2015-01-22 07:03:18 -06:00
|
|
|
/*
|
|
|
|
* yosys -- Yosys Open SYnthesis Suite
|
|
|
|
*
|
|
|
|
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
|
2015-07-02 04:14:30 -05:00
|
|
|
*
|
2015-01-22 07:03:18 -06:00
|
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
|
|
* copyright notice and this permission notice appear in all copies.
|
2015-07-02 04:14:30 -05:00
|
|
|
*
|
2015-01-22 07:03:18 -06:00
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "kernel/yosys.h"
|
|
|
|
#include "kernel/satgen.h"
|
|
|
|
#include "kernel/sigtools.h"
|
|
|
|
|
|
|
|
USING_YOSYS_NAMESPACE
|
|
|
|
PRIVATE_NAMESPACE_BEGIN
|
|
|
|
|
|
|
|
struct EquivInductWorker
|
|
|
|
{
|
|
|
|
Module *module;
|
|
|
|
SigMap sigmap;
|
|
|
|
|
|
|
|
vector<Cell*> cells;
|
|
|
|
pool<Cell*> workset;
|
|
|
|
|
2015-02-21 05:15:41 -06:00
|
|
|
ezSatPtr ez;
|
2015-01-22 07:03:18 -06:00
|
|
|
SatGen satgen;
|
|
|
|
|
|
|
|
int max_seq;
|
|
|
|
int success_counter;
|
|
|
|
|
|
|
|
dict<int, int> ez_step_is_consistent;
|
|
|
|
pool<Cell*> cell_warn_cache;
|
2015-01-31 06:58:04 -06:00
|
|
|
SigPool undriven_signals;
|
2015-01-22 07:03:18 -06:00
|
|
|
|
2015-01-31 06:58:04 -06:00
|
|
|
EquivInductWorker(Module *module, const pool<Cell*> &unproven_equiv_cells, bool model_undef, int max_seq) : module(module), sigmap(module),
|
2015-02-21 05:15:41 -06:00
|
|
|
cells(module->selected_cells()), workset(unproven_equiv_cells),
|
|
|
|
satgen(ez.get(), &sigmap), max_seq(max_seq), success_counter(0)
|
2015-01-22 07:03:18 -06:00
|
|
|
{
|
2015-01-31 06:58:04 -06:00
|
|
|
satgen.model_undef = model_undef;
|
2015-01-22 07:03:18 -06:00
|
|
|
}
|
|
|
|
|
|
|
|
void create_timestep(int step)
|
|
|
|
{
|
|
|
|
vector<int> ez_equal_terms;
|
2015-01-31 06:58:04 -06:00
|
|
|
|
2015-01-22 07:03:18 -06:00
|
|
|
for (auto cell : cells) {
|
|
|
|
if (!satgen.importCell(cell, step) && !cell_warn_cache.count(cell)) {
|
|
|
|
log_warning("No SAT model available for cell %s (%s).\n", log_id(cell), log_id(cell->type));
|
|
|
|
cell_warn_cache.insert(cell);
|
|
|
|
}
|
2020-04-02 11:51:32 -05:00
|
|
|
if (cell->type == ID($equiv)) {
|
2020-03-12 14:57:01 -05:00
|
|
|
SigBit bit_a = sigmap(cell->getPort(ID::A)).as_bit();
|
|
|
|
SigBit bit_b = sigmap(cell->getPort(ID::B)).as_bit();
|
2015-01-22 07:03:18 -06:00
|
|
|
if (bit_a != bit_b) {
|
|
|
|
int ez_a = satgen.importSigBit(bit_a, step);
|
|
|
|
int ez_b = satgen.importSigBit(bit_b, step);
|
2015-02-21 05:15:41 -06:00
|
|
|
int cond = ez->IFF(ez_a, ez_b);
|
2015-01-31 06:58:04 -06:00
|
|
|
if (satgen.model_undef)
|
2015-02-21 05:15:41 -06:00
|
|
|
cond = ez->OR(cond, satgen.importUndefSigBit(bit_a, step));
|
2015-01-31 06:58:04 -06:00
|
|
|
ez_equal_terms.push_back(cond);
|
2015-01-22 07:03:18 -06:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-01-31 06:58:04 -06:00
|
|
|
if (satgen.model_undef) {
|
|
|
|
for (auto bit : undriven_signals.export_all())
|
2015-02-21 05:15:41 -06:00
|
|
|
ez->assume(ez->NOT(satgen.importUndefSigBit(bit, step)));
|
2015-01-31 06:58:04 -06:00
|
|
|
}
|
|
|
|
|
2015-01-22 07:03:18 -06:00
|
|
|
log_assert(!ez_step_is_consistent.count(step));
|
2015-02-21 05:15:41 -06:00
|
|
|
ez_step_is_consistent[step] = ez->expression(ez->OpAnd, ez_equal_terms);
|
2015-01-22 07:03:18 -06:00
|
|
|
}
|
|
|
|
|
|
|
|
void run()
|
|
|
|
{
|
|
|
|
log("Found %d unproven $equiv cells in module %s:\n", GetSize(workset), log_id(module));
|
|
|
|
|
2015-01-31 06:58:04 -06:00
|
|
|
if (satgen.model_undef) {
|
|
|
|
for (auto cell : cells)
|
|
|
|
if (yosys_celltypes.cell_known(cell->type))
|
|
|
|
for (auto &conn : cell->connections())
|
|
|
|
if (yosys_celltypes.cell_input(cell->type, conn.first))
|
|
|
|
undriven_signals.add(sigmap(conn.second));
|
|
|
|
for (auto cell : cells)
|
|
|
|
if (yosys_celltypes.cell_known(cell->type))
|
|
|
|
for (auto &conn : cell->connections())
|
|
|
|
if (yosys_celltypes.cell_output(cell->type, conn.first))
|
|
|
|
undriven_signals.del(sigmap(conn.second));
|
|
|
|
}
|
|
|
|
|
2015-01-22 07:03:18 -06:00
|
|
|
create_timestep(1);
|
2015-01-31 06:58:04 -06:00
|
|
|
|
|
|
|
if (satgen.model_undef) {
|
|
|
|
for (auto bit : satgen.initial_state.export_all())
|
2015-02-21 05:15:41 -06:00
|
|
|
ez->assume(ez->NOT(satgen.importUndefSigBit(bit, 1)));
|
2015-01-31 06:58:04 -06:00
|
|
|
log(" Undef modelling: force def on %d initial reg values and %d inputs.\n",
|
|
|
|
GetSize(satgen.initial_state), GetSize(undriven_signals));
|
|
|
|
}
|
|
|
|
|
2015-01-22 07:03:18 -06:00
|
|
|
for (int step = 1; step <= max_seq; step++)
|
|
|
|
{
|
2015-02-21 05:15:41 -06:00
|
|
|
ez->assume(ez_step_is_consistent[step]);
|
2015-01-22 07:03:18 -06:00
|
|
|
|
2015-02-21 05:15:41 -06:00
|
|
|
log(" Proving existence of base case for step %d. (%d clauses over %d variables)\n", step, ez->numCnfClauses(), ez->numCnfVariables());
|
|
|
|
if (!ez->solve()) {
|
2015-01-22 07:03:18 -06:00
|
|
|
log(" Proof for base case failed. Circuit inherently diverges!\n");
|
2015-01-23 17:16:17 -06:00
|
|
|
return;
|
2015-01-22 07:03:18 -06:00
|
|
|
}
|
|
|
|
|
|
|
|
create_timestep(step+1);
|
2015-02-21 05:15:41 -06:00
|
|
|
int new_step_not_consistent = ez->NOT(ez_step_is_consistent[step+1]);
|
|
|
|
ez->bind(new_step_not_consistent);
|
2015-01-22 07:03:18 -06:00
|
|
|
|
2015-02-21 05:15:41 -06:00
|
|
|
log(" Proving induction step %d. (%d clauses over %d variables)\n", step, ez->numCnfClauses(), ez->numCnfVariables());
|
|
|
|
if (!ez->solve(new_step_not_consistent)) {
|
2015-01-22 07:03:18 -06:00
|
|
|
log(" Proof for induction step holds. Entire workset of %d cells proven!\n", GetSize(workset));
|
|
|
|
for (auto cell : workset)
|
2020-03-12 14:57:01 -05:00
|
|
|
cell->setPort(ID::B, cell->getPort(ID::A));
|
2015-01-22 07:03:18 -06:00
|
|
|
success_counter += GetSize(workset);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
log(" Proof for induction step failed. %s\n", step != max_seq ? "Extending to next time step." : "Trying to prove individual $equiv from workset.");
|
|
|
|
}
|
|
|
|
|
2015-01-23 17:13:27 -06:00
|
|
|
workset.sort();
|
|
|
|
|
2015-01-22 07:03:18 -06:00
|
|
|
for (auto cell : workset)
|
|
|
|
{
|
2020-03-12 14:57:01 -05:00
|
|
|
SigBit bit_a = sigmap(cell->getPort(ID::A)).as_bit();
|
|
|
|
SigBit bit_b = sigmap(cell->getPort(ID::B)).as_bit();
|
2015-01-22 07:03:18 -06:00
|
|
|
|
2020-03-12 14:57:01 -05:00
|
|
|
log(" Trying to prove $equiv for %s:", log_signal(sigmap(cell->getPort(ID::Y))));
|
2015-01-31 06:58:04 -06:00
|
|
|
|
2015-01-22 07:03:18 -06:00
|
|
|
int ez_a = satgen.importSigBit(bit_a, max_seq+1);
|
|
|
|
int ez_b = satgen.importSigBit(bit_b, max_seq+1);
|
2015-02-21 05:15:41 -06:00
|
|
|
int cond = ez->XOR(ez_a, ez_b);
|
2015-01-22 07:03:18 -06:00
|
|
|
|
2015-01-31 06:58:04 -06:00
|
|
|
if (satgen.model_undef)
|
2015-02-21 05:15:41 -06:00
|
|
|
cond = ez->AND(cond, ez->NOT(satgen.importUndefSigBit(bit_a, max_seq+1)));
|
2015-01-31 06:58:04 -06:00
|
|
|
|
2015-02-21 05:15:41 -06:00
|
|
|
if (!ez->solve(cond)) {
|
2015-01-22 07:03:18 -06:00
|
|
|
log(" success!\n");
|
2020-03-12 14:57:01 -05:00
|
|
|
cell->setPort(ID::B, cell->getPort(ID::A));
|
2015-01-22 07:03:18 -06:00
|
|
|
success_counter++;
|
|
|
|
} else {
|
|
|
|
log(" failed.\n");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
struct EquivInductPass : public Pass {
|
|
|
|
EquivInductPass() : Pass("equiv_induct", "proving $equiv cells using temporal induction") { }
|
2018-07-21 01:41:18 -05:00
|
|
|
void help() YS_OVERRIDE
|
2015-01-22 07:03:18 -06:00
|
|
|
{
|
|
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
|
|
log("\n");
|
|
|
|
log(" equiv_induct [options] [selection]\n");
|
|
|
|
log("\n");
|
|
|
|
log("Uses a version of temporal induction to prove $equiv cells.\n");
|
|
|
|
log("\n");
|
|
|
|
log("Only selected $equiv cells are proven and only selected cells are used to\n");
|
|
|
|
log("perform the proof.\n");
|
|
|
|
log("\n");
|
2015-01-31 06:58:04 -06:00
|
|
|
log(" -undef\n");
|
|
|
|
log(" enable modelling of undef states\n");
|
|
|
|
log("\n");
|
2015-01-22 07:03:18 -06:00
|
|
|
log(" -seq <N>\n");
|
|
|
|
log(" the max. number of time steps to be considered (default = 4)\n");
|
|
|
|
log("\n");
|
2015-01-22 14:23:01 -06:00
|
|
|
log("This command is very effective in proving complex sequential circuits, when\n");
|
|
|
|
log("the internal state of the circuit quickly propagates to $equiv cells.\n");
|
|
|
|
log("\n");
|
|
|
|
log("However, this command uses a weak definition of 'equivalence': This command\n");
|
|
|
|
log("proves that the two circuits will not diverge after they produce equal\n");
|
|
|
|
log("outputs (observable points via $equiv) for at least <N> cycles (the <N>\n");
|
|
|
|
log("specified via -seq).\n");
|
|
|
|
log("\n");
|
|
|
|
log("Combined with simulation this is very powerful because simulation can give\n");
|
|
|
|
log("you confidence that the circuits start out synced for at least <N> cycles\n");
|
|
|
|
log("after reset.\n");
|
|
|
|
log("\n");
|
2015-01-22 07:03:18 -06:00
|
|
|
}
|
2018-07-21 01:41:18 -05:00
|
|
|
void execute(std::vector<std::string> args, Design *design) YS_OVERRIDE
|
2015-01-22 07:03:18 -06:00
|
|
|
{
|
|
|
|
int success_counter = 0;
|
2015-01-31 06:58:04 -06:00
|
|
|
bool model_undef = false;
|
2015-01-22 07:03:18 -06:00
|
|
|
int max_seq = 4;
|
|
|
|
|
2016-04-21 16:28:37 -05:00
|
|
|
log_header(design, "Executing EQUIV_INDUCT pass.\n");
|
2015-01-22 07:03:18 -06:00
|
|
|
|
|
|
|
size_t argidx;
|
|
|
|
for (argidx = 1; argidx < args.size(); argidx++) {
|
2015-01-31 06:58:04 -06:00
|
|
|
if (args[argidx] == "-undef") {
|
|
|
|
model_undef = true;
|
|
|
|
continue;
|
|
|
|
}
|
2015-01-22 07:03:18 -06:00
|
|
|
if (args[argidx] == "-seq" && argidx+1 < args.size()) {
|
|
|
|
max_seq = atoi(args[++argidx].c_str());
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
extra_args(args, argidx, design);
|
|
|
|
|
|
|
|
for (auto module : design->selected_modules())
|
|
|
|
{
|
|
|
|
pool<Cell*> unproven_equiv_cells;
|
|
|
|
|
|
|
|
for (auto cell : module->selected_cells())
|
2020-04-02 11:51:32 -05:00
|
|
|
if (cell->type == ID($equiv)) {
|
2020-03-12 14:57:01 -05:00
|
|
|
if (cell->getPort(ID::A) != cell->getPort(ID::B))
|
2015-01-22 07:03:18 -06:00
|
|
|
unproven_equiv_cells.insert(cell);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (unproven_equiv_cells.empty()) {
|
|
|
|
log("No selected unproven $equiv cells found in %s.\n", log_id(module));
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
2015-01-31 06:58:04 -06:00
|
|
|
EquivInductWorker worker(module, unproven_equiv_cells, model_undef, max_seq);
|
2015-01-22 07:03:18 -06:00
|
|
|
worker.run();
|
|
|
|
success_counter += worker.success_counter;
|
|
|
|
}
|
|
|
|
|
|
|
|
log("Proved %d previously unproven $equiv cells.\n", success_counter);
|
|
|
|
}
|
|
|
|
} EquivInductPass;
|
|
|
|
|
|
|
|
PRIVATE_NAMESPACE_END
|