yosys/techlibs/simlib.v

893 lines
17 KiB
Coq
Raw Normal View History

2013-01-05 04:13:26 -06:00
/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* ---
*
* The Simulation Library.
*
* This verilog library contains simple simulation models for the internal
* cells ($not, ...) generated by the frontends and used in most passes.
*
* This library can be used to verify the internal netlists as generated
* by the different frontends and passes.
*
* Note that memory can only be simulated when all $memrd and $memwr cells
* have been merged to stand-alone $mem cells (this is what the "memory_collect"
* pass is doing).
*
*/
`define INPUT_A \
input [A_WIDTH-1:0] A; \
generate if (A_SIGNED) begin:A_BUF wire signed [A_WIDTH-1:0] val = A; end else begin:A_BUF wire [A_WIDTH-1:0] val = A; end endgenerate
`define INPUT_B \
input [B_WIDTH-1:0] B; \
generate if (B_SIGNED) begin:B_BUF wire signed [B_WIDTH-1:0] val = B; end else begin:B_BUF wire [B_WIDTH-1:0] val = B; end endgenerate
// --------------------------------------------------------
module \$not (A, Y);
parameter A_SIGNED = 0;
parameter A_WIDTH = 0;
parameter Y_WIDTH = 0;
`INPUT_A
output [Y_WIDTH-1:0] Y;
assign Y = ~A_BUF.val;
endmodule
// --------------------------------------------------------
module \$pos (A, Y);
parameter A_SIGNED = 0;
parameter A_WIDTH = 0;
parameter Y_WIDTH = 0;
`INPUT_A
output [Y_WIDTH-1:0] Y;
assign Y = +A_BUF.val;
endmodule
// --------------------------------------------------------
module \$neg (A, Y);
parameter A_SIGNED = 0;
parameter A_WIDTH = 0;
parameter Y_WIDTH = 0;
`INPUT_A
output [Y_WIDTH-1:0] Y;
assign Y = -A_BUF.val;
endmodule
// --------------------------------------------------------
module \$and (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
`INPUT_A
`INPUT_B
output [Y_WIDTH-1:0] Y;
assign Y = A_BUF.val & B_BUF.val;
endmodule
// --------------------------------------------------------
module \$or (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
`INPUT_A
`INPUT_B
output [Y_WIDTH-1:0] Y;
assign Y = A_BUF.val | B_BUF.val;
endmodule
// --------------------------------------------------------
module \$xor (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
`INPUT_A
`INPUT_B
output [Y_WIDTH-1:0] Y;
assign Y = A_BUF.val ^ B_BUF.val;
endmodule
// --------------------------------------------------------
module \$xnor (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
`INPUT_A
`INPUT_B
output [Y_WIDTH-1:0] Y;
assign Y = A_BUF.val ~^ B_BUF.val;
endmodule
// --------------------------------------------------------
module \$reduce_and (A, Y);
parameter A_SIGNED = 0;
parameter A_WIDTH = 0;
parameter Y_WIDTH = 0;
`INPUT_A
output Y;
assign Y = &A_BUF.val;
endmodule
// --------------------------------------------------------
module \$reduce_or (A, Y);
parameter A_SIGNED = 0;
parameter A_WIDTH = 0;
parameter Y_WIDTH = 0;
`INPUT_A
output Y;
assign Y = |A_BUF.val;
endmodule
// --------------------------------------------------------
module \$reduce_xor (A, Y);
parameter A_SIGNED = 0;
parameter A_WIDTH = 0;
parameter Y_WIDTH = 0;
`INPUT_A
output Y;
assign Y = ^A_BUF.val;
endmodule
// --------------------------------------------------------
module \$reduce_xnor (A, Y);
parameter A_SIGNED = 0;
parameter A_WIDTH = 0;
parameter Y_WIDTH = 0;
`INPUT_A
output Y;
assign Y = ~^A_BUF.val;
endmodule
// --------------------------------------------------------
module \$reduce_bool (A, Y);
parameter A_SIGNED = 0;
parameter A_WIDTH = 0;
parameter Y_WIDTH = 0;
`INPUT_A
output Y;
assign Y = A_BUF.val != 0;
endmodule
// --------------------------------------------------------
module \$shl (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
`INPUT_A
`INPUT_B
output [Y_WIDTH-1:0] Y;
assign Y = A_BUF.val << B_BUF.val;
endmodule
// --------------------------------------------------------
module \$shr (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
`INPUT_A
`INPUT_B
output [Y_WIDTH-1:0] Y;
assign Y = A_BUF.val >> B_BUF.val;
endmodule
// --------------------------------------------------------
module \$sshl (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
`INPUT_A
`INPUT_B
output [Y_WIDTH-1:0] Y;
assign Y = A_BUF.val <<< B_BUF.val;
endmodule
// --------------------------------------------------------
module \$sshr (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
`INPUT_A
`INPUT_B
output [Y_WIDTH-1:0] Y;
assign Y = A_BUF.val >>> B_BUF.val;
endmodule
// --------------------------------------------------------
module \$lt (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
`INPUT_A
`INPUT_B
output [Y_WIDTH-1:0] Y;
assign Y = A_BUF.val < B_BUF.val;
endmodule
// --------------------------------------------------------
module \$le (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
`INPUT_A
`INPUT_B
output [Y_WIDTH-1:0] Y;
assign Y = A_BUF.val <= B_BUF.val;
endmodule
// --------------------------------------------------------
module \$eq (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
`INPUT_A
`INPUT_B
output [Y_WIDTH-1:0] Y;
assign Y = A_BUF.val == B_BUF.val;
endmodule
// --------------------------------------------------------
module \$ne (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
`INPUT_A
`INPUT_B
output [Y_WIDTH-1:0] Y;
assign Y = A_BUF.val != B_BUF.val;
endmodule
// --------------------------------------------------------
module \$ge (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
`INPUT_A
`INPUT_B
output [Y_WIDTH-1:0] Y;
assign Y = A_BUF.val >= B_BUF.val;
endmodule
// --------------------------------------------------------
module \$gt (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
`INPUT_A
`INPUT_B
output [Y_WIDTH-1:0] Y;
assign Y = A_BUF.val > B_BUF.val;
endmodule
// --------------------------------------------------------
module \$add (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
`INPUT_A
`INPUT_B
output [Y_WIDTH-1:0] Y;
assign Y = A_BUF.val + B_BUF.val;
endmodule
// --------------------------------------------------------
module \$sub (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
`INPUT_A
`INPUT_B
output [Y_WIDTH-1:0] Y;
assign Y = A_BUF.val - B_BUF.val;
endmodule
// --------------------------------------------------------
module \$mul (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
`INPUT_A
`INPUT_B
output [Y_WIDTH-1:0] Y;
assign Y = A_BUF.val * B_BUF.val;
endmodule
// --------------------------------------------------------
module \$div (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
`INPUT_A
`INPUT_B
output [Y_WIDTH-1:0] Y;
assign Y = A_BUF.val / B_BUF.val;
endmodule
// --------------------------------------------------------
module \$mod (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
`INPUT_A
`INPUT_B
output [Y_WIDTH-1:0] Y;
assign Y = A_BUF.val % B_BUF.val;
endmodule
// --------------------------------------------------------
module \$pow (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
`INPUT_A
`INPUT_B
output [Y_WIDTH-1:0] Y;
assign Y = A_BUF.val ** B_BUF.val;
endmodule
// --------------------------------------------------------
module \$logic_not (A, Y);
parameter A_SIGNED = 0;
parameter A_WIDTH = 0;
parameter Y_WIDTH = 0;
`INPUT_A
output [Y_WIDTH-1:0] Y;
assign Y = !A_BUF.val;
endmodule
// --------------------------------------------------------
module \$logic_and (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
`INPUT_A
`INPUT_B
output [Y_WIDTH-1:0] Y;
assign Y = A_BUF.val && B_BUF.val;
endmodule
// --------------------------------------------------------
module \$logic_or (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
`INPUT_A
`INPUT_B
output [Y_WIDTH-1:0] Y;
assign Y = A_BUF.val || B_BUF.val;
endmodule
// --------------------------------------------------------
module \$mux (A, B, S, Y);
parameter WIDTH = 0;
input [WIDTH-1:0] A, B;
input S;
output reg [WIDTH-1:0] Y;
always @* begin
if (S)
Y = B;
else
Y = A;
end
endmodule
// --------------------------------------------------------
module \$pmux (A, B, S, Y);
parameter WIDTH = 0;
parameter S_WIDTH = 0;
input [WIDTH-1:0] A;
input [WIDTH*S_WIDTH-1:0] B;
input [S_WIDTH-1:0] S;
output reg [WIDTH-1:0] Y;
integer i;
always @* begin
Y = A;
for (i = 0; i < S_WIDTH; i = i+1)
if (S[i])
Y = B >> (WIDTH*i);
end
endmodule
// --------------------------------------------------------
module \$safe_pmux (A, B, S, Y);
parameter WIDTH = 0;
parameter S_WIDTH = 0;
input [WIDTH-1:0] A;
input [WIDTH*S_WIDTH-1:0] B;
input [S_WIDTH-1:0] S;
output reg [WIDTH-1:0] Y;
integer i, j;
always @* begin
j = 0;
for (i = 0; i < S_WIDTH; i = i+1)
if (S[i]) begin
Y = B >> (WIDTH*i);
j = j + 1;
end
if (j != 1)
Y = A;
end
endmodule
// --------------------------------------------------------
module \$dff (CLK, D, Q);
parameter WIDTH = 0;
parameter CLK_POLARITY = 1'b1;
input CLK;
input [WIDTH-1:0] D;
output reg [WIDTH-1:0] Q;
wire pos_clk = CLK == CLK_POLARITY;
always @(posedge pos_clk) begin
Q <= D;
end
endmodule
// --------------------------------------------------------
module \$adff (CLK, ARST, D, Q);
parameter WIDTH = 0;
parameter CLK_POLARITY = 1'b1;
parameter ARST_POLARITY = 1'b1;
parameter ARST_VALUE = 0;
input CLK, ARST;
input [WIDTH-1:0] D;
output reg [WIDTH-1:0] Q;
wire pos_clk = CLK == CLK_POLARITY;
wire pos_arst = ARST == ARST_POLARITY;
always @(posedge pos_clk, posedge pos_arst) begin
if (pos_arst)
Q <= ARST_VALUE;
else
Q <= D;
end
endmodule
// --------------------------------------------------------
module \$fsm (CLK, ARST, CTRL_IN, CTRL_OUT);
parameter NAME = "";
parameter CLK_POLARITY = 1'b1;
parameter ARST_POLARITY = 1'b1;
parameter CTRL_IN_WIDTH = 1;
parameter CTRL_OUT_WIDTH = 1;
parameter STATE_BITS = 1;
parameter STATE_NUM = 1;
parameter STATE_NUM_LOG2 = 1;
parameter STATE_RST = 0;
parameter STATE_TABLE = 1'b0;
parameter TRANS_NUM = 1;
parameter TRANS_TABLE = 4'b0x0x;
input CLK, ARST;
input [CTRL_IN_WIDTH-1:0] CTRL_IN;
output reg [CTRL_OUT_WIDTH-1:0] CTRL_OUT;
wire pos_clk = CLK == CLK_POLARITY;
wire pos_arst = ARST == ARST_POLARITY;
reg [STATE_BITS-1:0] state;
reg [STATE_BITS-1:0] state_tmp;
reg [STATE_BITS-1:0] next_state;
reg [STATE_BITS-1:0] tr_state_in;
reg [STATE_BITS-1:0] tr_state_out;
reg [CTRL_IN_WIDTH-1:0] tr_ctrl_in;
reg [CTRL_OUT_WIDTH-1:0] tr_ctrl_out;
integer i;
task tr_fetch;
input [31:0] tr_num;
reg [31:0] tr_pos;
reg [STATE_NUM_LOG2-1:0] state_num;
begin
tr_pos = (2*STATE_NUM_LOG2+CTRL_IN_WIDTH+CTRL_OUT_WIDTH)*tr_num;
tr_ctrl_out = TRANS_TABLE >> tr_pos;
tr_pos = tr_pos + CTRL_OUT_WIDTH;
state_num = TRANS_TABLE >> tr_pos;
tr_state_out = STATE_TABLE >> (STATE_BITS*state_num);
tr_pos = tr_pos + STATE_NUM_LOG2;
tr_ctrl_in = TRANS_TABLE >> tr_pos;
tr_pos = tr_pos + CTRL_IN_WIDTH;
state_num = TRANS_TABLE >> tr_pos;
tr_state_in = STATE_TABLE >> (STATE_BITS*state_num);
tr_pos = tr_pos + STATE_NUM_LOG2;
end
endtask
always @(posedge pos_clk, posedge pos_arst) begin
if (pos_arst)
state_tmp = STATE_TABLE[STATE_BITS*(STATE_RST+1)-1:STATE_BITS*STATE_RST];
else
state_tmp = next_state;
for (i = 0; i < STATE_BITS; i = i+1)
if (state_tmp[i] === 1'bz)
state_tmp[i] = 0;
state <= state_tmp;
end
always @(state, CTRL_IN) begin
next_state <= STATE_TABLE[STATE_BITS*(STATE_RST+1)-1:STATE_BITS*STATE_RST];
CTRL_OUT <= 'bx;
// $display("---");
// $display("Q: %b %b", state, CTRL_IN);
for (i = 0; i < TRANS_NUM; i = i+1) begin
tr_fetch(i);
// $display("T: %b %b -> %b %b [%d]", tr_state_in, tr_ctrl_in, tr_state_out, tr_ctrl_out, i);
casez ({state, CTRL_IN})
{tr_state_in, tr_ctrl_in}: begin
// $display("-> %b %b <- MATCH", state, CTRL_IN);
{next_state, CTRL_OUT} <= {tr_state_out, tr_ctrl_out};
end
endcase
end
end
endmodule
// --------------------------------------------------------
`ifndef SIMLIB_NOMEM
module \$memrd (CLK, ADDR, DATA);
parameter MEMID = "";
parameter ABITS = 8;
parameter WIDTH = 8;
parameter RD_CLK_ENABLE = 0;
parameter RD_CLK_POLARITY = 0;
input CLK;
input [ABITS-1:0] ADDR;
output [WIDTH-1:0] DATA;
initial begin
$display("ERROR: Found non-simulatable instance of $memrd!");
$finish;
end
endmodule
// --------------------------------------------------------
module \$memwr (CLK, EN, ADDR, DATA);
parameter MEMID = "";
parameter ABITS = 8;
parameter WIDTH = 8;
parameter RD_CLK_ENABLE = 0;
parameter RD_CLK_POLARITY = 0;
input CLK, EN;
input [ABITS-1:0] ADDR;
input [WIDTH-1:0] DATA;
initial begin
$display("ERROR: Found non-simulatable instance of $memwr!");
$finish;
end
endmodule
// --------------------------------------------------------
module \$mem (RD_CLK, RD_ADDR, RD_DATA, WR_CLK, WR_EN, WR_ADDR, WR_DATA);
parameter MEMID = "";
parameter SIZE = 256;
parameter ABITS = 8;
parameter WIDTH = 8;
parameter RD_PORTS = 1;
parameter RD_CLK_ENABLE = 1'b1;
parameter RD_CLK_POLARITY = 1'b1;
parameter WR_PORTS = 1;
parameter WR_CLK_ENABLE = 1'b1;
parameter WR_CLK_POLARITY = 1'b1;
input [RD_PORTS-1:0] RD_CLK;
input [RD_PORTS*ABITS-1:0] RD_ADDR;
output reg [RD_PORTS*WIDTH-1:0] RD_DATA;
input [WR_PORTS-1:0] WR_CLK, WR_EN;
input [WR_PORTS*ABITS-1:0] WR_ADDR;
input [WR_PORTS*WIDTH-1:0] WR_DATA;
reg [WIDTH-1:0] data [SIZE-1:0];
event update_async_rd;
genvar i;
generate
for (i = 0; i < RD_PORTS; i = i+1) begin:rd
if (RD_CLK_ENABLE[i] == 0) begin:rd_noclk
always @(RD_ADDR or update_async_rd)
RD_DATA[ (i+1)*WIDTH-1 : i*WIDTH ] <= data[ RD_ADDR[ (i+1)*ABITS-1 : i*ABITS ] ];
end else
if (RD_CLK_POLARITY[i] == 1) begin:rd_posclk
always @(posedge RD_CLK[i])
RD_DATA[ (i+1)*WIDTH-1 : i*WIDTH ] <= data[ RD_ADDR[ (i+1)*ABITS-1 : i*ABITS ] ];
end else begin:rd_negclk
always @(negedge RD_CLK[i])
RD_DATA[ (i+1)*WIDTH-1 : i*WIDTH ] <= data[ RD_ADDR[ (i+1)*ABITS-1 : i*ABITS ] ];
end
end
for (i = 0; i < WR_PORTS; i = i+1) begin:wr
if (WR_CLK_ENABLE[i] == 0) begin:wr_noclk
always @(WR_ADDR or WR_DATA or WR_EN) begin
if (WR_EN[i]) begin
data[ WR_ADDR[ (i+1)*ABITS-1 : i*ABITS ] ] <= WR_DATA[ (i+1)*WIDTH-1 : i*WIDTH ];
#1 -> update_async_rd;
end
end
end else
if (RD_CLK_POLARITY[i] == 1) begin:rd_posclk
always @(posedge WR_CLK[i])
if (WR_EN[i]) begin
data[ WR_ADDR[ (i+1)*ABITS-1 : i*ABITS ] ] <= WR_DATA[ (i+1)*WIDTH-1 : i*WIDTH ];
#1 -> update_async_rd;
end
end else begin:rd_negclk
always @(negedge WR_CLK[i])
if (WR_EN[i]) begin
data[ WR_ADDR[ (i+1)*ABITS-1 : i*ABITS ] ] <= WR_DATA[ (i+1)*WIDTH-1 : i*WIDTH ];
#1 -> update_async_rd;
end
end
end
endgenerate
endmodule
`endif
// --------------------------------------------------------