2019-11-30 19:51:16 -06:00
|
|
|
|
/*
|
|
|
|
|
* yosys -- Yosys Open SYnthesis Suite
|
|
|
|
|
*
|
2020-04-04 21:06:26 -05:00
|
|
|
|
* Copyright (C) 2019-2020 whitequark <whitequark@whitequark.org>
|
2019-11-30 19:51:16 -06:00
|
|
|
|
*
|
|
|
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
|
|
|
* purpose with or without fee is hereby granted.
|
|
|
|
|
*
|
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
|
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
|
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
|
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
|
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
|
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
|
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
|
|
|
*
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
// This file is included by the designs generated with `write_cxxrtl`. It is not used in Yosys itself.
|
|
|
|
|
|
|
|
|
|
#ifndef CXXRTL_H
|
|
|
|
|
#define CXXRTL_H
|
|
|
|
|
|
|
|
|
|
#include <cstddef>
|
|
|
|
|
#include <cstdint>
|
2020-04-04 17:53:46 -05:00
|
|
|
|
#include <cassert>
|
2019-11-30 19:51:16 -06:00
|
|
|
|
#include <limits>
|
|
|
|
|
#include <type_traits>
|
|
|
|
|
#include <tuple>
|
|
|
|
|
#include <vector>
|
2020-04-16 20:41:08 -05:00
|
|
|
|
#include <map>
|
2020-04-04 21:06:26 -05:00
|
|
|
|
#include <algorithm>
|
2020-04-16 20:41:08 -05:00
|
|
|
|
#include <memory>
|
2019-11-30 19:51:16 -06:00
|
|
|
|
#include <sstream>
|
|
|
|
|
|
|
|
|
|
// The cxxrtl support library implements compile time specialized arbitrary width arithmetics, as well as provides
|
|
|
|
|
// composite lvalues made out of bit slices and concatenations of lvalues. This allows the `write_cxxrtl` pass
|
|
|
|
|
// to perform a straightforward translation of RTLIL structures to readable C++, relying on the C++ compiler
|
|
|
|
|
// to unwrap the abstraction and generate efficient code.
|
|
|
|
|
namespace cxxrtl {
|
|
|
|
|
|
|
|
|
|
// All arbitrary-width values in cxxrtl are backed by arrays of unsigned integers called chunks. The chunk size
|
|
|
|
|
// is the same regardless of the value width to simplify manipulating values via FFI interfaces, e.g. driving
|
|
|
|
|
// and introspecting the simulation in Python.
|
|
|
|
|
//
|
|
|
|
|
// It is practical to use chunk sizes between 32 bits and platform register size because when arithmetics on
|
|
|
|
|
// narrower integer types is legalized by the C++ compiler, it inserts code to clear the high bits of the register.
|
|
|
|
|
// However, (a) most of our operations do not change those bits in the first place because of invariants that are
|
|
|
|
|
// invisible to the compiler, (b) we often operate on non-power-of-2 values and have to clear the high bits anyway.
|
|
|
|
|
// Therefore, using relatively wide chunks and clearing the high bits explicitly and only when we know they may be
|
|
|
|
|
// clobbered results in simpler generated code.
|
|
|
|
|
template<typename T>
|
|
|
|
|
struct chunk_traits {
|
|
|
|
|
static_assert(std::is_integral<T>::value && std::is_unsigned<T>::value,
|
|
|
|
|
"chunk type must be an unsigned integral type");
|
|
|
|
|
using type = T;
|
|
|
|
|
static constexpr size_t bits = std::numeric_limits<T>::digits;
|
|
|
|
|
static constexpr T mask = std::numeric_limits<T>::max();
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
template<class T>
|
|
|
|
|
struct expr_base;
|
|
|
|
|
|
|
|
|
|
template<size_t Bits>
|
|
|
|
|
struct value : public expr_base<value<Bits>> {
|
|
|
|
|
static constexpr size_t bits = Bits;
|
|
|
|
|
|
|
|
|
|
using chunk = chunk_traits<uint32_t>;
|
|
|
|
|
static constexpr chunk::type msb_mask = (Bits % chunk::bits == 0) ? chunk::mask
|
|
|
|
|
: chunk::mask >> (chunk::bits - (Bits % chunk::bits));
|
|
|
|
|
|
|
|
|
|
static constexpr size_t chunks = (Bits + chunk::bits - 1) / chunk::bits;
|
|
|
|
|
chunk::type data[chunks] = {};
|
|
|
|
|
|
|
|
|
|
value() = default;
|
|
|
|
|
template<typename... Init>
|
|
|
|
|
explicit constexpr value(Init ...init) : data{init...} {}
|
|
|
|
|
|
|
|
|
|
value(const value<Bits> &) = default;
|
|
|
|
|
value(value<Bits> &&) = default;
|
|
|
|
|
value<Bits> &operator=(const value<Bits> &) = default;
|
|
|
|
|
|
|
|
|
|
// A (no-op) helper that forces the cast to value<>.
|
|
|
|
|
const value<Bits> &val() const {
|
|
|
|
|
return *this;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
std::string str() const {
|
|
|
|
|
std::stringstream ss;
|
|
|
|
|
ss << *this;
|
|
|
|
|
return ss.str();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Operations with compile-time parameters.
|
|
|
|
|
//
|
|
|
|
|
// These operations are used to implement slicing, concatenation, and blitting.
|
|
|
|
|
// The trunc, zext and sext operations add or remove most significant bits (i.e. on the left);
|
|
|
|
|
// the rtrunc and rzext operations add or remove least significant bits (i.e. on the right).
|
|
|
|
|
template<size_t NewBits>
|
|
|
|
|
value<NewBits> trunc() const {
|
|
|
|
|
static_assert(NewBits <= Bits, "trunc() may not increase width");
|
|
|
|
|
value<NewBits> result;
|
|
|
|
|
for (size_t n = 0; n < result.chunks; n++)
|
|
|
|
|
result.data[n] = data[n];
|
|
|
|
|
result.data[result.chunks - 1] &= result.msb_mask;
|
|
|
|
|
return result;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t NewBits>
|
|
|
|
|
value<NewBits> zext() const {
|
|
|
|
|
static_assert(NewBits >= Bits, "zext() may not decrease width");
|
|
|
|
|
value<NewBits> result;
|
|
|
|
|
for (size_t n = 0; n < chunks; n++)
|
|
|
|
|
result.data[n] = data[n];
|
|
|
|
|
return result;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t NewBits>
|
|
|
|
|
value<NewBits> sext() const {
|
|
|
|
|
static_assert(NewBits >= Bits, "sext() may not decrease width");
|
|
|
|
|
value<NewBits> result;
|
|
|
|
|
for (size_t n = 0; n < chunks; n++)
|
|
|
|
|
result.data[n] = data[n];
|
|
|
|
|
if (is_neg()) {
|
|
|
|
|
result.data[chunks - 1] |= ~msb_mask;
|
|
|
|
|
for (size_t n = chunks; n < result.chunks; n++)
|
|
|
|
|
result.data[n] = chunk::mask;
|
|
|
|
|
result.data[result.chunks - 1] &= result.msb_mask;
|
|
|
|
|
}
|
|
|
|
|
return result;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t NewBits>
|
|
|
|
|
value<NewBits> rtrunc() const {
|
|
|
|
|
static_assert(NewBits <= Bits, "rtrunc() may not increase width");
|
|
|
|
|
value<NewBits> result;
|
|
|
|
|
constexpr size_t shift_chunks = (Bits - NewBits) / chunk::bits;
|
|
|
|
|
constexpr size_t shift_bits = (Bits - NewBits) % chunk::bits;
|
|
|
|
|
chunk::type carry = 0;
|
|
|
|
|
if (shift_chunks + result.chunks < chunks) {
|
|
|
|
|
carry = (shift_bits == 0) ? 0
|
|
|
|
|
: data[shift_chunks + result.chunks] << (chunk::bits - shift_bits);
|
|
|
|
|
}
|
|
|
|
|
for (size_t n = result.chunks; n > 0; n--) {
|
|
|
|
|
result.data[n - 1] = carry | (data[shift_chunks + n - 1] >> shift_bits);
|
|
|
|
|
carry = (shift_bits == 0) ? 0
|
|
|
|
|
: data[shift_chunks + n - 1] << (chunk::bits - shift_bits);
|
|
|
|
|
}
|
|
|
|
|
return result;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t NewBits>
|
|
|
|
|
value<NewBits> rzext() const {
|
|
|
|
|
static_assert(NewBits >= Bits, "rzext() may not decrease width");
|
|
|
|
|
value<NewBits> result;
|
|
|
|
|
constexpr size_t shift_chunks = (NewBits - Bits) / chunk::bits;
|
|
|
|
|
constexpr size_t shift_bits = (NewBits - Bits) % chunk::bits;
|
|
|
|
|
chunk::type carry = 0;
|
|
|
|
|
for (size_t n = 0; n < chunks; n++) {
|
|
|
|
|
result.data[shift_chunks + n] = (data[n] << shift_bits) | carry;
|
|
|
|
|
carry = (shift_bits == 0) ? 0
|
|
|
|
|
: data[n] >> (chunk::bits - shift_bits);
|
|
|
|
|
}
|
|
|
|
|
if (carry != 0)
|
|
|
|
|
result.data[result.chunks - 1] = carry;
|
|
|
|
|
return result;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Bit blit operation, i.e. a partial read-modify-write.
|
|
|
|
|
template<size_t Stop, size_t Start>
|
|
|
|
|
value<Bits> blit(const value<Stop - Start + 1> &source) const {
|
|
|
|
|
static_assert(Stop >= Start, "blit() may not reverse bit order");
|
|
|
|
|
constexpr chunk::type start_mask = ~(chunk::mask << (Start % chunk::bits));
|
|
|
|
|
constexpr chunk::type stop_mask = (Stop % chunk::bits + 1 == chunk::bits) ? 0
|
|
|
|
|
: (chunk::mask << (Stop % chunk::bits + 1));
|
|
|
|
|
value<Bits> masked = *this;
|
|
|
|
|
if (Start / chunk::bits == Stop / chunk::bits) {
|
|
|
|
|
masked.data[Start / chunk::bits] &= stop_mask | start_mask;
|
|
|
|
|
} else {
|
|
|
|
|
masked.data[Start / chunk::bits] &= start_mask;
|
|
|
|
|
for (size_t n = Start / chunk::bits + 1; n < Stop / chunk::bits; n++)
|
|
|
|
|
masked.data[n] = 0;
|
|
|
|
|
masked.data[Stop / chunk::bits] &= stop_mask;
|
|
|
|
|
}
|
|
|
|
|
value<Bits> shifted = source
|
|
|
|
|
.template rzext<Stop + 1>()
|
|
|
|
|
.template zext<Bits>();
|
|
|
|
|
return masked.bit_or(shifted);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Helpers for selecting extending or truncating operation depending on whether the result is wider or narrower
|
|
|
|
|
// than the operand. In C++17 these can be replaced with `if constexpr`.
|
|
|
|
|
template<size_t NewBits, typename = void>
|
|
|
|
|
struct zext_cast {
|
|
|
|
|
value<NewBits> operator()(const value<Bits> &val) {
|
|
|
|
|
return val.template zext<NewBits>();
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
template<size_t NewBits>
|
|
|
|
|
struct zext_cast<NewBits, typename std::enable_if<(NewBits < Bits)>::type> {
|
|
|
|
|
value<NewBits> operator()(const value<Bits> &val) {
|
|
|
|
|
return val.template trunc<NewBits>();
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
template<size_t NewBits, typename = void>
|
|
|
|
|
struct sext_cast {
|
|
|
|
|
value<NewBits> operator()(const value<Bits> &val) {
|
|
|
|
|
return val.template sext<NewBits>();
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
template<size_t NewBits>
|
|
|
|
|
struct sext_cast<NewBits, typename std::enable_if<(NewBits < Bits)>::type> {
|
|
|
|
|
value<NewBits> operator()(const value<Bits> &val) {
|
|
|
|
|
return val.template trunc<NewBits>();
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
template<size_t NewBits>
|
|
|
|
|
value<NewBits> zcast() const {
|
|
|
|
|
return zext_cast<NewBits>()(*this);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t NewBits>
|
|
|
|
|
value<NewBits> scast() const {
|
|
|
|
|
return sext_cast<NewBits>()(*this);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Operations with run-time parameters (offsets, amounts, etc).
|
|
|
|
|
//
|
|
|
|
|
// These operations are used for computations.
|
|
|
|
|
bool bit(size_t offset) const {
|
|
|
|
|
return data[offset / chunk::bits] & (1 << (offset % chunk::bits));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void set_bit(size_t offset, bool value = true) {
|
|
|
|
|
size_t offset_chunks = offset / chunk::bits;
|
|
|
|
|
size_t offset_bits = offset % chunk::bits;
|
|
|
|
|
data[offset_chunks] &= ~(1 << offset_bits);
|
|
|
|
|
data[offset_chunks] |= value ? 1 << offset_bits : 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool is_zero() const {
|
|
|
|
|
for (size_t n = 0; n < chunks; n++)
|
|
|
|
|
if (data[n] != 0)
|
|
|
|
|
return false;
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
explicit operator bool() const {
|
|
|
|
|
return !is_zero();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool is_neg() const {
|
|
|
|
|
return data[chunks - 1] & (1 << ((Bits - 1) % chunk::bits));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool operator ==(const value<Bits> &other) const {
|
|
|
|
|
for (size_t n = 0; n < chunks; n++)
|
|
|
|
|
if (data[n] != other.data[n])
|
|
|
|
|
return false;
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool operator !=(const value<Bits> &other) const {
|
|
|
|
|
return !(*this == other);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
value<Bits> bit_not() const {
|
|
|
|
|
value<Bits> result;
|
|
|
|
|
for (size_t n = 0; n < chunks; n++)
|
|
|
|
|
result.data[n] = ~data[n];
|
|
|
|
|
result.data[chunks - 1] &= msb_mask;
|
|
|
|
|
return result;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
value<Bits> bit_and(const value<Bits> &other) const {
|
|
|
|
|
value<Bits> result;
|
|
|
|
|
for (size_t n = 0; n < chunks; n++)
|
|
|
|
|
result.data[n] = data[n] & other.data[n];
|
|
|
|
|
return result;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
value<Bits> bit_or(const value<Bits> &other) const {
|
|
|
|
|
value<Bits> result;
|
|
|
|
|
for (size_t n = 0; n < chunks; n++)
|
|
|
|
|
result.data[n] = data[n] | other.data[n];
|
|
|
|
|
return result;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
value<Bits> bit_xor(const value<Bits> &other) const {
|
|
|
|
|
value<Bits> result;
|
|
|
|
|
for (size_t n = 0; n < chunks; n++)
|
|
|
|
|
result.data[n] = data[n] ^ other.data[n];
|
|
|
|
|
return result;
|
|
|
|
|
}
|
|
|
|
|
|
2020-04-04 21:06:26 -05:00
|
|
|
|
value<Bits> update(const value<Bits> &val, const value<Bits> &mask) const {
|
2019-12-10 14:09:24 -06:00
|
|
|
|
return bit_and(mask.bit_not()).bit_or(val.bit_and(mask));
|
|
|
|
|
}
|
|
|
|
|
|
2019-11-30 19:51:16 -06:00
|
|
|
|
template<size_t AmountBits>
|
|
|
|
|
value<Bits> shl(const value<AmountBits> &amount) const {
|
|
|
|
|
// Ensure our early return is correct by prohibiting values larger than 4 Gbit.
|
|
|
|
|
static_assert(Bits <= chunk::mask, "shl() of unreasonably large values is not supported");
|
|
|
|
|
// Detect shifts definitely large than Bits early.
|
|
|
|
|
for (size_t n = 1; n < amount.chunks; n++)
|
|
|
|
|
if (amount.data[n] != 0)
|
|
|
|
|
return {};
|
|
|
|
|
// Past this point we can use the least significant chunk as the shift size.
|
|
|
|
|
size_t shift_chunks = amount.data[0] / chunk::bits;
|
|
|
|
|
size_t shift_bits = amount.data[0] % chunk::bits;
|
|
|
|
|
if (shift_chunks >= chunks)
|
|
|
|
|
return {};
|
|
|
|
|
value<Bits> result;
|
|
|
|
|
chunk::type carry = 0;
|
|
|
|
|
for (size_t n = 0; n < chunks - shift_chunks; n++) {
|
|
|
|
|
result.data[shift_chunks + n] = (data[n] << shift_bits) | carry;
|
|
|
|
|
carry = (shift_bits == 0) ? 0
|
|
|
|
|
: data[n] >> (chunk::bits - shift_bits);
|
|
|
|
|
}
|
|
|
|
|
return result;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t AmountBits, bool Signed = false>
|
|
|
|
|
value<Bits> shr(const value<AmountBits> &amount) const {
|
|
|
|
|
// Ensure our early return is correct by prohibiting values larger than 4 Gbit.
|
|
|
|
|
static_assert(Bits <= chunk::mask, "shr() of unreasonably large values is not supported");
|
|
|
|
|
// Detect shifts definitely large than Bits early.
|
|
|
|
|
for (size_t n = 1; n < amount.chunks; n++)
|
|
|
|
|
if (amount.data[n] != 0)
|
|
|
|
|
return {};
|
|
|
|
|
// Past this point we can use the least significant chunk as the shift size.
|
|
|
|
|
size_t shift_chunks = amount.data[0] / chunk::bits;
|
|
|
|
|
size_t shift_bits = amount.data[0] % chunk::bits;
|
|
|
|
|
if (shift_chunks >= chunks)
|
|
|
|
|
return {};
|
|
|
|
|
value<Bits> result;
|
|
|
|
|
chunk::type carry = 0;
|
|
|
|
|
for (size_t n = 0; n < chunks - shift_chunks; n++) {
|
|
|
|
|
result.data[chunks - shift_chunks - 1 - n] = carry | (data[chunks - 1 - n] >> shift_bits);
|
|
|
|
|
carry = (shift_bits == 0) ? 0
|
|
|
|
|
: data[chunks - 1 - n] << (chunk::bits - shift_bits);
|
|
|
|
|
}
|
|
|
|
|
if (Signed && is_neg()) {
|
|
|
|
|
for (size_t n = chunks - shift_chunks; n < chunks; n++)
|
|
|
|
|
result.data[n] = chunk::mask;
|
|
|
|
|
if (shift_bits != 0)
|
|
|
|
|
result.data[chunks - shift_chunks] |= chunk::mask << (chunk::bits - shift_bits);
|
|
|
|
|
}
|
|
|
|
|
return result;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t AmountBits>
|
|
|
|
|
value<Bits> sshr(const value<AmountBits> &amount) const {
|
|
|
|
|
return shr<AmountBits, /*Signed=*/true>(amount);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
size_t ctpop() const {
|
|
|
|
|
size_t count = 0;
|
|
|
|
|
for (size_t n = 0; n < chunks; n++) {
|
|
|
|
|
// This loop implements the population count idiom as recognized by LLVM and GCC.
|
|
|
|
|
for (chunk::type x = data[n]; x != 0; count++)
|
|
|
|
|
x = x & (x - 1);
|
|
|
|
|
}
|
|
|
|
|
return count;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
size_t ctlz() const {
|
|
|
|
|
size_t count = 0;
|
|
|
|
|
for (size_t n = 0; n < chunks; n++) {
|
|
|
|
|
chunk::type x = data[chunks - 1 - n];
|
|
|
|
|
if (x == 0) {
|
|
|
|
|
count += (n == 0 ? Bits % chunk::bits : chunk::bits);
|
|
|
|
|
} else {
|
|
|
|
|
// This loop implements the find first set idiom as recognized by LLVM.
|
|
|
|
|
for (; x != 0; count++)
|
|
|
|
|
x >>= 1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return count;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<bool Invert, bool CarryIn>
|
|
|
|
|
std::pair<value<Bits>, bool /*CarryOut*/> alu(const value<Bits> &other) const {
|
|
|
|
|
value<Bits> result;
|
|
|
|
|
bool carry = CarryIn;
|
|
|
|
|
for (size_t n = 0; n < result.chunks; n++) {
|
|
|
|
|
result.data[n] = data[n] + (Invert ? ~other.data[n] : other.data[n]) + carry;
|
|
|
|
|
carry = (result.data[n] < data[n]) ||
|
|
|
|
|
(result.data[n] == data[n] && carry);
|
|
|
|
|
}
|
|
|
|
|
result.data[result.chunks - 1] &= result.msb_mask;
|
|
|
|
|
return {result, carry};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
value<Bits> add(const value<Bits> &other) const {
|
|
|
|
|
return alu</*Invert=*/false, /*CarryIn=*/false>(other).first;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
value<Bits> sub(const value<Bits> &other) const {
|
|
|
|
|
return alu</*Invert=*/true, /*CarryIn=*/true>(other).first;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
value<Bits> neg() const {
|
|
|
|
|
return value<Bits> { 0u }.sub(*this);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool ucmp(const value<Bits> &other) const {
|
|
|
|
|
bool carry;
|
|
|
|
|
std::tie(std::ignore, carry) = alu</*Invert=*/true, /*CarryIn=*/true>(other);
|
|
|
|
|
return !carry; // a.ucmp(b) ≡ a u< b
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool scmp(const value<Bits> &other) const {
|
|
|
|
|
value<Bits> result;
|
|
|
|
|
bool carry;
|
|
|
|
|
std::tie(result, carry) = alu</*Invert=*/true, /*CarryIn=*/true>(other);
|
|
|
|
|
bool overflow = (is_neg() == !other.is_neg()) && (is_neg() != result.is_neg());
|
|
|
|
|
return result.is_neg() ^ overflow; // a.scmp(b) ≡ a s< b
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
// Expression template for a slice, usable as lvalue or rvalue, and composable with other expression templates here.
|
|
|
|
|
template<class T, size_t Stop, size_t Start>
|
|
|
|
|
struct slice_expr : public expr_base<slice_expr<T, Stop, Start>> {
|
|
|
|
|
static_assert(Stop >= Start, "slice_expr() may not reverse bit order");
|
|
|
|
|
static_assert(Start < T::bits && Stop < T::bits, "slice_expr() must be within bounds");
|
|
|
|
|
static constexpr size_t bits = Stop - Start + 1;
|
|
|
|
|
|
|
|
|
|
T &expr;
|
|
|
|
|
|
|
|
|
|
slice_expr(T &expr) : expr(expr) {}
|
|
|
|
|
slice_expr(const slice_expr<T, Stop, Start> &) = delete;
|
|
|
|
|
|
|
|
|
|
operator value<bits>() const {
|
|
|
|
|
return static_cast<const value<T::bits> &>(expr)
|
|
|
|
|
.template rtrunc<T::bits - Start>()
|
|
|
|
|
.template trunc<bits>();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
slice_expr<T, Stop, Start> &operator=(const value<bits> &rhs) {
|
|
|
|
|
// Generic partial assignment implemented using a read-modify-write operation on the sliced expression.
|
|
|
|
|
expr = static_cast<const value<T::bits> &>(expr)
|
|
|
|
|
.template blit<Stop, Start>(rhs);
|
|
|
|
|
return *this;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// A helper that forces the cast to value<>, which allows deduction to work.
|
|
|
|
|
value<bits> val() const {
|
|
|
|
|
return static_cast<const value<bits> &>(*this);
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
// Expression template for a concatenation, usable as lvalue or rvalue, and composable with other expression templates here.
|
|
|
|
|
template<class T, class U>
|
|
|
|
|
struct concat_expr : public expr_base<concat_expr<T, U>> {
|
|
|
|
|
static constexpr size_t bits = T::bits + U::bits;
|
|
|
|
|
|
|
|
|
|
T &ms_expr;
|
|
|
|
|
U &ls_expr;
|
|
|
|
|
|
|
|
|
|
concat_expr(T &ms_expr, U &ls_expr) : ms_expr(ms_expr), ls_expr(ls_expr) {}
|
|
|
|
|
concat_expr(const concat_expr<T, U> &) = delete;
|
|
|
|
|
|
|
|
|
|
operator value<bits>() const {
|
|
|
|
|
value<bits> ms_shifted = static_cast<const value<T::bits> &>(ms_expr)
|
|
|
|
|
.template rzext<bits>();
|
|
|
|
|
value<bits> ls_extended = static_cast<const value<U::bits> &>(ls_expr)
|
|
|
|
|
.template zext<bits>();
|
|
|
|
|
return ms_shifted.bit_or(ls_extended);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
concat_expr<T, U> &operator=(const value<bits> &rhs) {
|
|
|
|
|
ms_expr = rhs.template rtrunc<T::bits>();
|
|
|
|
|
ls_expr = rhs.template trunc<U::bits>();
|
|
|
|
|
return *this;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// A helper that forces the cast to value<>, which allows deduction to work.
|
|
|
|
|
value<bits> val() const {
|
|
|
|
|
return static_cast<const value<bits> &>(*this);
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
// Base class for expression templates, providing helper methods for operations that are valid on both rvalues and lvalues.
|
|
|
|
|
//
|
|
|
|
|
// Note that expression objects (slices and concatenations) constructed in this way should NEVER be captured because
|
|
|
|
|
// they refer to temporaries that will, in general, only live until the end of the statement. For example, both of
|
|
|
|
|
// these snippets perform use-after-free:
|
|
|
|
|
//
|
|
|
|
|
// const auto &a = val.slice<7,0>().slice<1>();
|
|
|
|
|
// value<1> b = a;
|
|
|
|
|
//
|
|
|
|
|
// auto &&c = val.slice<7,0>().slice<1>();
|
|
|
|
|
// c = value<1>{1u};
|
|
|
|
|
//
|
|
|
|
|
// An easy way to write code using slices and concatenations safely is to follow two simple rules:
|
|
|
|
|
// * Never explicitly name any type except `value<W>` or `const value<W> &`.
|
|
|
|
|
// * Never use a `const auto &` or `auto &&` in any such expression.
|
|
|
|
|
// Then, any code that compiles will be well-defined.
|
|
|
|
|
template<class T>
|
|
|
|
|
struct expr_base {
|
|
|
|
|
template<size_t Stop, size_t Start = Stop>
|
|
|
|
|
slice_expr<const T, Stop, Start> slice() const {
|
|
|
|
|
return {*static_cast<const T *>(this)};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t Stop, size_t Start = Stop>
|
|
|
|
|
slice_expr<T, Stop, Start> slice() {
|
|
|
|
|
return {*static_cast<T *>(this)};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<class U>
|
|
|
|
|
concat_expr<const T, typename std::remove_reference<const U>::type> concat(const U &other) const {
|
|
|
|
|
return {*static_cast<const T *>(this), other};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<class U>
|
|
|
|
|
concat_expr<T, typename std::remove_reference<U>::type> concat(U &&other) {
|
|
|
|
|
return {*static_cast<T *>(this), other};
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
template<size_t Bits>
|
|
|
|
|
std::ostream &operator<<(std::ostream &os, const value<Bits> &val) {
|
|
|
|
|
auto old_flags = os.flags(std::ios::right);
|
|
|
|
|
auto old_width = os.width(0);
|
|
|
|
|
auto old_fill = os.fill('0');
|
|
|
|
|
os << val.bits << '\'' << std::hex;
|
|
|
|
|
for (size_t n = val.chunks - 1; n != (size_t)-1; n--) {
|
|
|
|
|
if (n == val.chunks - 1 && Bits % value<Bits>::chunk::bits != 0)
|
|
|
|
|
os.width((Bits % value<Bits>::chunk::bits + 3) / 4);
|
|
|
|
|
else
|
|
|
|
|
os.width((value<Bits>::chunk::bits + 3) / 4);
|
|
|
|
|
os << val.data[n];
|
|
|
|
|
}
|
|
|
|
|
os.fill(old_fill);
|
|
|
|
|
os.width(old_width);
|
|
|
|
|
os.flags(old_flags);
|
|
|
|
|
return os;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t Bits>
|
|
|
|
|
struct wire {
|
|
|
|
|
static constexpr size_t bits = Bits;
|
|
|
|
|
|
|
|
|
|
value<Bits> curr;
|
|
|
|
|
value<Bits> next;
|
|
|
|
|
|
|
|
|
|
wire() = default;
|
|
|
|
|
constexpr wire(const value<Bits> &init) : curr(init), next(init) {}
|
|
|
|
|
template<typename... Init>
|
|
|
|
|
explicit constexpr wire(Init ...init) : curr{init...}, next{init...} {}
|
|
|
|
|
|
|
|
|
|
wire(const wire<Bits> &) = delete;
|
|
|
|
|
wire(wire<Bits> &&) = default;
|
|
|
|
|
wire<Bits> &operator=(const wire<Bits> &) = delete;
|
|
|
|
|
|
|
|
|
|
bool commit() {
|
|
|
|
|
if (curr != next) {
|
|
|
|
|
curr = next;
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
template<size_t Bits>
|
|
|
|
|
std::ostream &operator<<(std::ostream &os, const wire<Bits> &val) {
|
|
|
|
|
os << val.curr;
|
|
|
|
|
return os;
|
|
|
|
|
}
|
|
|
|
|
|
2020-04-04 21:06:26 -05:00
|
|
|
|
template<size_t Width>
|
2019-11-30 19:51:16 -06:00
|
|
|
|
struct memory {
|
2020-04-04 21:06:26 -05:00
|
|
|
|
std::vector<value<Width>> data;
|
2019-11-30 19:51:16 -06:00
|
|
|
|
|
|
|
|
|
size_t depth() const {
|
|
|
|
|
return data.size();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
memory() = delete;
|
|
|
|
|
explicit memory(size_t depth) : data(depth) {}
|
|
|
|
|
|
2020-04-04 21:06:26 -05:00
|
|
|
|
memory(const memory<Width> &) = delete;
|
|
|
|
|
memory<Width> &operator=(const memory<Width> &) = delete;
|
2019-11-30 19:51:16 -06:00
|
|
|
|
|
|
|
|
|
// The only way to get the compiler to put the initializer in .rodata and do not copy it on stack is to stuff it
|
|
|
|
|
// into a plain array. You'd think an std::initializer_list would work here, but it doesn't, because you can't
|
|
|
|
|
// construct an initializer_list in a constexpr (or something) and so if you try to do that the whole thing is
|
|
|
|
|
// first copied on the stack (probably overflowing it) and then again into `data`.
|
|
|
|
|
template<size_t Size>
|
|
|
|
|
struct init {
|
|
|
|
|
size_t offset;
|
2020-04-04 21:06:26 -05:00
|
|
|
|
value<Width> data[Size];
|
2019-11-30 19:51:16 -06:00
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
template<size_t... InitSize>
|
|
|
|
|
explicit memory(size_t depth, const init<InitSize> &...init) : data(depth) {
|
|
|
|
|
data.resize(depth);
|
|
|
|
|
// This utterly reprehensible construct is the most reasonable way to apply a function to every element
|
|
|
|
|
// of a parameter pack, if the elements all have different types and so cannot be cast to an initializer list.
|
|
|
|
|
auto _ = {std::move(std::begin(init.data), std::end(init.data), data.begin() + init.offset)...};
|
|
|
|
|
}
|
|
|
|
|
|
2020-04-16 11:45:02 -05:00
|
|
|
|
// An operator for direct memory reads. May be used at any time during the simulation.
|
|
|
|
|
const value<Width> &operator [](size_t index) const {
|
2020-04-04 17:53:46 -05:00
|
|
|
|
assert(index < data.size());
|
2019-11-30 19:51:16 -06:00
|
|
|
|
return data[index];
|
|
|
|
|
}
|
|
|
|
|
|
2020-04-16 11:45:02 -05:00
|
|
|
|
// An operator for direct memory writes. May only be used before the simulation is started. If used
|
|
|
|
|
// after the simulation is started, the design may malfunction.
|
|
|
|
|
value<Width> &operator [](size_t index) {
|
2020-04-04 21:06:26 -05:00
|
|
|
|
assert(index < data.size());
|
|
|
|
|
return data[index];
|
|
|
|
|
}
|
2019-11-30 19:51:16 -06:00
|
|
|
|
|
2020-04-04 21:06:26 -05:00
|
|
|
|
// A simple way to make a writable memory would be to use an array of wires instead of an array of values.
|
|
|
|
|
// However, there are two significant downsides to this approach: first, it has large overhead (2× space
|
|
|
|
|
// overhead, and O(depth) time overhead during commit); second, it does not simplify handling write port
|
|
|
|
|
// priorities. Although in principle write ports could be ordered or conditionally enabled in generated
|
|
|
|
|
// code based on their priorities and selected addresses, the feedback arc set problem is computationally
|
|
|
|
|
// expensive, and the heuristic based algorithms are not easily modified to guarantee (rather than prefer)
|
|
|
|
|
// a particular write port evaluation order.
|
|
|
|
|
//
|
|
|
|
|
// The approach used here instead is to queue writes into a buffer during the eval phase, then perform
|
|
|
|
|
// the writes during the commit phase in the priority order. This approach has low overhead, with both space
|
|
|
|
|
// and time proportional to the amount of write ports. Because virtually every memory in a practical design
|
|
|
|
|
// has at most two write ports, linear search is used on every write, being the fastest and simplest approach.
|
|
|
|
|
struct write {
|
|
|
|
|
size_t index;
|
|
|
|
|
value<Width> val;
|
|
|
|
|
value<Width> mask;
|
|
|
|
|
int priority;
|
|
|
|
|
};
|
|
|
|
|
std::vector<write> write_queue;
|
|
|
|
|
|
|
|
|
|
void update(size_t index, const value<Width> &val, const value<Width> &mask, int priority = 0) {
|
|
|
|
|
assert(index < data.size());
|
2020-04-22 13:50:13 -05:00
|
|
|
|
// Queue up the write while keeping the queue sorted by priority.
|
|
|
|
|
write_queue.insert(
|
|
|
|
|
std::upper_bound(write_queue.begin(), write_queue.end(), priority,
|
|
|
|
|
[](const int a, const write& b) { return a < b.priority; }),
|
|
|
|
|
write { index, val, mask, priority });
|
2020-04-04 21:06:26 -05:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool commit() {
|
|
|
|
|
bool changed = false;
|
|
|
|
|
for (const write &entry : write_queue) {
|
|
|
|
|
value<Width> elem = data[entry.index];
|
|
|
|
|
elem = elem.update(entry.val, entry.mask);
|
|
|
|
|
changed |= (data[entry.index] != elem);
|
|
|
|
|
data[entry.index] = elem;
|
|
|
|
|
}
|
|
|
|
|
write_queue.clear();
|
|
|
|
|
return changed;
|
|
|
|
|
}
|
|
|
|
|
};
|
2019-11-30 19:51:16 -06:00
|
|
|
|
|
2020-04-19 11:22:02 -05:00
|
|
|
|
struct metadata {
|
2020-04-16 20:41:08 -05:00
|
|
|
|
const enum {
|
|
|
|
|
MISSING = 0,
|
|
|
|
|
UINT = 1,
|
|
|
|
|
SINT = 2,
|
|
|
|
|
STRING = 3,
|
|
|
|
|
DOUBLE = 4,
|
|
|
|
|
} value_type;
|
|
|
|
|
|
|
|
|
|
// In debug mode, using the wrong .as_*() function will assert.
|
|
|
|
|
// In release mode, using the wrong .as_*() function will safely return a default value.
|
|
|
|
|
union {
|
|
|
|
|
const unsigned uint_value = 0;
|
|
|
|
|
const signed sint_value;
|
|
|
|
|
};
|
|
|
|
|
const std::string string_value = "";
|
|
|
|
|
const double double_value = 0.0;
|
|
|
|
|
|
2020-04-19 11:22:02 -05:00
|
|
|
|
metadata() : value_type(MISSING) {}
|
|
|
|
|
metadata(unsigned value) : value_type(UINT), uint_value(value) {}
|
|
|
|
|
metadata(signed value) : value_type(SINT), sint_value(value) {}
|
|
|
|
|
metadata(const std::string &value) : value_type(STRING), string_value(value) {}
|
|
|
|
|
metadata(const char *value) : value_type(STRING), string_value(value) {}
|
|
|
|
|
metadata(double value) : value_type(DOUBLE), double_value(value) {}
|
2020-04-16 20:41:08 -05:00
|
|
|
|
|
2020-04-19 11:22:02 -05:00
|
|
|
|
metadata(const metadata &) = default;
|
|
|
|
|
metadata &operator=(const metadata &) = delete;
|
2020-04-16 20:41:08 -05:00
|
|
|
|
|
|
|
|
|
unsigned as_uint() const {
|
|
|
|
|
assert(value_type == UINT);
|
|
|
|
|
return uint_value;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
signed as_sint() const {
|
|
|
|
|
assert(value_type == SINT);
|
|
|
|
|
return sint_value;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
const std::string &as_string() const {
|
|
|
|
|
assert(value_type == STRING);
|
|
|
|
|
return string_value;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
double as_double() const {
|
|
|
|
|
assert(value_type == DOUBLE);
|
|
|
|
|
return double_value;
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
2020-04-19 11:22:02 -05:00
|
|
|
|
typedef std::map<std::string, metadata> metadata_map;
|
2020-04-16 20:41:08 -05:00
|
|
|
|
|
2019-11-30 19:51:16 -06:00
|
|
|
|
struct module {
|
|
|
|
|
module() {}
|
|
|
|
|
virtual ~module() {}
|
|
|
|
|
|
|
|
|
|
module(const module &) = delete;
|
|
|
|
|
module &operator=(const module &) = delete;
|
|
|
|
|
|
2020-04-21 10:51:09 -05:00
|
|
|
|
virtual bool eval() = 0;
|
2019-11-30 19:51:16 -06:00
|
|
|
|
virtual bool commit() = 0;
|
|
|
|
|
|
|
|
|
|
size_t step() {
|
|
|
|
|
size_t deltas = 0;
|
2020-04-21 10:51:09 -05:00
|
|
|
|
bool converged = false;
|
2019-11-30 19:51:16 -06:00
|
|
|
|
do {
|
2020-04-21 10:51:09 -05:00
|
|
|
|
converged = eval();
|
2019-11-30 19:51:16 -06:00
|
|
|
|
deltas++;
|
2020-04-21 10:51:09 -05:00
|
|
|
|
} while (commit() && !converged);
|
2019-11-30 19:51:16 -06:00
|
|
|
|
return deltas;
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
} // namespace cxxrtl
|
|
|
|
|
|
|
|
|
|
// Definitions of internal Yosys cells. Other than the functions in this namespace, cxxrtl is fully generic
|
|
|
|
|
// and indepenent of Yosys implementation details.
|
|
|
|
|
//
|
|
|
|
|
// The `write_cxxrtl` pass translates internal cells (cells with names that start with `$`) to calls of these
|
|
|
|
|
// functions. All of Yosys arithmetic and logical cells perform sign or zero extension on their operands,
|
|
|
|
|
// whereas basic operations on arbitrary width values require operands to be of the same width. These functions
|
|
|
|
|
// bridge the gap by performing the necessary casts. They are named similar to `cell_A[B]`, where A and B are `u`
|
|
|
|
|
// if the corresponding operand is unsigned, and `s` if it is signed.
|
|
|
|
|
namespace cxxrtl_yosys {
|
|
|
|
|
|
|
|
|
|
using namespace cxxrtl;
|
|
|
|
|
|
|
|
|
|
// std::max isn't constexpr until C++14 for no particular reason (it's an oversight), so we define our own.
|
|
|
|
|
template<class T>
|
|
|
|
|
constexpr T max(const T &a, const T &b) {
|
|
|
|
|
return a > b ? a : b;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Logic operations
|
|
|
|
|
template<size_t BitsY, size_t BitsA>
|
|
|
|
|
value<BitsY> not_u(const value<BitsA> &a) {
|
|
|
|
|
return a.template zcast<BitsY>().bit_not();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA>
|
|
|
|
|
value<BitsY> not_s(const value<BitsA> &a) {
|
|
|
|
|
return a.template scast<BitsY>().bit_not();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA>
|
|
|
|
|
value<BitsY> logic_not_u(const value<BitsA> &a) {
|
|
|
|
|
return value<BitsY> { a ? 0u : 1u };
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA>
|
|
|
|
|
value<BitsY> logic_not_s(const value<BitsA> &a) {
|
|
|
|
|
return value<BitsY> { a ? 0u : 1u };
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA>
|
|
|
|
|
value<BitsY> reduce_and_u(const value<BitsA> &a) {
|
|
|
|
|
return value<BitsY> { a.bit_not().is_zero() ? 1u : 0u };
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA>
|
|
|
|
|
value<BitsY> reduce_and_s(const value<BitsA> &a) {
|
|
|
|
|
return value<BitsY> { a.bit_not().is_zero() ? 1u : 0u };
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA>
|
|
|
|
|
value<BitsY> reduce_or_u(const value<BitsA> &a) {
|
|
|
|
|
return value<BitsY> { a ? 1u : 0u };
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA>
|
|
|
|
|
value<BitsY> reduce_or_s(const value<BitsA> &a) {
|
|
|
|
|
return value<BitsY> { a ? 1u : 0u };
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA>
|
|
|
|
|
value<BitsY> reduce_xor_u(const value<BitsA> &a) {
|
|
|
|
|
return value<BitsY> { (a.ctpop() % 2) ? 1u : 0u };
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA>
|
|
|
|
|
value<BitsY> reduce_xor_s(const value<BitsA> &a) {
|
|
|
|
|
return value<BitsY> { (a.ctpop() % 2) ? 1u : 0u };
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA>
|
|
|
|
|
value<BitsY> reduce_xnor_u(const value<BitsA> &a) {
|
|
|
|
|
return value<BitsY> { (a.ctpop() % 2) ? 0u : 1u };
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA>
|
|
|
|
|
value<BitsY> reduce_xnor_s(const value<BitsA> &a) {
|
|
|
|
|
return value<BitsY> { (a.ctpop() % 2) ? 0u : 1u };
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA>
|
|
|
|
|
value<BitsY> reduce_bool_u(const value<BitsA> &a) {
|
|
|
|
|
return value<BitsY> { a ? 1u : 0u };
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA>
|
|
|
|
|
value<BitsY> reduce_bool_s(const value<BitsA> &a) {
|
|
|
|
|
return value<BitsY> { a ? 1u : 0u };
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> and_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
return a.template zcast<BitsY>().bit_and(b.template zcast<BitsY>());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> and_ss(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
return a.template scast<BitsY>().bit_and(b.template scast<BitsY>());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> or_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
return a.template zcast<BitsY>().bit_or(b.template zcast<BitsY>());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> or_ss(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
return a.template scast<BitsY>().bit_or(b.template scast<BitsY>());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> xor_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
return a.template zcast<BitsY>().bit_xor(b.template zcast<BitsY>());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> xor_ss(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
return a.template scast<BitsY>().bit_xor(b.template scast<BitsY>());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> xnor_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
return a.template zcast<BitsY>().bit_xor(b.template zcast<BitsY>()).bit_not();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> xnor_ss(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
return a.template scast<BitsY>().bit_xor(b.template scast<BitsY>()).bit_not();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> logic_and_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
return value<BitsY> { (bool(a) & bool(b)) ? 1u : 0u };
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> logic_and_ss(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
return value<BitsY> { (bool(a) & bool(b)) ? 1u : 0u };
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> logic_or_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
return value<BitsY> { (bool(a) | bool(b)) ? 1u : 0u };
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> logic_or_ss(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
return value<BitsY> { (bool(a) | bool(b)) ? 1u : 0u };
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> shl_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
return a.template zcast<BitsY>().template shl(b);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> shl_su(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
return a.template scast<BitsY>().template shl(b);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> sshl_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
return a.template zcast<BitsY>().template shl(b);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> sshl_su(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
return a.template scast<BitsY>().template shl(b);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> shr_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
return a.template shr(b).template zcast<BitsY>();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> shr_su(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
return a.template shr(b).template scast<BitsY>();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> sshr_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
return a.template shr(b).template zcast<BitsY>();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> sshr_su(const value<BitsA> &a, const value<BitsB> &b) {
|
2020-06-04 20:31:53 -05:00
|
|
|
|
return a.template sshr(b).template scast<BitsY>();
|
2019-11-30 19:51:16 -06:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> shift_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
return shr_uu<BitsY>(a, b);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> shift_su(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
return shr_su<BitsY>(a, b);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> shift_us(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
return b.is_neg() ? shl_uu<BitsY>(a, b.template sext<BitsB + 1>().neg()) : shr_uu<BitsY>(a, b);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> shift_ss(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
return b.is_neg() ? shl_su<BitsY>(a, b.template sext<BitsB + 1>().neg()) : shr_su<BitsY>(a, b);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> shiftx_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
return shift_uu<BitsY>(a, b);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> shiftx_su(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
return shift_su<BitsY>(a, b);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> shiftx_us(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
return shift_us<BitsY>(a, b);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> shiftx_ss(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
return shift_ss<BitsY>(a, b);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Comparison operations
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> eq_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
constexpr size_t BitsExt = max(BitsA, BitsB);
|
|
|
|
|
return value<BitsY>{ a.template zext<BitsExt>() == b.template zext<BitsExt>() ? 1u : 0u };
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> eq_ss(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
constexpr size_t BitsExt = max(BitsA, BitsB);
|
|
|
|
|
return value<BitsY>{ a.template sext<BitsExt>() == b.template sext<BitsExt>() ? 1u : 0u };
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> ne_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
constexpr size_t BitsExt = max(BitsA, BitsB);
|
|
|
|
|
return value<BitsY>{ a.template zext<BitsExt>() != b.template zext<BitsExt>() ? 1u : 0u };
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> ne_ss(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
constexpr size_t BitsExt = max(BitsA, BitsB);
|
|
|
|
|
return value<BitsY>{ a.template sext<BitsExt>() != b.template sext<BitsExt>() ? 1u : 0u };
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> eqx_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
return eq_uu<BitsY>(a, b);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> eqx_ss(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
return eq_ss<BitsY>(a, b);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> nex_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
return ne_uu<BitsY>(a, b);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> nex_ss(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
return ne_ss<BitsY>(a, b);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> gt_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
constexpr size_t BitsExt = max(BitsA, BitsB);
|
|
|
|
|
return value<BitsY> { b.template zext<BitsExt>().ucmp(a.template zext<BitsExt>()) ? 1u : 0u };
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> gt_ss(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
constexpr size_t BitsExt = max(BitsA, BitsB);
|
|
|
|
|
return value<BitsY> { b.template sext<BitsExt>().scmp(a.template sext<BitsExt>()) ? 1u : 0u };
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> ge_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
constexpr size_t BitsExt = max(BitsA, BitsB);
|
|
|
|
|
return value<BitsY> { !a.template zext<BitsExt>().ucmp(b.template zext<BitsExt>()) ? 1u : 0u };
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> ge_ss(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
constexpr size_t BitsExt = max(BitsA, BitsB);
|
|
|
|
|
return value<BitsY> { !a.template sext<BitsExt>().scmp(b.template sext<BitsExt>()) ? 1u : 0u };
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> lt_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
constexpr size_t BitsExt = max(BitsA, BitsB);
|
|
|
|
|
return value<BitsY> { a.template zext<BitsExt>().ucmp(b.template zext<BitsExt>()) ? 1u : 0u };
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> lt_ss(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
constexpr size_t BitsExt = max(BitsA, BitsB);
|
|
|
|
|
return value<BitsY> { a.template sext<BitsExt>().scmp(b.template sext<BitsExt>()) ? 1u : 0u };
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> le_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
constexpr size_t BitsExt = max(BitsA, BitsB);
|
|
|
|
|
return value<BitsY> { !b.template zext<BitsExt>().ucmp(a.template zext<BitsExt>()) ? 1u : 0u };
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> le_ss(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
constexpr size_t BitsExt = max(BitsA, BitsB);
|
|
|
|
|
return value<BitsY> { !b.template sext<BitsExt>().scmp(a.template sext<BitsExt>()) ? 1u : 0u };
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Arithmetic operations
|
|
|
|
|
template<size_t BitsY, size_t BitsA>
|
|
|
|
|
value<BitsY> pos_u(const value<BitsA> &a) {
|
|
|
|
|
return a.template zcast<BitsY>();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA>
|
|
|
|
|
value<BitsY> pos_s(const value<BitsA> &a) {
|
|
|
|
|
return a.template scast<BitsY>();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA>
|
|
|
|
|
value<BitsY> neg_u(const value<BitsA> &a) {
|
|
|
|
|
return a.template zcast<BitsY>().neg();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA>
|
|
|
|
|
value<BitsY> neg_s(const value<BitsA> &a) {
|
|
|
|
|
return a.template scast<BitsY>().neg();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> add_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
return a.template zcast<BitsY>().add(b.template zcast<BitsY>());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> add_ss(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
return a.template scast<BitsY>().add(b.template scast<BitsY>());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> sub_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
return a.template zcast<BitsY>().sub(b.template zcast<BitsY>());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> sub_ss(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
return a.template scast<BitsY>().sub(b.template scast<BitsY>());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> mul_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
value<BitsY> product;
|
|
|
|
|
value<BitsY> multiplicand = a.template zcast<BitsY>();
|
|
|
|
|
const value<BitsB> &multiplier = b;
|
|
|
|
|
uint32_t multiplicand_shift = 0;
|
|
|
|
|
for (size_t step = 0; step < BitsB; step++) {
|
|
|
|
|
if (multiplier.bit(step)) {
|
|
|
|
|
multiplicand = multiplicand.shl(value<32> { multiplicand_shift });
|
|
|
|
|
product = product.add(multiplicand);
|
|
|
|
|
multiplicand_shift = 0;
|
|
|
|
|
}
|
|
|
|
|
multiplicand_shift++;
|
|
|
|
|
}
|
|
|
|
|
return product;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> mul_ss(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
value<BitsB + 1> ub = b.template sext<BitsB + 1>();
|
|
|
|
|
if (ub.is_neg()) ub = ub.neg();
|
|
|
|
|
value<BitsY> y = mul_uu<BitsY>(a.template scast<BitsY>(), ub);
|
|
|
|
|
return b.is_neg() ? y.neg() : y;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
std::pair<value<BitsY>, value<BitsY>> divmod_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
constexpr size_t Bits = max(BitsY, max(BitsA, BitsB));
|
|
|
|
|
value<Bits> quotient;
|
|
|
|
|
value<Bits> dividend = a.template zext<Bits>();
|
|
|
|
|
value<Bits> divisor = b.template zext<Bits>();
|
|
|
|
|
if (dividend.ucmp(divisor))
|
|
|
|
|
return {/*quotient=*/value<BitsY> { 0u }, /*remainder=*/dividend.template trunc<BitsY>()};
|
|
|
|
|
uint32_t divisor_shift = dividend.ctlz() - divisor.ctlz();
|
|
|
|
|
divisor = divisor.shl(value<32> { divisor_shift });
|
|
|
|
|
for (size_t step = 0; step <= divisor_shift; step++) {
|
|
|
|
|
quotient = quotient.shl(value<1> { 1u });
|
|
|
|
|
if (!dividend.ucmp(divisor)) {
|
|
|
|
|
dividend = dividend.sub(divisor);
|
|
|
|
|
quotient.set_bit(0, true);
|
|
|
|
|
}
|
|
|
|
|
divisor = divisor.shr(value<1> { 1u });
|
|
|
|
|
}
|
|
|
|
|
return {quotient.template trunc<BitsY>(), /*remainder=*/dividend.template trunc<BitsY>()};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
std::pair<value<BitsY>, value<BitsY>> divmod_ss(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
value<BitsA + 1> ua = a.template sext<BitsA + 1>();
|
|
|
|
|
value<BitsB + 1> ub = b.template sext<BitsB + 1>();
|
|
|
|
|
if (ua.is_neg()) ua = ua.neg();
|
|
|
|
|
if (ub.is_neg()) ub = ub.neg();
|
|
|
|
|
value<BitsY> y, r;
|
|
|
|
|
std::tie(y, r) = divmod_uu<BitsY>(ua, ub);
|
|
|
|
|
if (a.is_neg() != b.is_neg()) y = y.neg();
|
|
|
|
|
if (a.is_neg()) r = r.neg();
|
|
|
|
|
return {y, r};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> div_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
return divmod_uu<BitsY>(a, b).first;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> div_ss(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
return divmod_ss<BitsY>(a, b).first;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> mod_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
return divmod_uu<BitsY>(a, b).second;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
|
|
|
|
value<BitsY> mod_ss(const value<BitsA> &a, const value<BitsB> &b) {
|
|
|
|
|
return divmod_ss<BitsY>(a, b).second;
|
|
|
|
|
}
|
|
|
|
|
|
2020-04-04 17:53:46 -05:00
|
|
|
|
// Memory helper
|
2020-04-04 21:06:26 -05:00
|
|
|
|
struct memory_index {
|
|
|
|
|
bool valid;
|
|
|
|
|
size_t index;
|
2020-04-04 17:53:46 -05:00
|
|
|
|
|
2020-04-04 21:06:26 -05:00
|
|
|
|
template<size_t BitsAddr>
|
|
|
|
|
memory_index(const value<BitsAddr> &addr, size_t offset, size_t depth) {
|
|
|
|
|
static_assert(value<BitsAddr>::chunks <= 1, "memory address is too wide");
|
|
|
|
|
size_t offset_index = addr.data[0];
|
|
|
|
|
|
|
|
|
|
valid = (offset_index >= offset && offset_index < offset + depth);
|
|
|
|
|
index = offset_index - offset;
|
|
|
|
|
}
|
|
|
|
|
};
|
2020-04-04 17:53:46 -05:00
|
|
|
|
|
2019-11-30 19:51:16 -06:00
|
|
|
|
} // namespace cxxrtl_yosys
|
|
|
|
|
|
|
|
|
|
#endif
|