yosys/techlibs/greenpak4/cells_sim.v

642 lines
12 KiB
Coq
Raw Normal View History

2016-05-07 23:14:18 -05:00
`timescale 1ns/1ps
2016-05-07 23:13:47 -05:00
2016-04-14 01:13:39 -05:00
module GP_2LUT(input IN0, IN1, output OUT);
parameter [3:0] INIT = 0;
assign OUT = INIT[{IN1, IN0}];
endmodule
module GP_3LUT(input IN0, IN1, IN2, output OUT);
parameter [7:0] INIT = 0;
assign OUT = INIT[{IN2, IN1, IN0}];
endmodule
module GP_4LUT(input IN0, IN1, IN2, IN3, output OUT);
parameter [15:0] INIT = 0;
assign OUT = INIT[{IN3, IN2, IN1, IN0}];
endmodule
2016-05-02 22:27:41 -05:00
module GP_ABUF(input wire IN, output wire OUT);
2016-05-02 22:27:41 -05:00
assign OUT = IN;
//must be 1, 5, 20, 50
//values >1 only available with Vdd > 2.7V
parameter BANDWIDTH_KHZ = 1;
2016-05-02 22:29:39 -05:00
//cannot simulate mixed signal IP
2016-05-02 22:27:41 -05:00
endmodule
2016-04-24 00:53:49 -05:00
module GP_ACMP(input wire PWREN, input wire VIN, input wire VREF, output reg OUT);
2016-04-24 00:33:36 -05:00
parameter BANDWIDTH = "HIGH";
parameter VIN_ATTEN = 1;
parameter VIN_ISRC_EN = 0;
parameter HYSTERESIS = 0;
2016-04-24 00:53:49 -05:00
initial OUT = 0;
2016-04-24 00:33:36 -05:00
//cannot simulate mixed signal IP
endmodule
2016-07-12 00:45:42 -05:00
module GP_BANDGAP(output reg OK);
2016-04-14 01:13:39 -05:00
parameter AUTO_PWRDN = 1;
parameter CHOPPER_EN = 1;
parameter OUT_DELAY = 100;
2016-04-14 01:13:39 -05:00
//cannot simulate mixed signal IP
2016-04-14 01:13:39 -05:00
endmodule
module GP_CLKBUF(input wire IN, output wire OUT);
assign OUT = IN;
endmodule
module GP_COUNT8(input CLK, input wire RST, output reg OUT, output reg[7:0] POUT);
2016-04-14 01:13:39 -05:00
parameter RESET_MODE = "RISING";
2016-04-14 01:13:39 -05:00
parameter COUNT_TO = 8'h1;
parameter CLKIN_DIVIDE = 1;
2016-04-14 01:13:39 -05:00
//more complex hard IP blocks are not supported for simulation yet
2016-04-14 01:13:39 -05:00
reg[7:0] count = COUNT_TO;
2016-04-14 01:13:39 -05:00
//Combinatorially output whenever we wrap low
always @(*) begin
OUT <= (count == 8'h0);
OUT <= count;
2016-04-14 01:13:39 -05:00
end
2016-04-14 01:13:39 -05:00
//POR or SYSRST reset value is COUNT_TO. Datasheet is unclear but conversations w/ Silego confirm.
//Runtime reset value is clearly 0 except in count/FSM cells where it's configurable but we leave at 0 for now.
//Datasheet seems to indicate that reset is asynchronous, but for now we model as sync due to Yosys issues...
always @(posedge CLK) begin
2016-04-14 01:13:39 -05:00
count <= count - 1'd1;
2016-04-14 01:13:39 -05:00
if(count == 0)
2016-05-07 23:14:00 -05:00
count <= COUNT_TO;
2016-04-14 01:13:39 -05:00
/*
if((RESET_MODE == "RISING") && RST)
count <= 0;
if((RESET_MODE == "FALLING") && !RST)
count <= 0;
if((RESET_MODE == "BOTH") && RST)
count <= 0;
*/
2016-04-14 01:13:39 -05:00
end
endmodule
module GP_COUNT14(input CLK, input wire RST, output reg OUT);
parameter RESET_MODE = "RISING";
2016-04-14 01:13:39 -05:00
parameter COUNT_TO = 14'h1;
parameter CLKIN_DIVIDE = 1;
2016-04-14 01:13:39 -05:00
//more complex hard IP blocks are not supported for simulation yet
endmodule
module GP_COUNT8_ADV(input CLK, input RST, output reg OUT,
input UP, input KEEP, output reg[7:0] POUT);
parameter RESET_MODE = "RISING";
parameter RESET_VALUE = "ZERO";
parameter COUNT_TO = 8'h1;
parameter CLKIN_DIVIDE = 1;
//more complex hard IP blocks are not supported for simulation yet
endmodule
module GP_COUNT14_ADV(input CLK, input RST, output reg OUT,
input UP, input KEEP, output reg[7:0] POUT);
parameter RESET_MODE = "RISING";
parameter RESET_VALUE = "ZERO";
parameter COUNT_TO = 14'h1;
parameter CLKIN_DIVIDE = 1;
//more complex hard IP blocks are not supported for simulation yet
endmodule
2016-07-12 00:45:55 -05:00
module GP_DAC(input[7:0] DIN, input wire VREF, output reg VOUT);
initial VOUT = 0;
//analog hard IP is not supported for simulation
endmodule
2016-12-16 22:01:22 -06:00
module GP_DCMP(input[7:0] INP, input[7:0] INN, input CLK, input PWRDN, output reg GREATER, output reg EQUAL);
parameter PWRDN_SYNC = 1'b0;
parameter CLK_EDGE = "RISING";
parameter GREATER_OR_EQUAL = 1'b0;
//TODO implement power-down mode
initial GREATER = 0;
initial EQUAL = 0;
wire clk_minv = (CLK_EDGE == "RISING") ? CLK : ~CLK;
always @(posedge clk_minv) begin
if(GREATER_OR_EQUAL)
GREATER <= (INP >= INN);
else
GREATER <= (INP > INN);
EQUAL <= (INP == INN);
end
endmodule
module GP_DCMPREF(output reg[7:0]OUT);
parameter[7:0] REF_VAL = 8'h00;
initial OUT = REF_VAL;
endmodule
module GP_DCMPMUX(input[1:0] SEL, input[7:0] IN0, input[7:0] IN1, input[7:0] IN2, input[7:0] IN3, output reg[7:0] OUTA, output reg[7:0] OUTB);
always @(*) begin
case(SEL)
2'd00: begin
OUTA <= IN0;
OUTB <= IN3;
end
2'd01: begin
OUTA <= IN1;
OUTB <= IN2;
end
2'd02: begin
OUTA <= IN2;
OUTB <= IN1;
end
2'd03: begin
OUTA <= IN3;
OUTB <= IN0;
end
2016-12-14 17:17:07 -06:00
endcase
end
endmodule
2016-05-07 23:29:26 -05:00
module GP_DELAY(input IN, output reg OUT);
2016-05-07 23:29:26 -05:00
parameter DELAY_STEPS = 1;
parameter GLITCH_FILTER = 0;
2016-05-07 23:29:26 -05:00
initial OUT = 0;
2016-05-07 23:29:26 -05:00
generate
2016-05-07 23:29:26 -05:00
//TODO: These delays are PTV dependent! For now, hard code 3v3 timing
//Change simulation-mode delay depending on global Vdd range (how to specify this?)
always @(*) begin
case(DELAY_STEPS)
1: #166 OUT = IN;
2: #318 OUT = IN;
2: #471 OUT = IN;
3: #622 OUT = IN;
default: begin
$display("ERROR: GP_DELAY must have DELAY_STEPS in range [1,4]");
$finish;
end
endcase
end
2016-05-07 23:29:26 -05:00
endgenerate
2016-05-07 23:29:26 -05:00
endmodule
2016-03-23 02:46:10 -05:00
module GP_DFF(input D, CLK, output reg Q);
2016-03-23 02:12:54 -05:00
parameter [0:0] INIT = 1'bx;
initial Q = INIT;
2016-03-23 02:46:10 -05:00
always @(posedge CLK) begin
Q <= D;
end
endmodule
module GP_DFFI(input D, CLK, output reg nQ);
2016-08-14 02:11:44 -05:00
parameter [0:0] INIT = 1'bx;
initial nQ = INIT;
2016-08-14 02:11:44 -05:00
always @(posedge CLK) begin
nQ <= ~D;
2016-08-14 02:11:44 -05:00
end
endmodule
2016-04-14 01:13:39 -05:00
module GP_DFFR(input D, CLK, nRST, output reg Q);
2016-03-23 02:46:10 -05:00
parameter [0:0] INIT = 1'bx;
initial Q = INIT;
2016-04-14 01:13:39 -05:00
always @(posedge CLK, negedge nRST) begin
if (!nRST)
Q <= 1'b0;
2015-09-16 02:28:37 -05:00
else
Q <= D;
end
endmodule
module GP_DFFRI(input D, CLK, nRST, output reg nQ);
2016-08-14 02:11:44 -05:00
parameter [0:0] INIT = 1'bx;
initial nQ = INIT;
2016-08-14 02:11:44 -05:00
always @(posedge CLK, negedge nRST) begin
if (!nRST)
nQ <= 1'b1;
2016-08-14 02:11:44 -05:00
else
nQ <= ~D;
2016-08-14 02:11:44 -05:00
end
endmodule
2016-04-14 01:13:39 -05:00
module GP_DFFS(input D, CLK, nSET, output reg Q);
2016-03-23 02:46:10 -05:00
parameter [0:0] INIT = 1'bx;
initial Q = INIT;
2016-04-14 01:13:39 -05:00
always @(posedge CLK, negedge nSET) begin
if (!nSET)
Q <= 1'b1;
2016-03-23 02:46:10 -05:00
else
Q <= D;
end
endmodule
module GP_DFFSI(input D, CLK, nSET, output reg nQ);
2016-08-14 02:11:44 -05:00
parameter [0:0] INIT = 1'bx;
initial nQ = INIT;
2016-08-14 02:11:44 -05:00
always @(posedge CLK, negedge nSET) begin
if (!nSET)
nQ <= 1'b0;
2016-08-14 02:11:44 -05:00
else
nQ <= ~D;
2016-08-14 02:11:44 -05:00
end
endmodule
2016-03-23 02:46:10 -05:00
module GP_DFFSR(input D, CLK, nSR, output reg Q);
parameter [0:0] INIT = 1'bx;
parameter [0:0] SRMODE = 1'bx;
initial Q = INIT;
always @(posedge CLK, negedge nSR) begin
if (!nSR)
Q <= SRMODE;
else
Q <= D;
end
endmodule
module GP_DFFSRI(input D, CLK, nSR, output reg nQ);
2016-08-14 02:11:44 -05:00
parameter [0:0] INIT = 1'bx;
parameter [0:0] SRMODE = 1'bx;
initial nQ = INIT;
2016-08-14 02:11:44 -05:00
always @(posedge CLK, negedge nSR) begin
if (!nSR)
nQ <= ~SRMODE;
2016-08-14 02:11:44 -05:00
else
nQ <= ~D;
2016-08-14 02:11:44 -05:00
end
endmodule
2016-12-06 01:49:06 -06:00
module GP_DLATCH(input D, input nCLK, output reg Q);
parameter [0:0] INIT = 1'bx;
initial Q = INIT;
always @(*) begin
if(!nCLK)
Q <= D;
end
endmodule
module GP_DLATCHI(input D, input nCLK, output reg nQ);
2016-12-06 01:49:06 -06:00
parameter [0:0] INIT = 1'bx;
initial nQ = INIT;
2016-12-06 01:49:06 -06:00
always @(*) begin
if(!nCLK)
nQ <= ~D;
2016-12-06 01:49:06 -06:00
end
endmodule
module GP_DLATCHR(input D, input nCLK, input nRST, output reg Q);
parameter [0:0] INIT = 1'bx;
initial Q = INIT;
always @(*) begin
if(!nRST)
Q <= 1'b0;
else if(!nCLK)
Q <= D;
end
endmodule
module GP_DLATCHRI(input D, input nCLK, input nRST, output reg nQ);
parameter [0:0] INIT = 1'bx;
initial nQ = INIT;
always @(*) begin
if(!nRST)
nQ <= 1'b1;
else if(!nCLK)
nQ <= ~D;
end
endmodule
module GP_DLATCHS(input D, input nCLK, input nSET, output reg Q);
parameter [0:0] INIT = 1'bx;
initial Q = INIT;
always @(*) begin
if(!nSET)
Q <= 1'b1;
else if(!nCLK)
Q <= D;
end
endmodule
module GP_DLATCHSI(input D, input nCLK, input nSET, output reg nQ);
parameter [0:0] INIT = 1'bx;
initial nQ = INIT;
always @(*) begin
if(!nSET)
nQ <= 1'b0;
else if(!nCLK)
nQ <= ~D;
end
endmodule
module GP_DLATCHSR(input D, input nCLK, input nSR, output reg Q);
parameter [0:0] INIT = 1'bx;
parameter[0:0] SRMODE = 1'bx;
initial Q = INIT;
always @(*) begin
if(!nSR)
Q <= SRMODE;
else if(!nCLK)
Q <= D;
end
endmodule
module GP_DLATCHSRI(input D, input nCLK, input nSR, output reg nQ);
parameter [0:0] INIT = 1'bx;
parameter[0:0] SRMODE = 1'bx;
initial nQ = INIT;
always @(*) begin
if(!nSR)
nQ <= ~SRMODE;
else if(!nCLK)
nQ <= ~D;
end
endmodule
2016-08-14 02:11:44 -05:00
module GP_EDGEDET(input IN, output reg OUT);
parameter EDGE_DIRECTION = "RISING";
parameter DELAY_STEPS = 1;
parameter GLITCH_FILTER = 0;
//not implemented for simulation
endmodule
2016-05-04 00:03:04 -05:00
module GP_IBUF(input IN, output OUT);
assign OUT = IN;
endmodule
module GP_IOBUF(input IN, input OE, output OUT, inout IO);
assign OUT = IO;
assign IO = OE ? IN : 1'bz;
2016-05-04 00:03:04 -05:00
endmodule
2016-04-01 23:18:29 -05:00
module GP_INV(input IN, output OUT);
assign OUT = ~IN;
endmodule
2016-03-26 15:42:53 -05:00
module GP_LFOSC(input PWRDN, output reg CLKOUT);
2016-03-26 15:42:53 -05:00
parameter PWRDN_EN = 0;
parameter AUTO_PWRDN = 0;
parameter OUT_DIV = 1;
2016-03-26 15:42:53 -05:00
initial CLKOUT = 0;
2016-04-07 00:40:25 -05:00
//auto powerdown not implemented for simulation
//output dividers not implemented for simulation
2016-03-26 15:42:53 -05:00
always begin
if(PWRDN)
2016-04-07 01:10:34 -05:00
CLKOUT = 0;
2016-03-26 15:42:53 -05:00
else begin
//half period of 1730 Hz
#289017;
2016-04-07 01:10:34 -05:00
CLKOUT = ~CLKOUT;
2016-03-26 15:42:53 -05:00
end
end
2016-03-26 15:42:53 -05:00
endmodule
2016-03-27 01:29:02 -05:00
2016-05-04 00:03:04 -05:00
module GP_OBUF(input IN, output OUT);
assign OUT = IN;
endmodule
module GP_OBUFT(input IN, input OE, output OUT);
assign OUT = OE ? IN : 1'bz;
endmodule
2016-04-28 01:07:21 -05:00
module GP_PGA(input wire VIN_P, input wire VIN_N, input wire VIN_SEL, output reg VOUT);
parameter GAIN = 1;
parameter INPUT_MODE = "SINGLE";
initial VOUT = 0;
//cannot simulate mixed signal IP
endmodule
module GP_PGEN(input wire nRST, input wire CLK, output reg OUT);
initial OUT = 0;
parameter PATTERN_DATA = 16'h0;
2016-10-18 22:46:49 -05:00
parameter PATTERN_LEN = 5'd16;
reg[3:0] count = 0;
always @(posedge CLK) begin
if(!nRST)
OUT <= PATTERN_DATA[0];
else begin
count <= count + 1;
OUT <= PATTERN_DATA[count];
if( (count + 1) == PATTERN_LEN)
count <= 0;
end
end
endmodule
module GP_PWRDET(output reg VDD_LOW);
initial VDD_LOW = 0;
endmodule
2016-04-14 01:13:39 -05:00
module GP_POR(output reg RST_DONE);
parameter POR_TIME = 500;
2016-04-14 01:13:39 -05:00
initial begin
RST_DONE = 0;
2016-04-14 01:13:39 -05:00
if(POR_TIME == 4)
#4000;
else if(POR_TIME == 500)
#500000;
2016-04-07 00:40:25 -05:00
else begin
2016-04-14 01:13:39 -05:00
$display("ERROR: bad POR_TIME for GP_POR cell");
$finish;
2016-04-07 00:40:25 -05:00
end
2016-04-14 01:13:39 -05:00
RST_DONE = 1;
2016-04-07 00:40:25 -05:00
end
2016-04-07 00:40:25 -05:00
endmodule
module GP_RCOSC(input PWRDN, output reg CLKOUT_HARDIP, output reg CLKOUT_FABRIC);
2016-04-09 03:17:13 -05:00
parameter PWRDN_EN = 0;
parameter AUTO_PWRDN = 0;
parameter HARDIP_DIV = 1;
2016-04-09 03:17:13 -05:00
parameter FABRIC_DIV = 1;
2016-04-09 03:18:02 -05:00
parameter OSC_FREQ = "25k";
initial CLKOUT_HARDIP = 0;
2016-04-09 03:17:13 -05:00
initial CLKOUT_FABRIC = 0;
2016-04-09 03:17:13 -05:00
//output dividers not implemented for simulation
//auto powerdown not implemented for simulation
2016-04-09 03:17:13 -05:00
always begin
if(PWRDN) begin
CLKOUT_HARDIP = 0;
2016-04-09 03:17:13 -05:00
CLKOUT_FABRIC = 0;
end
else begin
2016-04-09 03:17:13 -05:00
if(OSC_FREQ == "25k") begin
//half period of 25 kHz
#20000;
end
2016-04-09 03:17:13 -05:00
else begin
//half period of 2 MHz
#250;
end
CLKOUT_HARDIP = ~CLKOUT_HARDIP;
2016-04-09 03:17:13 -05:00
CLKOUT_FABRIC = ~CLKOUT_FABRIC;
end
end
2016-04-09 03:17:13 -05:00
endmodule
module GP_RINGOSC(input PWRDN, output reg CLKOUT_HARDIP, output reg CLKOUT_FABRIC);
2016-04-14 01:13:39 -05:00
parameter PWRDN_EN = 0;
parameter AUTO_PWRDN = 0;
parameter HARDIP_DIV = 1;
2016-04-14 01:13:39 -05:00
parameter FABRIC_DIV = 1;
initial CLKOUT_HARDIP = 0;
2016-04-14 01:13:39 -05:00
initial CLKOUT_FABRIC = 0;
2016-04-14 01:13:39 -05:00
//output dividers not implemented for simulation
//auto powerdown not implemented for simulation
2016-04-14 01:13:39 -05:00
always begin
if(PWRDN) begin
CLKOUT_HARDIP = 0;
2016-04-14 01:13:39 -05:00
CLKOUT_FABRIC = 0;
end
else begin
//half period of 27 MHz
#18.518;
CLKOUT_HARDIP = ~CLKOUT_HARDIP;
2016-04-14 01:13:39 -05:00
CLKOUT_FABRIC = ~CLKOUT_FABRIC;
end
end
2016-03-27 01:29:02 -05:00
endmodule
2016-03-29 00:49:46 -05:00
2016-04-14 01:13:51 -05:00
module GP_SHREG(input nRST, input CLK, input IN, output OUTA, output OUTB);
2016-05-04 19:03:45 -05:00
parameter OUTA_TAP = 1;
2016-04-14 01:13:51 -05:00
parameter OUTA_INVERT = 0;
2016-05-04 19:03:45 -05:00
parameter OUTB_TAP = 1;
2016-04-14 01:13:51 -05:00
reg[15:0] shreg = 0;
2016-05-07 23:14:42 -05:00
always @(posedge CLK, negedge nRST) begin
2016-04-14 01:13:51 -05:00
if(!nRST)
shreg = 0;
2016-04-14 01:13:51 -05:00
else
shreg <= {shreg[14:0], IN};
2016-04-14 01:13:51 -05:00
end
2016-05-04 19:03:45 -05:00
assign OUTA = (OUTA_INVERT) ? ~shreg[OUTA_TAP - 1] : shreg[OUTA_TAP - 1];
assign OUTB = shreg[OUTB_TAP - 1];
2016-04-14 01:13:51 -05:00
endmodule
module GP_SPI(
input SCK,
inout SDAT,
input CSN,
input[7:0] TXD_HIGH,
input[7:0] TXD_LOW,
output reg[7:0] RXD_HIGH,
2016-12-20 21:35:29 -06:00
output reg[7:0] RXD_LOW,
output reg INT);
initial DOUT_HIGH = 0;
initial DOUT_LOW = 0;
2016-12-20 21:35:29 -06:00
initial INT = 0;
parameter DATA_WIDTH = 8; //byte or word width
parameter SPI_CPHA = 0; //SPI clock phase
parameter SPI_CPOL = 0; //SPI clock polarity
parameter DIRECTION = "INPUT"; //SPI data direction (either input to chip or output to host)
//parallel output to fabric not yet implemented
//TODO: write sim model
//TODO: SPI SDIO control... can we use ADC output while SPI is input??
//TODO: clock sync
endmodule
//keep constraint needed to prevent optimization since we have no outputs
(* keep *)
2016-03-29 00:49:46 -05:00
module GP_SYSRESET(input RST);
parameter RESET_MODE = "EDGE";
parameter EDGE_SPEED = 4;
2016-03-29 00:49:46 -05:00
//cannot simulate whole system reset
2016-03-29 00:49:46 -05:00
endmodule
2016-04-04 18:56:43 -05:00
2016-04-14 01:13:39 -05:00
module GP_VDD(output OUT);
assign OUT = 1;
2016-04-04 18:56:43 -05:00
endmodule
2016-04-04 23:46:07 -05:00
2016-04-20 22:48:19 -05:00
module GP_VREF(input VIN, output reg VOUT);
parameter VIN_DIV = 1;
parameter VREF = 0;
//cannot simulate mixed signal IP
endmodule
2016-04-14 01:13:39 -05:00
module GP_VSS(output OUT);
assign OUT = 0;
2016-04-04 23:46:07 -05:00
endmodule