate_cache;
for (size_t j = 0; j < fsm_data.state_table.size(); j++)
fullstate_cache.insert(j);
for (auto &tr : fsm_data.transition_table) {
if (tr.ctrl_out.bits[i] == RTLIL::State::S1)
pattern_cache[tr.ctrl_in].insert(tr.state_in);
else
fullstate_cache.erase(tr.state_in);
}
implement_pattern_cache(module, pattern_cache, fullstate_cache, fsm_data.state_table.size(), state_onehot, ctrl_in, ctrl_out.extract(i, 1));
}
// Remove FSM cell
module->cells.erase(fsm_cell->name);
delete fsm_cell;
}
struct FsmMapPass : public Pass {
2013-03-01 05:35:12 -06:00
FsmMapPass() : Pass("fsm_map", "mapping FSMs to basic logic") { }
virtual void help()
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" fsm_map [selection]\n");
log("\n");
log("This pass translates FSM cells to flip-flops and logic.\n");
log("\n");
}
2013-01-05 04:13:26 -06:00
virtual void execute(std::vector<std::string> args, RTLIL::Design *design)
{
2013-03-01 05:35:12 -06:00
log_header("Executing FSM_MAP pass (mapping FSMs to basic logic).\n");
2013-01-05 04:13:26 -06:00
extra_args(args, 1, design);
for (auto &mod_it : design->modules) {
2013-03-01 05:35:12 -06:00
if (!design->selected(mod_it.second))
continue;
2013-01-05 04:13:26 -06:00
std::vector<RTLIL::Cell*> fsm_cells;
for (auto &cell_it : mod_it.second->cells)
2013-03-01 05:35:12 -06:00
if (cell_it.second->type == "$fsm" && design->selected(mod_it.second, cell_it.second))
2013-01-05 04:13:26 -06:00
fsm_cells.push_back(cell_it.second);
for (auto cell : fsm_cells)
map_fsm(cell, mod_it.second);
}
}
} FsmMapPass;