yosys/docs/source/yosys_internals/extending_yosys/functional_ir.rst

216 lines
9.7 KiB
ReStructuredText
Raw Normal View History

2024-08-27 05:11:02 -05:00
Writing a new backend using FunctionalIR
========================================
2024-08-27 05:11:02 -05:00
What is FunctionalIR
--------------------
2024-08-27 05:11:02 -05:00
To simplify the writing of backends for functional languages or similar targets,
Yosys provides an alternative intermediate representation called FunctionalIR
which maps more directly on those targets.
2024-08-27 05:11:02 -05:00
FunctionalIR represents the design as a function ``(inputs, current_state) ->
(outputs, next_state)``. This function is broken down into a series of
assignments to variables. Each assignment is a simple operation, such as an
addition. Complex operations are broken up into multiple steps. For example, an
RTLIL addition will be translated into a sign/zero extension of the inputs,
followed by an addition.
2024-08-27 05:11:02 -05:00
Like SSA form, each variable is assigned to exactly once. We can thus treat
variables and assignments as equivalent and, since this is a graph-like
representation, those variables are also called "nodes". Unlike RTLIL's cells
and wires representation, this representation is strictly ordered (topologically
sorted) with definitions preceding their use.
Every node has a "sort" (the FunctionalIR term for what might otherwise be
called a "type"). The sorts available are
2024-08-27 05:11:02 -05:00
- ``bit[n]`` for an ``n``-bit bitvector, and
- ``memory[n,m]`` for an immutable array of ``2**n`` values of sort ``bit[m]``.
In terms of actual code, Yosys provides a class ``Functional::IR`` that
represents a design in FunctionalIR. ``Functional::IR::from_module`` generates
an instance from an RTLIL module. The entire design is stored as a whole in an
internal data structure. To access the design, the ``Functional::Node`` class
provides a reference to a particular node in the design. The ``Functional::IR``
class supports the syntax ``for(auto node : ir)`` to iterate over every node.
``Functional::IR`` also keeps track of inputs, outputs and states. By a "state"
we mean a pair of a "current state" input and a "next state" output. One such
pair is created for every register and for every memory. Every input, output and
state has a name (equal to their name in RTLIL), a sort and a kind. The kind
field usually remains as the default value ``$input``, ``$output`` or
``$state``, however some RTLIL cells such as ``$assert`` or ``$anyseq`` generate
auxiliary inputs/outputs/states that are given a different kind to distinguish
them from ordinary RTLIL inputs/outputs/states.
- To access an individual input/output/state, use ``ir.input(name, kind)``,
``ir.output(name, kind)`` or ``ir.state(name, kind)``. ``kind`` defaults to
the default kind.
- To iterate over all inputs/outputs/states of a certain kind, methods
``ir.inputs``, ``ir.outputs``, ``ir.states`` are provided. Their argument
defaults to the default kinds mentioned.
- To iterate over inputs/outputs/states of any kind, use ``ir.all_inputs``,
``ir.all_outputs`` and ``ir.all_states``.
- Outputs have a node that indicate the value of the output, this can be
retrieved via ``output.value()``.
- States have a node that indicate the next value of the state, this can be
retrieved via ``state.next_value()``. They also have an initial value that is
accessed as either ``state.initial_value_signal()`` or
``state.initial_value_memory()``, depending on their sort.
Each node has a "function", which defines its operation (for a complete list of
functions and a specification of their operation, see ``functional.h``).
Functions are represented as an enum ``Functional::Fn`` and the function field
can be accessed as ``node.fn()``. Since the most common operation is a switch
over the function that also accesses the arguments, the ``Node`` class provides
a method ``visit`` that implements the visitor pattern. For example, for an
addition node ``node`` with arguments ``n1`` and ``n2``, ``node.visit(visitor)``
would call ``visitor.add(node, n1, n2)``. Thus typically one would implement a
class with a method for every function. Visitors should inherit from either
``Functional::AbstractVisitor<ReturnType>`` or
``Functional::DefaultVisitor<ReturnType>``. The former will produce a compiler
error if a case is unhandled, the latter will call ``default_handler(node)``
instead. Visitor methods should be marked as ``override`` to provide compiler
errors if the arguments are wrong.
2024-08-28 05:28:24 -05:00
Utility classes
~~~~~~~~~~~~~~~
2024-08-28 05:28:24 -05:00
``functional.h`` also provides utility classes that are independent of the main
FunctionalIR representation but are likely to be useful for backends.
2024-08-28 05:28:24 -05:00
``Functional::Writer`` provides a simple formatting class that wraps a
``std::ostream`` and provides the following methods:
2024-08-28 05:28:24 -05:00
- ``writer << value`` wraps ``os << value``.
- ``writer.print(fmt, value0, value1, value2, ...)`` replaces ``{0}``, ``{1}``,
``{2}``, etc in the string ``fmt`` with ``value0``, ``value1``, ``value2``,
resp. Each value is formatted using ``os << value``. It is also possible to
write ``{}`` to refer to one past the last index, i.e. ``{1} {} {} {7} {}`` is
equivalent to ``{1} {2} {3} {7} {8}``.
- ``writer.print_with(fn, fmt, value0, value1, value2, ...)`` functions much the
same as ``print`` but it uses ``os << fn(value)`` to print each value and
falls back to ``os << value`` if ``fn(value)`` is not legal.
``Functional::Scope`` keeps track of variable names in a target language. It is
used to translate between different sets of legal characters and to avoid
accidentally re-defining identifiers. Users should derive a class from ``Scope``
and supply the following:
- ``Scope<Id>`` takes a template argument that specifies a type that's used to
uniquely distinguish variables. Typically this would be ``int`` (if variables
are used for ``Functional::IR`` nodes) or ``IdString``.
- The derived class should provide a constructor that calls ``reserve`` for
every reserved word in the target language.
- A method ``bool is_legal_character(char c, int index)`` has to be provided
that returns ``true`` iff ``c`` is legal in an identifier at position
``index``.
Given an instance ``scope`` of the derived class, the following methods are then
available:
- ``scope.reserve(std::string name)`` marks the given name as being in-use
- ``scope.unique_name(IdString suggestion)`` generates a previously unused name
and attempts to make it similar to ``suggestion``.
- ``scope(Id id, IdString suggestion)`` functions similar to ``unique_name``,
except that multiple calls with the same ``id`` are guaranteed to retrieve the
same name (independent of ``suggestion``).
``sexpr.h`` provides classes that represent and pretty-print s-expressions.
S-expressions can be constructed with ``SExpr::list``, for example ``SExpr expr
= SExpr::list("add", "x", SExpr::list("mul", "y", "z"))`` represents ``(add x
(mul y z))`` (by adding ``using SExprUtil::list`` to the top of the file,
``list`` can be used as shorthand for ``SExpr::list``). For prettyprinting,
``SExprWriter`` wraps an ``std::ostream`` and provides the following methods:
- ``writer << sexpr`` writes the provided expression to the output, breaking
long lines and adding appropriate indentation.
- ``writer.open(sexpr)`` is similar to ``writer << sexpr`` but will omit the
last closing parenthesis. Further arguments can then be added separately with
``<<`` or ``open``. This allows for printing large s-expressions without
needing to construct the whole expression in memory first.
- ``writer.open(sexpr, false)`` is similar to ``writer.open(sexpr)`` but further
arguments will not be indented. This is used to avoid unlimited indentation on
structures with unlimited nesting.
- ``writer.close(n = 1)`` closes the last ``n`` open s-expressions.
- ``writer.push()`` and ``writer.pop()`` are used to automatically close
s-expressions. ``writer.pop()`` closes all s-expressions opened since the last
call to ``writer.push()``.
- ``writer.comment(string)`` writes a comment on a separate-line.
``writer.comment(string, true)`` appends a comment to the last printed
s-expression.
- ``writer.flush()`` flushes any buffering and should be called before any
direct access to the underlying ``std::ostream``. It does not close unclosed
parentheses.
- The destructor calls ``flush`` but also closes all unclosed parentheses.
Example: Adapting SMT-LIB backend for Rosette
---------------------------------------------
Overview
~~~~~~~~
- What is Rosette
- Racket package
- solver-aided programming language
- uses symbolic expressions
- able to perform functional verification
- link to file (both smtlib and rosette)
Scope
~~~~~
- as above, prevents namespace collision
- reserved keywords
- language (Racket) keywords
- output keywords
- ``is_character_legal``
Sort
~~~~
- map variable declarations to s-expressions
- handles signals (bitvectors) and memories (arrays of bitvectors)
Struct
~~~~~~
- helpers for defining inputs/outputs/state
- each is a single (transparent) struct with zero or more fields
- each field has a name, with the type (sort) as a comment
- struct fields in Rosette are accessed as ``<struct_name>-<field_name>``
- field names only need to be unique within the struct, while accessors
are unique within the module
- writing outputs/next state
PrintVisitor
~~~~~~~~~~~~
- map FunctionalIR operations to Rosette
- most functions are the same or very similar to their corresponding smtlib
function
- reading inputs/current state
Module
~~~~~~
- map RTLIL module to FunctionalIR
- iterate over FunctionalIR and map to Rosette
- defines the mapping function, ``(inputs, current_state) -> (outputs,
next_state)``
Backend
~~~~~~~
- registers the `write_functional_rosette` command
- options (``-provides``)
- allows file to be treated as a Racket package with structs and mapping
function available for use externally
- opens and prepares file for writing
- iterates over modules in design