yosys/frontends/ast/simplify.cc

5084 lines
181 KiB
C++
Raw Normal View History

2013-01-05 04:13:26 -06:00
/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
2015-07-02 04:14:30 -05:00
*
2013-01-05 04:13:26 -06:00
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
2015-07-02 04:14:30 -05:00
*
2013-01-05 04:13:26 -06:00
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* ---
*
* This is the AST frontend library.
*
* The AST frontend library is not a frontend on it's own but provides a
* generic abstract syntax tree (AST) abstraction for HDL code and can be
* used by HDL frontends. See "ast.h" for an overview of the API and the
* Verilog frontend for an usage example.
*
*/
#include "kernel/log.h"
#include "libs/sha1/sha1.h"
2014-10-26 14:33:10 -05:00
#include "frontends/verilog/verilog_frontend.h"
2013-01-05 04:13:26 -06:00
#include "ast.h"
#include <sstream>
#include <stdarg.h>
2014-10-26 14:33:10 -05:00
#include <stdlib.h>
2014-06-14 01:51:22 -05:00
#include <math.h>
2013-01-05 04:13:26 -06:00
YOSYS_NAMESPACE_BEGIN
2013-01-05 04:13:26 -06:00
using namespace AST;
using namespace AST_INTERNAL;
// Process a format string and arguments for $display, $write, $sprintf, etc
std::string AstNode::process_format_str(const std::string &sformat, int next_arg, int stage, int width_hint, bool sign_hint) {
// Other arguments are placeholders. Process the string as we go through it
std::string sout;
for (size_t i = 0; i < sformat.length(); i++)
{
// format specifier
if (sformat[i] == '%')
{
// If there's no next character, that's a problem
if (i+1 >= sformat.length())
log_file_error(filename, location.first_line, "System task `%s' called with `%%' at end of string.\n", str.c_str());
char cformat = sformat[++i];
// %% is special, does not need a matching argument
if (cformat == '%')
{
sout += '%';
continue;
}
bool got_len = false;
bool got_zlen = false;
int len_value = 0;
while ('0' <= cformat && cformat <= '9')
{
if (!got_len && cformat == '0')
got_zlen = true;
got_len = true;
len_value = 10*len_value + (cformat - '0');
cformat = sformat[++i];
}
// Simplify the argument
AstNode *node_arg = nullptr;
// Everything from here on depends on the format specifier
switch (cformat)
{
case 's':
case 'S':
case 'd':
case 'D':
2020-08-09 10:31:57 -05:00
if (got_len && len_value != 0)
goto unsupported_format;
YS_FALLTHROUGH
case 'x':
case 'X':
if (next_arg >= GetSize(children))
log_file_error(filename, location.first_line, "Missing argument for %%%c format specifier in system task `%s'.\n",
cformat, str.c_str());
node_arg = children[next_arg++];
while (node_arg->simplify(true, false, false, stage, width_hint, sign_hint, false)) { }
if (node_arg->type != AST_CONSTANT)
log_file_error(filename, location.first_line, "Failed to evaluate system task `%s' with non-constant argument.\n", str.c_str());
break;
case 'm':
case 'M':
if (got_len)
goto unsupported_format;
break;
case 'l':
case 'L':
if (got_len)
goto unsupported_format;
break;
default:
unsupported_format:
log_file_error(filename, location.first_line, "System task `%s' called with invalid/unsupported format specifier.\n", str.c_str());
break;
}
switch (cformat)
{
case 's':
case 'S':
sout += node_arg->bitsAsConst().decode_string();
break;
case 'd':
case 'D':
sout += stringf("%d", node_arg->bitsAsConst().as_int());
break;
case 'x':
case 'X':
{
Const val = node_arg->bitsAsConst();
while (GetSize(val) % 4 != 0)
val.bits.push_back(State::S0);
int len = GetSize(val) / 4;
for (int i = len; i < len_value; i++)
sout += got_zlen ? '0' : ' ';
for (int i = len-1; i >= 0; i--) {
Const digit = val.extract(4*i, 4);
if (digit.is_fully_def())
sout += stringf(cformat == 'x' ? "%x" : "%X", digit.as_int());
else
sout += cformat == 'x' ? "x" : "X";
}
}
break;
case 'm':
case 'M':
sout += log_id(current_module->name);
break;
case 'l':
case 'L':
sout += log_id(current_module->name);
break;
default:
log_abort();
}
}
// not a format specifier
else
sout += sformat[i];
}
return sout;
}
2020-05-08 08:40:49 -05:00
void AstNode::annotateTypedEnums(AstNode *template_node)
{
//check if enum
if (template_node->attributes.count(ID::enum_type)) {
//get reference to enum node:
std::string enum_type = template_node->attributes[ID::enum_type]->str.c_str();
// log("enum_type=%s (count=%lu)\n", enum_type.c_str(), current_scope.count(enum_type));
// log("current scope:\n");
// for (auto &it : current_scope)
// log(" %s\n", it.first.c_str());
log_assert(current_scope.count(enum_type) == 1);
AstNode *enum_node = current_scope.at(enum_type);
log_assert(enum_node->type == AST_ENUM);
while (enum_node->simplify(true, false, false, 1, -1, false, true)) { }
2020-05-08 08:40:49 -05:00
//get width from 1st enum item:
log_assert(enum_node->children.size() >= 1);
AstNode *enum_item0 = enum_node->children[0];
log_assert(enum_item0->type == AST_ENUM_ITEM);
int width;
if (!enum_item0->range_valid)
width = 1;
else if (enum_item0->range_swapped)
width = enum_item0->range_right - enum_item0->range_left + 1;
else
width = enum_item0->range_left - enum_item0->range_right + 1;
log_assert(width > 0);
//add declared enum items:
for (auto enum_item : enum_node->children){
log_assert(enum_item->type == AST_ENUM_ITEM);
//get is_signed
bool is_signed;
if (enum_item->children.size() == 1){
is_signed = false;
} else if (enum_item->children.size() == 2){
log_assert(enum_item->children[1]->type == AST_RANGE);
is_signed = enum_item->children[1]->is_signed;
} else {
log_error("enum_item children size==%lu, expected 1 or 2 for %s (%s)\n",
enum_item->children.size(),
enum_item->str.c_str(), enum_node->str.c_str()
);
}
//start building attribute string
std::string enum_item_str = "\\enum_value_";
//get enum item value
if(enum_item->children[0]->type != AST_CONSTANT){
log_error("expected const, got %s for %s (%s)\n",
type2str(enum_item->children[0]->type).c_str(),
enum_item->str.c_str(), enum_node->str.c_str()
);
}
RTLIL::Const val = enum_item->children[0]->bitsAsConst(width, is_signed);
enum_item_str.append(val.as_string());
//set attribute for available val to enum item name mappings
attributes[enum_item_str.c_str()] = mkconst_str(enum_item->str);
}
}
}
static bool name_has_dot(const std::string &name, std::string &struct_name)
{
// check if plausible struct member name \sss.mmm
std::string::size_type pos;
if (name.substr(0, 1) == "\\" && (pos = name.find('.', 0)) != std::string::npos) {
struct_name = name.substr(0, pos);
return true;
}
return false;
}
static AstNode *make_range(int left, int right, bool is_signed = false)
{
// generate a pre-validated range node for a fixed signal range.
auto range = new AstNode(AST_RANGE);
range->range_left = left;
range->range_right = right;
range->range_valid = true;
range->children.push_back(AstNode::mkconst_int(left, true));
range->children.push_back(AstNode::mkconst_int(right, true));
range->is_signed = is_signed;
return range;
}
2020-06-07 12:28:45 -05:00
static int range_width(AstNode *node, AstNode *rnode)
{
log_assert(rnode->type==AST_RANGE);
if (!rnode->range_valid) {
log_file_error(node->filename, node->location.first_line, "Size must be constant in packed struct/union member %s\n", node->str.c_str());
}
// note: range swapping has already been checked for
return rnode->range_left - rnode->range_right + 1;
}
[[noreturn]] static void struct_array_packing_error(AstNode *node)
{
log_file_error(node->filename, node->location.first_line, "Unpacked array in packed struct/union member %s\n", node->str.c_str());
}
static void save_struct_array_width(AstNode *node, int width)
{
// stash the stride for the array
node->multirange_dimensions.push_back(width);
}
static int get_struct_array_width(AstNode *node)
{
// the stride for the array, 1 if not an array
return (node->multirange_dimensions.empty() ? 1 : node->multirange_dimensions.back());
}
static int size_packed_struct(AstNode *snode, int base_offset)
{
// Struct members will be laid out in the structure contiguously from left to right.
// Union members all have zero offset from the start of the union.
// Determine total packed size and assign offsets. Store these in the member node.
bool is_union = (snode->type == AST_UNION);
int offset = 0;
int packed_width = -1;
// examine members from last to first
for (auto it = snode->children.rbegin(); it != snode->children.rend(); ++it) {
auto node = *it;
int width;
if (node->type == AST_STRUCT || node->type == AST_UNION) {
// embedded struct or union
width = size_packed_struct(node, base_offset + offset);
}
else {
log_assert(node->type == AST_STRUCT_ITEM);
2020-06-07 12:28:45 -05:00
if (node->children.size() > 0 && node->children[0]->type == AST_RANGE) {
// member width e.g. bit [7:0] a
width = range_width(node, node->children[0]);
if (node->children.size() == 2) {
if (node->children[1]->type == AST_RANGE) {
// unpacked array e.g. bit [63:0] a [0:3]
auto rnode = node->children[1];
int array_count = range_width(node, rnode);
if (array_count == 1) {
// C-type array size e.g. bit [63:0] a [4]
array_count = rnode->range_left;
}
save_struct_array_width(node, width);
width *= array_count;
}
else {
// array element must be single bit for a packed array
struct_array_packing_error(node);
}
}
// range nodes are now redundant
node->children.clear();
}
else if (node->children.size() == 1 && node->children[0]->type == AST_MULTIRANGE) {
// packed 2D array, e.g. bit [3:0][63:0] a
auto rnode = node->children[0];
2020-06-07 12:28:45 -05:00
if (rnode->children.size() != 2) {
// packed arrays can only be 2D
struct_array_packing_error(node);
}
int array_count = range_width(node, rnode->children[0]);
width = range_width(node, rnode->children[1]);
save_struct_array_width(node, width);
width *= array_count;
// range nodes are now redundant
node->children.clear();
}
else if (node->range_left < 0) {
// 1 bit signal: bit, logic or reg
width = 1;
}
else {
// already resolved and compacted
width = node->range_left - node->range_right + 1;
}
if (is_union) {
node->range_right = base_offset;
node->range_left = base_offset + width - 1;
}
else {
node->range_right = base_offset + offset;
node->range_left = base_offset + offset + width - 1;
}
node->range_valid = true;
}
if (is_union) {
// check that all members have the same size
if (packed_width == -1) {
// first member
packed_width = width;
}
else {
if (packed_width != width) {
log_file_error(node->filename, node->location.first_line, "member %s of a packed union has %d bits, expecting %d\n", node->str.c_str(), width, packed_width);
}
}
}
else {
offset += width;
}
}
return (is_union ? packed_width : offset);
}
2020-06-07 12:28:45 -05:00
[[noreturn]] static void struct_op_error(AstNode *node)
{
log_file_error(node->filename, node->location.first_line, "Unsupported operation for struct/union member %s\n", node->str.c_str()+1);
}
static AstNode *node_int(int ival)
{
return AstNode::mkconst_int(ival, true);
2020-06-07 12:28:45 -05:00
}
static AstNode *multiply_by_const(AstNode *expr_node, int stride)
{
return new AstNode(AST_MUL, expr_node, node_int(stride));
}
static AstNode *offset_indexed_range(int offset, int stride, AstNode *left_expr, AstNode *right_expr)
2020-06-07 12:28:45 -05:00
{
// adjust the range expressions to add an offset into the struct
// and maybe index using an array stride
auto left = left_expr->clone();
auto right = right_expr->clone();
if (stride > 1) {
// newleft = (left + 1) * stride - 1
left = new AstNode(AST_SUB, multiply_by_const(new AstNode(AST_ADD, left, node_int(1)), stride), node_int(1));
// newright = right * stride
right = multiply_by_const(right, stride);
}
// add the offset
if (offset) {
left = new AstNode(AST_ADD, node_int(offset), left);
right = new AstNode(AST_ADD, node_int(offset), right);
}
return new AstNode(AST_RANGE, left, right);
}
static AstNode *make_struct_index_range(AstNode *node, AstNode *rnode, int stride, int offset)
{
// generate a range node to perform either bit or array indexing
if (rnode->children.size() == 1) {
// index e.g. s.a[i]
return offset_indexed_range(offset, stride, rnode->children[0], rnode->children[0]);
}
else if (rnode->children.size() == 2) {
// slice e.g. s.a[i:j]
return offset_indexed_range(offset, stride, rnode->children[0], rnode->children[1]);
2020-06-07 12:28:45 -05:00
}
else {
struct_op_error(node);
2020-06-07 12:28:45 -05:00
}
}
static AstNode *slice_range(AstNode *rnode, AstNode *snode)
{
// apply the bit slice indicated by snode to the range rnode
log_assert(rnode->type==AST_RANGE);
auto left = rnode->children[0];
auto right = rnode->children[1];
log_assert(snode->type==AST_RANGE);
auto slice_left = snode->children[0];
auto slice_right = snode->children[1];
auto width = new AstNode(AST_SUB, slice_left->clone(), slice_right->clone());
right = new AstNode(AST_ADD, right->clone(), slice_right->clone());
left = new AstNode(AST_ADD, right->clone(), width);
2020-06-07 12:28:45 -05:00
return new AstNode(AST_RANGE, left, right);
}
2020-06-07 12:28:45 -05:00
static AstNode *make_struct_member_range(AstNode *node, AstNode *member_node)
{
// Work out the range in the packed array that corresponds to a struct member
// taking into account any range operations applicable to the current node
// such as array indexing or slicing
int range_left = member_node->range_left;
int range_right = member_node->range_right;
if (node->children.empty()) {
// no range operations apply, return the whole width
return make_range(range_left, range_right);
2020-06-07 12:28:45 -05:00
}
int stride = get_struct_array_width(member_node);
if (node->children.size() == 1 && node->children[0]->type == AST_RANGE) {
// bit or array indexing e.g. s.a[2] or s.a[1:0]
return make_struct_index_range(node, node->children[0], stride, range_right);
}
else if (node->children.size() == 1 && node->children[0]->type == AST_MULTIRANGE) {
// multirange, i.e. bit slice after array index, e.g. s.a[i][p:q]
log_assert(stride > 1);
auto mrnode = node->children[0];
auto element_range = make_struct_index_range(node, mrnode->children[0], stride, range_right);
// then apply bit slice range
auto range = slice_range(element_range, mrnode->children[1]);
delete element_range;
return range;
2020-06-07 12:28:45 -05:00
}
else {
struct_op_error(node);
}
}
static void add_members_to_scope(AstNode *snode, std::string name)
{
// add all the members in a struct or union to local scope
// in case later referenced in assignments
log_assert(snode->type==AST_STRUCT || snode->type==AST_UNION);
for (auto *node : snode->children) {
if (node->type != AST_STRUCT_ITEM) {
// embedded struct or union
add_members_to_scope(node, name + "." + node->str);
}
else {
auto member_name = name + "." + node->str;
current_scope[member_name] = node;
}
}
}
static int get_max_offset(AstNode *node)
{
// get the width from the MS member in the struct
// as members are laid out from left to right in the packed wire
log_assert(node->type==AST_STRUCT || node->type==AST_UNION);
while (node->type != AST_STRUCT_ITEM) {
node = node->children[0];
}
return node->range_left;
}
2020-05-08 08:40:49 -05:00
static AstNode *make_packed_struct(AstNode *template_node, std::string &name)
{
// create a wire for the packed struct
auto wnode = new AstNode(AST_WIRE);
wnode->str = name;
wnode->is_logic = true;
wnode->range_valid = true;
wnode->is_signed = template_node->is_signed;
int offset = get_max_offset(template_node);
2020-05-08 08:40:49 -05:00
auto range = make_range(offset, 0);
wnode->children.push_back(range);
// make sure this node is the one in scope for this name
current_scope[name] = wnode;
// add all the struct members to scope under the wire's name
add_members_to_scope(template_node, name);
2020-05-08 08:40:49 -05:00
return wnode;
}
// check if a node or its children contains an assignment to the given variable
static bool node_contains_assignment_to(const AstNode* node, const AstNode* var)
{
if (node->type == AST_ASSIGN_EQ || node->type == AST_ASSIGN_LE) {
// current node is iteslf an assignment
log_assert(node->children.size() >= 2);
const AstNode* lhs = node->children[0];
if (lhs->type == AST_IDENTIFIER && lhs->str == var->str)
return false;
}
for (const AstNode* child : node->children) {
// if this child shadows the given variable
if (child != var && child->str == var->str && child->type == AST_WIRE)
break; // skip the remainder of this block/scope
// depth-first short circuit
if (!node_contains_assignment_to(child, var))
return false;
}
return true;
}
verilog: significant block scoping improvements This change set contains a number of bug fixes and improvements related to scoping and resolution in generate and procedural blocks. While many of the frontend changes are interdependent, it may be possible bring the techmap changes in under a separate PR. Declarations within unnamed generate blocks previously encountered issues because the data declarations were left un-prefixed, breaking proper scoping. The LRM outlines behavior for generating names for unnamed generate blocks. The original goal was to add this implicit labelling, but doing so exposed a number of issues downstream. Additional testing highlighted other closely related scope resolution issues, which have been fixed. This change also adds support for block item declarations within unnamed blocks in SystemVerilog mode. 1. Unlabled generate blocks are now implicitly named according to the LRM in `label_genblks`, which is invoked at the beginning of module elaboration 2. The Verilog parser no longer wraps explicitly named generate blocks in a synthetic unnamed generate block to avoid creating extra hierarchy levels where they should not exist 3. The techmap phase now allows special control identifiers to be used outside of the topmost scope, which is necessary because such wires and cells often appear in unlabeled generate blocks, which now prefix the declarations within 4. Some techlibs required modifications because they relied on the previous invalid scope resolution behavior 5. `expand_genblock` has been simplified, now only expanding the outermost scope, completely deferring the inspection and elaboration of nested scopes; names are now resolved by looking in the innermost scope and stepping outward 6. Loop variables now always become localparams during unrolling, allowing them to be resolved and shadowed like any other identifier 7. Identifiers in synthetic function call scopes are now prefixed and resolved in largely the same manner as other blocks before: `$func$\func_01$tests/simple/scopes.blk.v:60$5$\blk\x` after: `\func_01$func$tests/simple/scopes.v:60$5.blk.x` 8. Support identifiers referencing a local generate scope nested more than 1 level deep, i.e. `B.C.x` while within generate scope `A`, or using a prefix of a current or parent scope, i.e. `B.C.D.x` while in `A.B`, `A.B.C`, or `A.B.C.D` 9. Variables can now be declared within unnamed blocks in SystemVerilog mode Addresses the following issues: 656, 2423, 2493
2021-01-27 12:30:22 -06:00
static std::string prefix_id(const std::string &prefix, const std::string &str)
{
log_assert(!prefix.empty() && (prefix.front() == '$' || prefix.front() == '\\'));
log_assert(!str.empty() && (str.front() == '$' || str.front() == '\\'));
log_assert(prefix.back() == '.');
if (str.front() == '\\')
return prefix + str.substr(1);
return prefix + str;
}
2015-08-14 03:56:05 -05:00
// convert the AST into a simpler AST that has all parameters substituted by their
2013-01-05 04:13:26 -06:00
// values, unrolled for-loops, expanded generate blocks, etc. when this function
// is done with an AST it can be converted into RTLIL using genRTLIL().
//
// this function also does all name resolving and sets the id2ast member of all
// nodes that link to a different node using names and lexical scoping.
bool AstNode::simplify(bool const_fold, bool at_zero, bool in_lvalue, int stage, int width_hint, bool sign_hint, bool in_param)
2013-01-05 04:13:26 -06:00
{
static int recursion_counter = 0;
static bool deep_recursion_warning = false;
if (recursion_counter++ == 1000 && deep_recursion_warning) {
2021-02-25 15:02:55 -06:00
log_warning("Deep recursion in AST simplifier.\nDoes this design contain overly long or deeply nested expressions, or excessive recursion?\n");
deep_recursion_warning = false;
}
static bool unevaluated_tern_branch = false;
2013-01-05 04:13:26 -06:00
AstNode *newNode = NULL;
bool did_something = false;
#if 0
log("-------------\n");
log("AST simplify[%d] depth %d at %s:%d on %s %p:\n", stage, recursion_counter, filename.c_str(), location.first_line, type2str(type).c_str(), this);
log("const_fold=%d, at_zero=%d, in_lvalue=%d, stage=%d, width_hint=%d, sign_hint=%d, in_param=%d\n",
int(const_fold), int(at_zero), int(in_lvalue), int(stage), int(width_hint), int(sign_hint), int(in_param));
// dumpAst(NULL, "> ");
#endif
2013-01-05 04:13:26 -06:00
if (stage == 0)
{
log_assert(type == AST_MODULE || type == AST_INTERFACE);
2013-01-05 04:13:26 -06:00
deep_recursion_warning = true;
while (simplify(const_fold, at_zero, in_lvalue, 1, width_hint, sign_hint, in_param)) { }
2013-01-05 04:13:26 -06:00
if (!flag_nomem2reg && !get_bool_attribute(ID::nomem2reg))
2013-01-05 04:13:26 -06:00
{
2014-12-28 20:11:50 -06:00
dict<AstNode*, pool<std::string>> mem2reg_places;
dict<AstNode*, uint32_t> mem2reg_candidates, dummy_proc_flags;
uint32_t flags = flag_mem2reg ? AstNode::MEM2REG_FL_ALL : 0;
mem2reg_as_needed_pass1(mem2reg_places, mem2reg_candidates, dummy_proc_flags, flags);
2014-12-28 20:11:50 -06:00
pool<AstNode*> mem2reg_set;
for (auto &it : mem2reg_candidates)
{
AstNode *mem = it.first;
uint32_t memflags = it.second;
bool this_nomeminit = flag_nomeminit;
2014-07-28 04:08:55 -05:00
log_assert((memflags & ~0x00ffff00) == 0);
if (mem->get_bool_attribute(ID::nomem2reg))
continue;
if (mem->get_bool_attribute(ID::nomeminit) || get_bool_attribute(ID::nomeminit))
this_nomeminit = true;
if (memflags & AstNode::MEM2REG_FL_FORCED)
goto silent_activate;
if (memflags & AstNode::MEM2REG_FL_EQ2)
goto verbose_activate;
2013-11-21 14:26:56 -06:00
if (memflags & AstNode::MEM2REG_FL_SET_ASYNC)
goto verbose_activate;
if ((memflags & AstNode::MEM2REG_FL_SET_INIT) && (memflags & AstNode::MEM2REG_FL_SET_ELSE) && this_nomeminit)
goto verbose_activate;
2014-06-17 14:39:25 -05:00
if (memflags & AstNode::MEM2REG_FL_CMPLX_LHS)
goto verbose_activate;
if ((memflags & AstNode::MEM2REG_FL_CONST_LHS) && !(memflags & AstNode::MEM2REG_FL_VAR_LHS))
goto verbose_activate;
2013-11-21 14:26:56 -06:00
// log("Note: Not replacing memory %s with list of registers (flags=0x%08lx).\n", mem->str.c_str(), long(memflags));
continue;
verbose_activate:
if (mem2reg_set.count(mem) == 0) {
2014-12-26 20:26:30 -06:00
std::string message = stringf("Replacing memory %s with list of registers.", mem->str.c_str());
bool first_element = true;
for (auto &place : mem2reg_places[it.first]) {
2014-12-26 20:26:30 -06:00
message += stringf("%s%s", first_element ? " See " : ", ", place.c_str());
first_element = false;
}
2014-12-26 20:26:30 -06:00
log_warning("%s\n", message.c_str());
}
silent_activate:
2013-11-21 14:26:56 -06:00
// log("Note: Replacing memory %s with list of registers (flags=0x%08lx).\n", mem->str.c_str(), long(memflags));
mem2reg_set.insert(mem);
}
2013-01-05 04:13:26 -06:00
for (auto node : mem2reg_set)
{
int mem_width, mem_size, addr_bits;
node->meminfo(mem_width, mem_size, addr_bits);
int data_range_left = node->children[0]->range_left;
int data_range_right = node->children[0]->range_right;
if (node->children[0]->range_swapped)
std::swap(data_range_left, data_range_right);
2013-01-05 04:13:26 -06:00
for (int i = 0; i < mem_size; i++) {
AstNode *reg = new AstNode(AST_WIRE, new AstNode(AST_RANGE,
mkconst_int(data_range_left, true), mkconst_int(data_range_right, true)));
2013-01-05 04:13:26 -06:00
reg->str = stringf("%s[%d]", node->str.c_str(), i);
reg->is_reg = true;
reg->is_signed = node->is_signed;
for (auto &it : node->attributes)
if (it.first != ID::mem2reg)
reg->attributes.emplace(it.first, it.second->clone());
reg->filename = node->filename;
reg->location = node->location;
2013-01-05 04:13:26 -06:00
children.push_back(reg);
while (reg->simplify(true, false, false, 1, -1, false, false)) { }
2013-01-05 04:13:26 -06:00
}
}
2016-08-21 06:23:58 -05:00
AstNode *async_block = NULL;
while (mem2reg_as_needed_pass2(mem2reg_set, this, NULL, async_block)) { }
2013-01-05 04:13:26 -06:00
vector<AstNode*> delnodes;
mem2reg_remove(mem2reg_set, delnodes);
for (auto node : delnodes)
delete node;
2013-01-05 04:13:26 -06:00
}
while (simplify(const_fold, at_zero, in_lvalue, 2, width_hint, sign_hint, in_param)) { }
recursion_counter--;
2013-01-05 04:13:26 -06:00
return false;
}
current_filename = filename;
// we do not look inside a task or function
2015-08-14 03:56:05 -05:00
// (but as soon as a task or function is instantiated we process the generated AST as usual)
if (type == AST_FUNCTION || type == AST_TASK) {
recursion_counter--;
2013-01-05 04:13:26 -06:00
return false;
}
2013-01-05 04:13:26 -06:00
2015-08-14 03:56:05 -05:00
// deactivate all calls to non-synthesis system tasks
2016-03-21 10:19:51 -05:00
// note that $display, $finish, and $stop are used for synthesis-time DRC so they're not in this list
if ((type == AST_FCALL || type == AST_TCALL) && (str == "$strobe" || str == "$monitor" || str == "$time" ||
str == "$dumpfile" || str == "$dumpvars" || str == "$dumpon" || str == "$dumpoff" || str == "$dumpall")) {
log_file_warning(filename, location.first_line, "Ignoring call to system %s %s.\n", type == AST_FCALL ? "function" : "task", str.c_str());
2013-01-05 04:13:26 -06:00
delete_children();
str = std::string();
}
if ((type == AST_TCALL) && (str == "$display" || str == "$write") && (!current_always || current_always->type != AST_INITIAL)) {
log_file_warning(filename, location.first_line, "System task `%s' outside initial block is unsupported.\n", str.c_str());
delete_children();
str = std::string();
}
2015-09-17 22:34:56 -05:00
// print messages if this a call to $display() or $write()
// This code implements only a small subset of Verilog-2005 $display() format specifiers,
// but should be good enough for most uses
if ((type == AST_TCALL) && ((str == "$display") || (str == "$write")))
{
int nargs = GetSize(children);
if (nargs < 1)
log_file_error(filename, location.first_line, "System task `%s' got %d arguments, expected >= 1.\n",
str.c_str(), int(children.size()));
2015-09-17 22:34:56 -05:00
// First argument is the format string
AstNode *node_string = children[0];
2015-09-17 22:34:56 -05:00
while (node_string->simplify(true, false, false, stage, width_hint, sign_hint, false)) { }
if (node_string->type != AST_CONSTANT)
log_file_error(filename, location.first_line, "Failed to evaluate system task `%s' with non-constant 1st argument.\n", str.c_str());
2015-09-17 22:34:56 -05:00
std::string sformat = node_string->bitsAsConst().decode_string();
std::string sout = process_format_str(sformat, 1, stage, width_hint, sign_hint);
2015-09-17 22:34:56 -05:00
// Finally, print the message (only include a \n for $display, not for $write)
log("%s", sout.c_str());
if (str == "$display")
2015-09-17 22:34:56 -05:00
log("\n");
delete_children();
str = std::string();
}
2013-01-05 04:13:26 -06:00
// activate const folding if this is anything that must be evaluated statically (ranges, parameters, attributes, etc.)
if (type == AST_WIRE || type == AST_PARAMETER || type == AST_LOCALPARAM || type == AST_ENUM_ITEM || type == AST_DEFPARAM || type == AST_PARASET || type == AST_RANGE || type == AST_PREFIX || type == AST_TYPEDEF)
const_fold = true;
if (type == AST_IDENTIFIER && current_scope.count(str) > 0 && (current_scope[str]->type == AST_PARAMETER || current_scope[str]->type == AST_LOCALPARAM || current_scope[str]->type == AST_ENUM_ITEM))
2013-01-05 04:13:26 -06:00
const_fold = true;
// in certain cases a function must be evaluated constant. this is what in_param controls.
if (type == AST_PARAMETER || type == AST_LOCALPARAM || type == AST_DEFPARAM || type == AST_PARASET || type == AST_PREFIX)
in_param = true;
2013-01-05 04:13:26 -06:00
std::map<std::string, AstNode*> backup_scope;
// create name resolution entries for all objects with names
// also merge multiple declarations for the same wire (e.g. "output foobar; reg foobar;")
if (type == AST_MODULE) {
current_scope.clear();
verilog: significant block scoping improvements This change set contains a number of bug fixes and improvements related to scoping and resolution in generate and procedural blocks. While many of the frontend changes are interdependent, it may be possible bring the techmap changes in under a separate PR. Declarations within unnamed generate blocks previously encountered issues because the data declarations were left un-prefixed, breaking proper scoping. The LRM outlines behavior for generating names for unnamed generate blocks. The original goal was to add this implicit labelling, but doing so exposed a number of issues downstream. Additional testing highlighted other closely related scope resolution issues, which have been fixed. This change also adds support for block item declarations within unnamed blocks in SystemVerilog mode. 1. Unlabled generate blocks are now implicitly named according to the LRM in `label_genblks`, which is invoked at the beginning of module elaboration 2. The Verilog parser no longer wraps explicitly named generate blocks in a synthetic unnamed generate block to avoid creating extra hierarchy levels where they should not exist 3. The techmap phase now allows special control identifiers to be used outside of the topmost scope, which is necessary because such wires and cells often appear in unlabeled generate blocks, which now prefix the declarations within 4. Some techlibs required modifications because they relied on the previous invalid scope resolution behavior 5. `expand_genblock` has been simplified, now only expanding the outermost scope, completely deferring the inspection and elaboration of nested scopes; names are now resolved by looking in the innermost scope and stepping outward 6. Loop variables now always become localparams during unrolling, allowing them to be resolved and shadowed like any other identifier 7. Identifiers in synthetic function call scopes are now prefixed and resolved in largely the same manner as other blocks before: `$func$\func_01$tests/simple/scopes.blk.v:60$5$\blk\x` after: `\func_01$func$tests/simple/scopes.v:60$5.blk.x` 8. Support identifiers referencing a local generate scope nested more than 1 level deep, i.e. `B.C.x` while within generate scope `A`, or using a prefix of a current or parent scope, i.e. `B.C.D.x` while in `A.B`, `A.B.C`, or `A.B.C.D` 9. Variables can now be declared within unnamed blocks in SystemVerilog mode Addresses the following issues: 656, 2423, 2493
2021-01-27 12:30:22 -06:00
std::set<std::string> existing;
int counter = 0;
label_genblks(existing, counter);
2013-01-05 04:13:26 -06:00
std::map<std::string, AstNode*> this_wire_scope;
for (size_t i = 0; i < children.size(); i++) {
AstNode *node = children[i];
2013-01-05 04:13:26 -06:00
if (node->type == AST_WIRE) {
if (node->children.size() == 1 && node->children[0]->type == AST_RANGE) {
for (auto c : node->children[0]->children) {
if (!c->is_simple_const_expr()) {
if (attributes.count(ID::dynports))
delete attributes.at(ID::dynports);
attributes[ID::dynports] = AstNode::mkconst_int(1, true);
}
}
}
2013-01-05 04:13:26 -06:00
if (this_wire_scope.count(node->str) > 0) {
AstNode *first_node = this_wire_scope[node->str];
if (first_node->is_input && node->is_reg)
goto wires_are_incompatible;
2013-03-23 12:54:31 -05:00
if (!node->is_input && !node->is_output && node->is_reg && node->children.size() == 0)
goto wires_are_compatible;
if (first_node->children.size() == 0 && node->children.size() == 1 && node->children[0]->type == AST_RANGE) {
AstNode *r = node->children[0];
if (r->range_valid && r->range_left == 0 && r->range_right == 0) {
delete r;
node->children.pop_back();
}
}
2013-01-05 04:13:26 -06:00
if (first_node->children.size() != node->children.size())
goto wires_are_incompatible;
for (size_t j = 0; j < node->children.size(); j++) {
AstNode *n1 = first_node->children[j], *n2 = node->children[j];
if (n1->type == AST_RANGE && n2->type == AST_RANGE && n1->range_valid && n2->range_valid) {
if (n1->range_left != n2->range_left)
goto wires_are_incompatible;
if (n1->range_right != n2->range_right)
goto wires_are_incompatible;
} else if (*n1 != *n2)
goto wires_are_incompatible;
}
if (first_node->range_left != node->range_left)
goto wires_are_incompatible;
if (first_node->range_right != node->range_right)
goto wires_are_incompatible;
if (first_node->port_id == 0 && (node->is_input || node->is_output))
goto wires_are_incompatible;
2013-03-23 12:54:31 -05:00
wires_are_compatible:
2013-01-05 04:13:26 -06:00
if (node->is_input)
first_node->is_input = true;
if (node->is_output)
first_node->is_output = true;
if (node->is_reg)
first_node->is_reg = true;
if (node->is_logic)
first_node->is_logic = true;
2013-01-05 04:13:26 -06:00
if (node->is_signed)
first_node->is_signed = true;
for (auto &it : node->attributes) {
if (first_node->attributes.count(it.first) > 0)
delete first_node->attributes[it.first];
first_node->attributes[it.first] = it.second->clone();
}
children.erase(children.begin()+(i--));
did_something = true;
delete node;
continue;
wires_are_incompatible:
if (stage > 1)
log_file_error(filename, location.first_line, "Incompatible re-declaration of wire %s.\n", node->str.c_str());
continue;
2013-01-05 04:13:26 -06:00
}
this_wire_scope[node->str] = node;
}
// these nodes appear at the top level in a module and can define names
2013-01-05 04:13:26 -06:00
if (node->type == AST_PARAMETER || node->type == AST_LOCALPARAM || node->type == AST_WIRE || node->type == AST_AUTOWIRE || node->type == AST_GENVAR ||
node->type == AST_MEMORY || node->type == AST_FUNCTION || node->type == AST_TASK || node->type == AST_DPI_FUNCTION || node->type == AST_CELL ||
node->type == AST_TYPEDEF) {
2013-01-05 04:13:26 -06:00
backup_scope[node->str] = current_scope[node->str];
current_scope[node->str] = node;
}
if (node->type == AST_ENUM) {
current_scope[node->str] = node;
for (auto enode : node->children) {
log_assert(enode->type==AST_ENUM_ITEM);
if (current_scope.count(enode->str) == 0)
current_scope[enode->str] = enode;
else
log_file_error(filename, location.first_line, "enum item %s already exists\n", enode->str.c_str());
}
}
2013-01-05 04:13:26 -06:00
}
for (size_t i = 0; i < children.size(); i++) {
AstNode *node = children[i];
if (node->type == AST_PARAMETER || node->type == AST_LOCALPARAM || node->type == AST_WIRE || node->type == AST_AUTOWIRE || node->type == AST_MEMORY || node->type == AST_TYPEDEF)
2014-03-05 12:45:33 -06:00
while (node->simplify(true, false, false, 1, -1, false, node->type == AST_PARAMETER || node->type == AST_LOCALPARAM))
did_something = true;
if (node->type == AST_ENUM) {
for (auto enode : node->children){
log_assert(enode->type==AST_ENUM_ITEM);
while (node->simplify(true, false, false, 1, -1, false, in_param))
did_something = true;
}
}
}
2013-01-05 04:13:26 -06:00
}
// create name resolution entries for all objects with names
if (type == AST_PACKAGE) {
//add names to package scope
for (size_t i = 0; i < children.size(); i++) {
AstNode *node = children[i];
// these nodes appear at the top level in a package and can define names
if (node->type == AST_PARAMETER || node->type == AST_LOCALPARAM || node->type == AST_TYPEDEF) {
current_scope[node->str] = node;
}
if (node->type == AST_ENUM) {
current_scope[node->str] = node;
for (auto enode : node->children) {
log_assert(enode->type==AST_ENUM_ITEM);
if (current_scope.count(enode->str) == 0)
current_scope[enode->str] = enode;
else
log_file_error(filename, location.first_line, "enum item %s already exists in package\n", enode->str.c_str());
}
}
}
}
2013-01-05 04:13:26 -06:00
auto backup_current_block = current_block;
auto backup_current_block_child = current_block_child;
auto backup_current_top_block = current_top_block;
auto backup_current_always = current_always;
auto backup_current_always_clocked = current_always_clocked;
if (type == AST_ALWAYS || type == AST_INITIAL)
{
if (current_always != nullptr)
log_file_error(filename, location.first_line, "Invalid nesting of always blocks and/or initializations.\n");
current_always = this;
current_always_clocked = false;
if (type == AST_ALWAYS)
for (auto child : children) {
if (child->type == AST_POSEDGE || child->type == AST_NEGEDGE)
current_always_clocked = true;
if (child->type == AST_EDGE && GetSize(child->children) == 1 &&
child->children[0]->type == AST_IDENTIFIER && child->children[0]->str == "\\$global_clock")
current_always_clocked = true;
}
}
2013-01-05 04:13:26 -06:00
if (type == AST_ARGUMENT)
{
if (children.size() == 1 && children[0]->type == AST_CONSTANT)
{
// HACK: For port bindings using unbased unsized literals, mark them
// signed so they sign-extend. The hierarchy will still incorrectly
// generate a warning complaining about resizing the expression.
// This also doesn't handle the complex of something like a ternary
// expression bound to a port, where the actual size of the port is
// needed to resolve the expression correctly.
AstNode *arg = children[0];
if (arg->is_unsized)
arg->is_signed = true;
}
}
int backup_width_hint = width_hint;
bool backup_sign_hint = sign_hint;
bool detect_width_simple = false;
bool child_0_is_self_determined = false;
bool child_1_is_self_determined = false;
bool child_2_is_self_determined = false;
bool children_are_self_determined = false;
bool reset_width_after_children = false;
switch (type)
{
case AST_ASSIGN_EQ:
case AST_ASSIGN_LE:
case AST_ASSIGN:
while (!children[0]->basic_prep && children[0]->simplify(false, false, true, stage, -1, false, in_param) == true)
2014-03-05 12:45:33 -06:00
did_something = true;
while (!children[1]->basic_prep && children[1]->simplify(false, false, false, stage, -1, false, in_param) == true)
2014-03-05 12:45:33 -06:00
did_something = true;
children[0]->detectSignWidth(backup_width_hint, backup_sign_hint);
children[1]->detectSignWidth(width_hint, sign_hint);
width_hint = max(width_hint, backup_width_hint);
child_0_is_self_determined = true;
// test only once, before optimizations and memory mappings but after assignment LHS was mapped to an identifier
if (children[0]->id2ast && !children[0]->was_checked) {
if ((type == AST_ASSIGN_LE || type == AST_ASSIGN_EQ) && children[0]->id2ast->is_logic)
children[0]->id2ast->is_reg = true; // if logic type is used in a block asignment
if ((type == AST_ASSIGN_LE || type == AST_ASSIGN_EQ) && !children[0]->id2ast->is_reg)
log_warning("wire '%s' is assigned in a block at %s.\n", children[0]->str.c_str(), loc_string().c_str());
if (type == AST_ASSIGN && children[0]->id2ast->is_reg) {
bool is_rand_reg = false;
if (children[1]->type == AST_FCALL) {
if (children[1]->str == "\\$anyconst")
is_rand_reg = true;
if (children[1]->str == "\\$anyseq")
is_rand_reg = true;
if (children[1]->str == "\\$allconst")
is_rand_reg = true;
if (children[1]->str == "\\$allseq")
is_rand_reg = true;
}
if (!is_rand_reg)
log_warning("reg '%s' is assigned in a continuous assignment at %s.\n", children[0]->str.c_str(), loc_string().c_str());
}
children[0]->was_checked = true;
}
break;
2020-05-08 08:40:49 -05:00
case AST_STRUCT:
case AST_UNION:
2020-05-08 08:40:49 -05:00
if (!basic_prep) {
for (auto *node : children) {
// resolve any ranges
while (!node->basic_prep && node->simplify(true, false, false, stage, -1, false, false)) {
did_something = true;
}
}
// determine member offsets and widths
size_packed_struct(this, 0);
// instance rather than just a type in a typedef or outer struct?
if (!str.empty() && str[0] == '\\') {
// instance so add a wire for the packed structure
2020-05-08 08:40:49 -05:00
auto wnode = make_packed_struct(this, str);
log_assert(current_ast_mod);
2020-05-08 08:40:49 -05:00
current_ast_mod->children.push_back(wnode);
}
basic_prep = true;
2020-05-08 08:40:49 -05:00
}
break;
case AST_STRUCT_ITEM:
break;
case AST_ENUM:
//log("\nENUM %s: %d child %d\n", str.c_str(), basic_prep, children[0]->basic_prep);
if (!basic_prep) {
for (auto item_node : children) {
while (!item_node->basic_prep && item_node->simplify(false, false, false, stage, -1, false, in_param))
did_something = true;
}
// allocate values (called more than once)
allocateDefaultEnumValues();
}
break;
case AST_PARAMETER:
case AST_LOCALPARAM:
2014-03-05 12:45:33 -06:00
while (!children[0]->basic_prep && children[0]->simplify(false, false, false, stage, -1, false, true) == true)
did_something = true;
children[0]->detectSignWidth(width_hint, sign_hint);
if (children.size() > 1 && children[1]->type == AST_RANGE) {
2014-03-05 12:45:33 -06:00
while (!children[1]->basic_prep && children[1]->simplify(false, false, false, stage, -1, false, true) == true)
did_something = true;
if (!children[1]->range_valid)
log_file_error(filename, location.first_line, "Non-constant width range on parameter decl.\n");
width_hint = max(width_hint, children[1]->range_left - children[1]->range_right + 1);
}
break;
case AST_ENUM_ITEM:
while (!children[0]->basic_prep && children[0]->simplify(false, false, false, stage, -1, false, in_param))
did_something = true;
children[0]->detectSignWidth(width_hint, sign_hint);
if (children.size() > 1 && children[1]->type == AST_RANGE) {
while (!children[1]->basic_prep && children[1]->simplify(false, false, false, stage, -1, false, in_param))
did_something = true;
if (!children[1]->range_valid)
log_file_error(filename, location.first_line, "Non-constant width range on enum item decl.\n");
width_hint = max(width_hint, children[1]->range_left - children[1]->range_right + 1);
}
break;
case AST_TO_BITS:
case AST_TO_SIGNED:
case AST_TO_UNSIGNED:
case AST_SELFSZ:
case AST_CAST_SIZE:
case AST_CONCAT:
case AST_REPLICATE:
case AST_REDUCE_AND:
case AST_REDUCE_OR:
case AST_REDUCE_XOR:
case AST_REDUCE_XNOR:
case AST_REDUCE_BOOL:
detect_width_simple = true;
children_are_self_determined = true;
break;
case AST_NEG:
case AST_BIT_NOT:
case AST_POS:
case AST_BIT_AND:
case AST_BIT_OR:
case AST_BIT_XOR:
case AST_BIT_XNOR:
case AST_ADD:
case AST_SUB:
case AST_MUL:
case AST_DIV:
case AST_MOD:
detect_width_simple = true;
break;
case AST_SHIFT_LEFT:
case AST_SHIFT_RIGHT:
case AST_SHIFT_SLEFT:
case AST_SHIFT_SRIGHT:
case AST_POW:
detect_width_simple = true;
child_1_is_self_determined = true;
break;
case AST_LT:
case AST_LE:
case AST_EQ:
case AST_NE:
case AST_EQX:
case AST_NEX:
case AST_GE:
case AST_GT:
width_hint = -1;
sign_hint = true;
for (auto child : children) {
2014-03-05 12:45:33 -06:00
while (!child->basic_prep && child->simplify(false, false, in_lvalue, stage, -1, false, in_param) == true)
did_something = true;
child->detectSignWidthWorker(width_hint, sign_hint);
}
reset_width_after_children = true;
break;
case AST_LOGIC_AND:
case AST_LOGIC_OR:
case AST_LOGIC_NOT:
detect_width_simple = true;
children_are_self_determined = true;
break;
case AST_TERNARY:
child_0_is_self_determined = true;
break;
2015-07-02 04:14:30 -05:00
case AST_MEMRD:
detect_width_simple = true;
children_are_self_determined = true;
break;
case AST_FCALL:
case AST_TCALL:
children_are_self_determined = true;
break;
default:
width_hint = -1;
sign_hint = false;
}
if (detect_width_simple && width_hint < 0) {
if (type == AST_REPLICATE)
while (children[0]->simplify(true, false, in_lvalue, stage, -1, false, true) == true)
did_something = true;
for (auto child : children)
2014-03-05 12:45:33 -06:00
while (!child->basic_prep && child->simplify(false, false, in_lvalue, stage, -1, false, in_param) == true)
did_something = true;
detectSignWidth(width_hint, sign_hint);
}
if (type == AST_FCALL && str == "\\$past")
detectSignWidth(width_hint, sign_hint);
if (type == AST_TERNARY) {
if (width_hint < 0) {
while (!children[0]->basic_prep && children[0]->simplify(true, false, in_lvalue, stage, -1, false, in_param))
did_something = true;
bool backup_unevaluated_tern_branch = unevaluated_tern_branch;
AstNode *chosen = get_tern_choice().first;
unevaluated_tern_branch = backup_unevaluated_tern_branch || chosen == children[2];
while (!children[1]->basic_prep && children[1]->simplify(false, false, in_lvalue, stage, -1, false, in_param))
did_something = true;
unevaluated_tern_branch = backup_unevaluated_tern_branch || chosen == children[1];
while (!children[2]->basic_prep && children[2]->simplify(false, false, in_lvalue, stage, -1, false, in_param))
did_something = true;
unevaluated_tern_branch = backup_unevaluated_tern_branch;
detectSignWidth(width_hint, sign_hint);
}
int width_hint_left, width_hint_right;
bool sign_hint_left, sign_hint_right;
bool found_real_left, found_real_right;
children[1]->detectSignWidth(width_hint_left, sign_hint_left, &found_real_left);
children[2]->detectSignWidth(width_hint_right, sign_hint_right, &found_real_right);
if (found_real_left || found_real_right) {
child_1_is_self_determined = true;
child_2_is_self_determined = true;
}
}
if (type == AST_CONDX && children.size() > 0 && children.at(0)->type == AST_CONSTANT) {
for (auto &bit : children.at(0)->bits)
if (bit == State::Sz || bit == State::Sx)
bit = State::Sa;
}
if (type == AST_CONDZ && children.size() > 0 && children.at(0)->type == AST_CONSTANT) {
for (auto &bit : children.at(0)->bits)
if (bit == State::Sz)
bit = State::Sa;
}
if (const_fold && type == AST_CASE)
{
while (children[0]->simplify(const_fold, at_zero, in_lvalue, stage, width_hint, sign_hint, in_param)) { }
if (children[0]->type == AST_CONSTANT && children[0]->bits_only_01()) {
std::vector<AstNode*> new_children;
new_children.push_back(children[0]);
for (int i = 1; i < GetSize(children); i++) {
AstNode *child = children[i];
log_assert(child->type == AST_COND || child->type == AST_CONDX || child->type == AST_CONDZ);
for (auto v : child->children) {
if (v->type == AST_DEFAULT)
goto keep_const_cond;
if (v->type == AST_BLOCK)
continue;
while (v->simplify(const_fold, at_zero, in_lvalue, stage, width_hint, sign_hint, in_param)) { }
if (v->type == AST_CONSTANT && v->bits_only_01()) {
if (v->bits == children[0]->bits) {
while (i+1 < GetSize(children))
delete children[++i];
goto keep_const_cond;
}
continue;
}
goto keep_const_cond;
}
if (0)
keep_const_cond:
new_children.push_back(child);
else
delete child;
}
new_children.swap(children);
}
}
dict<std::string, pool<int>> backup_memwr_visible;
dict<std::string, pool<int>> final_memwr_visible;
if (type == AST_CASE && stage == 2) {
backup_memwr_visible = current_memwr_visible;
final_memwr_visible = current_memwr_visible;
}
2013-01-05 04:13:26 -06:00
// simplify all children first
// (iterate by index as e.g. auto wires can add new children in the process)
for (size_t i = 0; i < children.size(); i++) {
bool did_something_here = true;
bool backup_flag_autowire = flag_autowire;
bool backup_unevaluated_tern_branch = unevaluated_tern_branch;
2013-01-05 04:13:26 -06:00
if ((type == AST_GENFOR || type == AST_FOR) && i >= 3)
break;
if ((type == AST_GENIF || type == AST_GENCASE) && i >= 1)
2013-01-05 04:13:26 -06:00
break;
if (type == AST_GENBLOCK)
break;
if (type == AST_BLOCK && !str.empty())
break;
if (type == AST_PREFIX && i >= 1)
break;
if (type == AST_DEFPARAM && i == 0)
flag_autowire = true;
if (type == AST_TERNARY && i > 0 && !unevaluated_tern_branch) {
AstNode *chosen = get_tern_choice().first;
unevaluated_tern_branch = chosen && chosen != children[i];
}
2013-01-05 04:13:26 -06:00
while (did_something_here && i < children.size()) {
bool const_fold_here = const_fold, in_lvalue_here = in_lvalue;
int width_hint_here = width_hint;
bool sign_hint_here = sign_hint;
bool in_param_here = in_param;
if (i == 0 && (type == AST_REPLICATE || type == AST_WIRE))
const_fold_here = true, in_param_here = true;
if (i == 0 && (type == AST_GENIF || type == AST_GENCASE))
in_param_here = true;
if (i == 1 && (type == AST_FOR || type == AST_GENFOR))
in_param_here = true;
if (type == AST_PARAMETER || type == AST_LOCALPARAM)
const_fold_here = true;
2013-01-05 04:13:26 -06:00
if (i == 0 && (type == AST_ASSIGN || type == AST_ASSIGN_EQ || type == AST_ASSIGN_LE))
in_lvalue_here = true;
if (type == AST_BLOCK) {
current_block = this;
current_block_child = children[i];
}
if ((type == AST_ALWAYS || type == AST_INITIAL) && children[i]->type == AST_BLOCK)
2013-01-05 04:13:26 -06:00
current_top_block = children[i];
if (i == 0 && child_0_is_self_determined)
width_hint_here = -1, sign_hint_here = false;
if (i == 1 && child_1_is_self_determined)
width_hint_here = -1, sign_hint_here = false;
if (i == 2 && child_2_is_self_determined)
width_hint_here = -1, sign_hint_here = false;
if (children_are_self_determined)
width_hint_here = -1, sign_hint_here = false;
did_something_here = children[i]->simplify(const_fold_here, at_zero, in_lvalue_here, stage, width_hint_here, sign_hint_here, in_param_here);
2013-01-05 04:13:26 -06:00
if (did_something_here)
did_something = true;
}
if (stage == 2 && children[i]->type == AST_INITIAL && current_ast_mod != this) {
current_ast_mod->children.push_back(children[i]);
children.erase(children.begin() + (i--));
did_something = true;
2013-01-05 04:13:26 -06:00
}
flag_autowire = backup_flag_autowire;
unevaluated_tern_branch = backup_unevaluated_tern_branch;
if (stage == 2 && type == AST_CASE) {
for (auto &x : current_memwr_visible) {
for (int y : x.second)
final_memwr_visible[x.first].insert(y);
}
current_memwr_visible = backup_memwr_visible;
}
2013-01-05 04:13:26 -06:00
}
for (auto &attr : attributes) {
2014-03-05 12:45:33 -06:00
while (attr.second->simplify(true, false, false, stage, -1, false, true))
did_something = true;
2013-01-05 04:13:26 -06:00
}
if (type == AST_CASE && stage == 2) {
current_memwr_visible = final_memwr_visible;
}
if (type == AST_ALWAYS && stage == 2) {
current_memwr_visible.clear();
current_memwr_count.clear();
}
2013-01-05 04:13:26 -06:00
if (reset_width_after_children) {
width_hint = backup_width_hint;
sign_hint = backup_sign_hint;
if (width_hint < 0)
detectSignWidth(width_hint, sign_hint);
}
2013-01-05 04:13:26 -06:00
current_block = backup_current_block;
current_block_child = backup_current_block_child;
current_top_block = backup_current_top_block;
current_always = backup_current_always;
current_always_clocked = backup_current_always_clocked;
2013-01-05 04:13:26 -06:00
for (auto it = backup_scope.begin(); it != backup_scope.end(); it++) {
if (it->second == NULL)
current_scope.erase(it->first);
else
current_scope[it->first] = it->second;
}
current_filename = filename;
if (type == AST_MODULE)
current_scope.clear();
// convert defparam nodes to cell parameters
if (type == AST_DEFPARAM && !children.empty())
{
if (children[0]->type != AST_IDENTIFIER)
log_file_error(filename, location.first_line, "Module name in defparam contains non-constant expressions!\n");
string modname, paramname = children[0]->str;
size_t pos = paramname.rfind('.');
while (pos != 0 && pos != std::string::npos)
{
modname = paramname.substr(0, pos);
if (current_scope.count(modname))
break;
pos = paramname.rfind('.', pos - 1);
}
if (pos == std::string::npos)
log_file_error(filename, location.first_line, "Can't find object for defparam `%s`!\n", RTLIL::unescape_id(paramname).c_str());
paramname = "\\" + paramname.substr(pos+1);
if (current_scope.at(modname)->type != AST_CELL)
log_file_error(filename, location.first_line, "Defparam argument `%s . %s` does not match a cell!\n",
RTLIL::unescape_id(modname).c_str(), RTLIL::unescape_id(paramname).c_str());
AstNode *paraset = new AstNode(AST_PARASET, children[1]->clone(), GetSize(children) > 2 ? children[2]->clone() : NULL);
paraset->str = paramname;
AstNode *cell = current_scope.at(modname);
cell->children.insert(cell->children.begin() + 1, paraset);
delete_children();
}
// resolve typedefs
if (type == AST_TYPEDEF) {
log_assert(children.size() == 1);
2020-05-08 08:40:49 -05:00
auto type_node = children[0];
log_assert(type_node->type == AST_WIRE || type_node->type == AST_MEMORY || type_node->type == AST_STRUCT || type_node->type == AST_UNION);
2020-05-08 08:40:49 -05:00
while (type_node->simplify(const_fold, at_zero, in_lvalue, stage, width_hint, sign_hint, in_param)) {
did_something = true;
2020-05-08 08:40:49 -05:00
}
log_assert(!type_node->is_custom_type);
}
// resolve types of wires
if (type == AST_WIRE || type == AST_MEMORY) {
if (is_custom_type) {
log_assert(children.size() >= 1);
log_assert(children[0]->type == AST_WIRETYPE);
2020-05-08 08:40:49 -05:00
auto type_name = children[0]->str;
if (!current_scope.count(type_name)) {
log_file_error(filename, location.first_line, "Unknown identifier `%s' used as type name\n", type_name.c_str());
}
AstNode *resolved_type_node = current_scope.at(type_name);
if (resolved_type_node->type != AST_TYPEDEF)
log_file_error(filename, location.first_line, "`%s' does not name a type\n", type_name.c_str());
log_assert(resolved_type_node->children.size() == 1);
AstNode *template_node = resolved_type_node->children[0];
// Ensure typedef itself is fully simplified
while (template_node->simplify(const_fold, at_zero, in_lvalue, stage, width_hint, sign_hint, in_param)) {};
if (template_node->type == AST_STRUCT || template_node->type == AST_UNION) {
2020-05-08 08:40:49 -05:00
// replace with wire representing the packed structure
newNode = make_packed_struct(template_node, str);
// add original input/output attribute to resolved wire
newNode->is_input = this->is_input;
newNode->is_output = this->is_output;
2020-05-08 08:40:49 -05:00
current_scope[str] = this;
goto apply_newNode;
}
// Remove type reference
delete children[0];
children.erase(children.begin());
if (type == AST_WIRE)
2020-05-08 08:40:49 -05:00
type = template_node->type;
is_reg = template_node->is_reg;
is_logic = template_node->is_logic;
is_signed = template_node->is_signed;
is_string = template_node->is_string;
is_custom_type = template_node->is_custom_type;
range_valid = template_node->range_valid;
range_swapped = template_node->range_swapped;
range_left = template_node->range_left;
range_right = template_node->range_right;
attributes[ID::wiretype] = mkconst_str(resolved_type_node->str);
// if an enum then add attributes to support simulator tracing
annotateTypedEnums(template_node);
// Insert clones children from template at beginning
2020-05-08 08:40:49 -05:00
for (int i = 0; i < GetSize(template_node->children); i++)
children.insert(children.begin() + i, template_node->children[i]->clone());
if (type == AST_MEMORY && GetSize(children) == 1) {
// Single-bit memories must have [0:0] range
2020-05-08 08:40:49 -05:00
AstNode *rng = make_range(0, 0);
children.insert(children.begin(), rng);
}
did_something = true;
}
log_assert(!is_custom_type);
}
// resolve types of parameters
if (type == AST_LOCALPARAM || type == AST_PARAMETER) {
if (is_custom_type) {
log_assert(children.size() == 2);
log_assert(children[1]->type == AST_WIRETYPE);
if (!current_scope.count(children[1]->str))
log_file_error(filename, location.first_line, "Unknown identifier `%s' used as type name\n", children[1]->str.c_str());
2020-05-08 08:40:49 -05:00
AstNode *resolved_type_node = current_scope.at(children[1]->str);
if (resolved_type_node->type != AST_TYPEDEF)
log_file_error(filename, location.first_line, "`%s' does not name a type\n", children[1]->str.c_str());
2020-05-08 08:40:49 -05:00
log_assert(resolved_type_node->children.size() == 1);
AstNode *template_node = resolved_type_node->children[0];
delete children[1];
children.pop_back();
// Ensure typedef itself is fully simplified
2020-05-08 08:40:49 -05:00
while(template_node->simplify(const_fold, at_zero, in_lvalue, stage, width_hint, sign_hint, in_param)) {};
2020-05-08 08:40:49 -05:00
if (template_node->type == AST_MEMORY)
log_file_error(filename, location.first_line, "unpacked array type `%s' cannot be used for a parameter\n", children[1]->str.c_str());
2020-05-08 08:40:49 -05:00
is_signed = template_node->is_signed;
is_string = template_node->is_string;
is_custom_type = template_node->is_custom_type;
range_valid = template_node->range_valid;
range_swapped = template_node->range_swapped;
range_left = template_node->range_left;
range_right = template_node->range_right;
attributes[ID::wiretype] = mkconst_str(resolved_type_node->str);
for (auto template_child : template_node->children)
children.push_back(template_child->clone());
did_something = true;
}
log_assert(!is_custom_type);
}
// resolve constant prefixes
if (type == AST_PREFIX) {
if (children[0]->type != AST_CONSTANT) {
// dumpAst(NULL, "> ");
log_file_error(filename, location.first_line, "Index in generate block prefix syntax is not constant!\n");
}
2015-09-22 13:52:02 -05:00
if (children[1]->type == AST_PREFIX)
children[1]->simplify(const_fold, at_zero, in_lvalue, stage, width_hint, sign_hint, in_param);
2014-07-28 04:08:55 -05:00
log_assert(children[1]->type == AST_IDENTIFIER);
newNode = children[1]->clone();
const char *second_part = children[1]->str.c_str();
if (second_part[0] == '\\')
second_part++;
newNode->str = stringf("%s[%d].%s", str.c_str(), children[0]->integer, second_part);
goto apply_newNode;
}
// evaluate TO_BITS nodes
if (type == AST_TO_BITS) {
if (children[0]->type != AST_CONSTANT)
log_file_error(filename, location.first_line, "Left operand of to_bits expression is not constant!\n");
if (children[1]->type != AST_CONSTANT)
log_file_error(filename, location.first_line, "Right operand of to_bits expression is not constant!\n");
RTLIL::Const new_value = children[1]->bitsAsConst(children[0]->bitsAsConst().as_int(), children[1]->is_signed);
newNode = mkconst_bits(new_value.bits, children[1]->is_signed);
goto apply_newNode;
}
2013-01-05 04:13:26 -06:00
// annotate constant ranges
if (type == AST_RANGE) {
bool old_range_valid = range_valid;
range_valid = false;
range_swapped = false;
2013-01-05 04:13:26 -06:00
range_left = -1;
range_right = 0;
2014-07-28 04:08:55 -05:00
log_assert(children.size() >= 1);
2013-01-05 04:13:26 -06:00
if (children[0]->type == AST_CONSTANT) {
range_valid = true;
range_left = children[0]->integer;
if (children.size() == 1)
range_right = range_left;
}
if (children.size() >= 2) {
if (children[1]->type == AST_CONSTANT)
range_right = children[1]->integer;
else
range_valid = false;
}
if (old_range_valid != range_valid)
did_something = true;
if (range_valid && range_right > range_left) {
2013-01-05 04:13:26 -06:00
int tmp = range_right;
range_right = range_left;
range_left = tmp;
range_swapped = true;
2013-01-05 04:13:26 -06:00
}
}
// annotate wires with their ranges
if (type == AST_WIRE) {
if (children.size() > 0) {
if (children[0]->range_valid) {
if (!range_valid)
did_something = true;
range_valid = true;
range_swapped = children[0]->range_swapped;
2013-01-05 04:13:26 -06:00
range_left = children[0]->range_left;
range_right = children[0]->range_right;
bool force_upto = false, force_downto = false;
if (attributes.count(ID::force_upto)) {
AstNode *val = attributes[ID::force_upto];
if (val->type != AST_CONSTANT)
log_file_error(filename, location.first_line, "Attribute `force_upto' with non-constant value!\n");
force_upto = val->asAttrConst().as_bool();
}
if (attributes.count(ID::force_downto)) {
AstNode *val = attributes[ID::force_downto];
if (val->type != AST_CONSTANT)
log_file_error(filename, location.first_line, "Attribute `force_downto' with non-constant value!\n");
force_downto = val->asAttrConst().as_bool();
}
if (force_upto && force_downto)
log_file_error(filename, location.first_line, "Attributes `force_downto' and `force_upto' cannot be both set!\n");
if ((force_upto && !range_swapped) || (force_downto && range_swapped)) {
std::swap(range_left, range_right);
range_swapped = force_upto;
}
2013-01-05 04:13:26 -06:00
}
} else {
if (!range_valid)
did_something = true;
range_valid = true;
range_swapped = false;
2013-01-05 04:13:26 -06:00
range_left = 0;
range_right = 0;
}
}
// resolve multiranges on memory decl
if (type == AST_MEMORY && children.size() > 1 && children[1]->type == AST_MULTIRANGE)
{
int total_size = 1;
multirange_dimensions.clear();
multirange_swapped.clear();
for (auto range : children[1]->children) {
if (!range->range_valid)
log_file_error(filename, location.first_line, "Non-constant range on memory decl.\n");
multirange_dimensions.push_back(min(range->range_left, range->range_right));
multirange_dimensions.push_back(max(range->range_left, range->range_right) - min(range->range_left, range->range_right) + 1);
multirange_swapped.push_back(range->range_swapped);
total_size *= multirange_dimensions.back();
}
delete children[1];
children[1] = new AstNode(AST_RANGE, AstNode::mkconst_int(0, true), AstNode::mkconst_int(total_size-1, true));
did_something = true;
}
// resolve multiranges on memory access
if (type == AST_IDENTIFIER && id2ast && id2ast->type == AST_MEMORY && children.size() > 0 && children[0]->type == AST_MULTIRANGE)
{
AstNode *index_expr = nullptr;
integer = children[0]->children.size(); // save original number of dimensions for $size() etc.
for (int i = 0; 2*i < GetSize(id2ast->multirange_dimensions); i++)
{
if (GetSize(children[0]->children) <= i)
log_file_error(filename, location.first_line, "Insufficient number of array indices for %s.\n", log_id(str));
AstNode *new_index_expr = children[0]->children[i]->children.at(0)->clone();
if (id2ast->multirange_dimensions[2*i])
new_index_expr = new AstNode(AST_SUB, new_index_expr, AstNode::mkconst_int(id2ast->multirange_dimensions[2*i], true));
if (i == 0)
index_expr = new_index_expr;
else
index_expr = new AstNode(AST_ADD, new AstNode(AST_MUL, index_expr, AstNode::mkconst_int(id2ast->multirange_dimensions[2*i+1], true)), new_index_expr);
}
for (int i = GetSize(id2ast->multirange_dimensions)/2; i < GetSize(children[0]->children); i++)
children.push_back(children[0]->children[i]->clone());
delete children[0];
if (index_expr == nullptr)
children.erase(children.begin());
else
children[0] = new AstNode(AST_RANGE, index_expr);
did_something = true;
}
// trim/extend parameters
if (type == AST_PARAMETER || type == AST_LOCALPARAM || type == AST_ENUM_ITEM) {
if (children.size() > 1 && children[1]->type == AST_RANGE) {
if (!children[1]->range_valid)
log_file_error(filename, location.first_line, "Non-constant width range on parameter decl.\n");
int width = std::abs(children[1]->range_left - children[1]->range_right) + 1;
if (children[0]->type == AST_REALVALUE) {
RTLIL::Const constvalue = children[0]->realAsConst(width);
log_file_warning(filename, location.first_line, "converting real value %e to binary %s.\n",
children[0]->realvalue, log_signal(constvalue));
delete children[0];
children[0] = mkconst_bits(constvalue.bits, sign_hint);
did_something = true;
}
if (children[0]->type == AST_CONSTANT) {
if (width != int(children[0]->bits.size())) {
RTLIL::SigSpec sig(children[0]->bits);
sig.extend_u0(width, children[0]->is_signed);
AstNode *old_child_0 = children[0];
2016-03-18 06:15:00 -05:00
children[0] = mkconst_bits(sig.as_const().bits, is_signed);
delete old_child_0;
}
children[0]->is_signed = is_signed;
}
2014-07-28 09:45:26 -05:00
range_valid = true;
range_swapped = children[1]->range_swapped;
range_left = children[1]->range_left;
range_right = children[1]->range_right;
} else
if (children.size() > 1 && children[1]->type == AST_REALVALUE && children[0]->type == AST_CONSTANT) {
double as_realvalue = children[0]->asReal(sign_hint);
delete children[0];
children[0] = new AstNode(AST_REALVALUE);
children[0]->realvalue = as_realvalue;
did_something = true;
}
}
2020-05-08 08:40:49 -05:00
if (type == AST_IDENTIFIER && !basic_prep) {
// check if a plausible struct member sss.mmmm
std::string sname;
2020-06-07 12:28:45 -05:00
if (name_has_dot(str, sname)) {
2020-05-08 08:40:49 -05:00
if (current_scope.count(str) > 0) {
auto item_node = current_scope[str];
if (item_node->type == AST_STRUCT_ITEM) {
// structure member, rewrite this node to reference the packed struct wire
2020-06-07 12:28:45 -05:00
auto range = make_struct_member_range(this, item_node);
2020-05-08 08:40:49 -05:00
newNode = new AstNode(AST_IDENTIFIER, range);
newNode->str = sname;
newNode->basic_prep = true;
goto apply_newNode;
}
}
}
}
2020-06-07 12:28:45 -05:00
// annotate identifiers using scope resolution and create auto-wires as needed
2013-01-05 04:13:26 -06:00
if (type == AST_IDENTIFIER) {
if (current_scope.count(str) == 0) {
AstNode *current_scope_ast = (current_ast_mod == nullptr) ? current_ast : current_ast_mod;
size_t pos = str.find('.', 1);
if (str[0] == '\\' && pos != std::string::npos) {
std::string new_str = "\\" + str.substr(pos + 1);
2020-08-20 19:15:08 -05:00
if (current_scope.count(new_str)) {
std::string prefix = str.substr(0, pos);
auto it = current_scope_ast->attributes.find(ID::hdlname);
if ((it != current_scope_ast->attributes.end() && it->second->str == prefix)
|| prefix == current_scope_ast->str)
str = new_str;
2020-08-20 19:15:08 -05:00
}
}
for (auto node : current_scope_ast->children) {
//log("looking at mod scope child %s\n", type2str(node->type).c_str());
switch (node->type) {
case AST_PARAMETER:
case AST_LOCALPARAM:
case AST_WIRE:
case AST_AUTOWIRE:
case AST_GENVAR:
case AST_MEMORY:
case AST_FUNCTION:
case AST_TASK:
case AST_DPI_FUNCTION:
//log("found child %s, %s\n", type2str(node->type).c_str(), node->str.c_str());
if (str == node->str) {
2020-02-27 18:53:49 -06:00
//log("add %s, type %s to scope\n", str.c_str(), type2str(node->type).c_str());
current_scope[node->str] = node;
}
2013-01-05 04:13:26 -06:00
break;
case AST_ENUM:
2013-01-05 04:13:26 -06:00
current_scope[node->str] = node;
for (auto enum_node : node->children) {
log_assert(enum_node->type==AST_ENUM_ITEM);
if (str == enum_node->str) {
//log("\nadding enum item %s to scope\n", str.c_str());
current_scope[str] = enum_node;
}
}
break;
default:
2013-01-05 04:13:26 -06:00
break;
}
}
}
if (current_scope.count(str) == 0) {
if (current_ast_mod == nullptr) {
log_file_error(filename, location.first_line, "Identifier `%s' is implicitly declared outside of a module.\n", str.c_str());
} else if (flag_autowire || str == "\\$global_clock") {
AstNode *auto_wire = new AstNode(AST_AUTOWIRE);
auto_wire->str = str;
current_ast_mod->children.push_back(auto_wire);
current_scope[str] = auto_wire;
did_something = true;
} else {
log_file_error(filename, location.first_line, "Identifier `%s' is implicitly declared and `default_nettype is set to none.\n", str.c_str());
}
2013-01-05 04:13:26 -06:00
}
2014-03-05 12:45:33 -06:00
if (id2ast != current_scope[str]) {
id2ast = current_scope[str];
did_something = true;
}
2013-01-05 04:13:26 -06:00
}
// split memory access with bit select to individual statements
if (type == AST_IDENTIFIER && children.size() == 2 && children[0]->type == AST_RANGE && children[1]->type == AST_RANGE && !in_lvalue)
{
if (id2ast == NULL || id2ast->type != AST_MEMORY || children[0]->children.size() != 1)
log_file_error(filename, location.first_line, "Invalid bit-select on memory access!\n");
int mem_width, mem_size, addr_bits;
id2ast->meminfo(mem_width, mem_size, addr_bits);
int data_range_left = id2ast->children[0]->range_left;
int data_range_right = id2ast->children[0]->range_right;
if (id2ast->children[0]->range_swapped)
std::swap(data_range_left, data_range_right);
std::stringstream sstr;
sstr << "$mem2bits$" << str << "$" << filename << ":" << location.first_line << "$" << (autoidx++);
std::string wire_id = sstr.str();
AstNode *wire = new AstNode(AST_WIRE, new AstNode(AST_RANGE, mkconst_int(data_range_left, true), mkconst_int(data_range_right, true)));
wire->str = wire_id;
if (current_block)
wire->attributes[ID::nosync] = AstNode::mkconst_int(1, false);
current_ast_mod->children.push_back(wire);
while (wire->simplify(true, false, false, 1, -1, false, false)) { }
AstNode *data = clone();
delete data->children[1];
data->children.pop_back();
AstNode *assign = new AstNode(AST_ASSIGN_EQ, new AstNode(AST_IDENTIFIER), data);
assign->children[0]->str = wire_id;
assign->children[0]->was_checked = true;
if (current_block)
{
size_t assign_idx = 0;
while (assign_idx < current_block->children.size() && current_block->children[assign_idx] != current_block_child)
assign_idx++;
log_assert(assign_idx < current_block->children.size());
current_block->children.insert(current_block->children.begin()+assign_idx, assign);
wire->is_reg = true;
}
else
{
AstNode *proc = new AstNode(AST_ALWAYS, new AstNode(AST_BLOCK));
proc->children[0]->children.push_back(assign);
current_ast_mod->children.push_back(proc);
}
newNode = new AstNode(AST_IDENTIFIER, children[1]->clone());
newNode->str = wire_id;
newNode->integer = integer; // save original number of dimensions for $size() etc.
newNode->id2ast = wire;
goto apply_newNode;
}
2014-06-06 15:55:02 -05:00
if (type == AST_WHILE)
log_file_error(filename, location.first_line, "While loops are only allowed in constant functions!\n");
2014-06-06 15:55:02 -05:00
if (type == AST_REPEAT)
{
AstNode *count = children[0];
AstNode *body = children[1];
// eval count expression
while (count->simplify(true, false, false, stage, 32, true, false)) { }
if (count->type != AST_CONSTANT)
log_file_error(filename, location.first_line, "Repeat loops outside must have constant repeat counts!\n");
// convert to a block with the body repeated n times
type = AST_BLOCK;
children.clear();
for (int i = 0; i < count->bitsAsConst().as_int(); i++)
children.insert(children.begin(), body->clone());
delete count;
delete body;
did_something = true;
}
2014-06-06 15:55:02 -05:00
2013-01-05 04:13:26 -06:00
// unroll for loops and generate-for blocks
if ((type == AST_GENFOR || type == AST_FOR) && children.size() != 0)
{
AstNode *init_ast = children[0];
AstNode *while_ast = children[1];
AstNode *next_ast = children[2];
AstNode *body_ast = children[3];
while (body_ast->type == AST_GENBLOCK && body_ast->str.empty() &&
body_ast->children.size() == 1 && body_ast->children.at(0)->type == AST_GENBLOCK)
body_ast = body_ast->children.at(0);
2020-07-25 11:35:03 -05:00
const char* loop_type_str = "procedural";
const char* var_type_str = "register";
AstNodeType var_type = AST_WIRE;
if (type == AST_GENFOR) {
loop_type_str = "generate";
var_type_str = "genvar";
var_type = AST_GENVAR;
}
2013-01-05 04:13:26 -06:00
if (init_ast->type != AST_ASSIGN_EQ)
2020-07-25 11:35:03 -05:00
log_file_error(filename, location.first_line, "Unsupported 1st expression of %s for-loop!\n", loop_type_str);
2013-01-05 04:13:26 -06:00
if (next_ast->type != AST_ASSIGN_EQ)
2020-07-25 11:35:03 -05:00
log_file_error(filename, location.first_line, "Unsupported 3rd expression of %s for-loop!\n", loop_type_str);
2013-01-05 04:13:26 -06:00
2020-07-25 11:35:03 -05:00
if (init_ast->children[0]->id2ast == NULL || init_ast->children[0]->id2ast->type != var_type)
log_file_error(filename, location.first_line, "Left hand side of 1st expression of %s for-loop is not a %s!\n", loop_type_str, var_type_str);
if (next_ast->children[0]->id2ast == NULL || next_ast->children[0]->id2ast->type != var_type)
log_file_error(filename, location.first_line, "Left hand side of 3rd expression of %s for-loop is not a %s!\n", loop_type_str, var_type_str);
2013-01-05 04:13:26 -06:00
if (init_ast->children[0]->id2ast != next_ast->children[0]->id2ast)
2020-07-25 11:35:03 -05:00
log_file_error(filename, location.first_line, "Incompatible left-hand sides in 1st and 3rd expression of %s for-loop!\n", loop_type_str);
2013-01-05 04:13:26 -06:00
// eval 1st expression
AstNode *varbuf = init_ast->children[1]->clone();
{
int expr_width_hint = -1;
bool expr_sign_hint = true;
varbuf->detectSignWidth(expr_width_hint, expr_sign_hint);
while (varbuf->simplify(true, false, false, stage, 32, true, false)) { }
}
2013-01-05 04:13:26 -06:00
if (varbuf->type != AST_CONSTANT)
2020-07-25 11:35:03 -05:00
log_file_error(filename, location.first_line, "Right hand side of 1st expression of %s for-loop is not constant!\n", loop_type_str);
2013-01-05 04:13:26 -06:00
auto resolved = current_scope.at(init_ast->children[0]->str);
if (resolved->range_valid) {
int const_size = varbuf->range_left - varbuf->range_right;
int resolved_size = resolved->range_left - resolved->range_right;
if (const_size < resolved_size) {
for (int i = const_size; i < resolved_size; i++)
varbuf->bits.push_back(resolved->is_signed ? varbuf->bits.back() : State::S0);
varbuf->range_left = resolved->range_left;
varbuf->range_right = resolved->range_right;
varbuf->range_swapped = resolved->range_swapped;
varbuf->range_valid = resolved->range_valid;
}
}
varbuf = new AstNode(AST_LOCALPARAM, varbuf);
varbuf->str = init_ast->children[0]->str;
2013-01-05 04:13:26 -06:00
AstNode *backup_scope_varbuf = current_scope[varbuf->str];
current_scope[varbuf->str] = varbuf;
size_t current_block_idx = 0;
if (type == AST_FOR) {
while (current_block_idx < current_block->children.size() &&
current_block->children[current_block_idx] != current_block_child)
current_block_idx++;
}
while (1)
{
// eval 2nd expression
AstNode *buf = while_ast->clone();
{
int expr_width_hint = -1;
bool expr_sign_hint = true;
buf->detectSignWidth(expr_width_hint, expr_sign_hint);
while (buf->simplify(true, false, false, stage, expr_width_hint, expr_sign_hint, false)) { }
}
2013-01-05 04:13:26 -06:00
if (buf->type != AST_CONSTANT)
2020-07-25 11:35:03 -05:00
log_file_error(filename, location.first_line, "2nd expression of %s for-loop is not constant!\n", loop_type_str);
2013-01-05 04:13:26 -06:00
if (buf->integer == 0) {
delete buf;
break;
}
delete buf;
// expand body
int index = varbuf->children[0]->integer;
verilog: significant block scoping improvements This change set contains a number of bug fixes and improvements related to scoping and resolution in generate and procedural blocks. While many of the frontend changes are interdependent, it may be possible bring the techmap changes in under a separate PR. Declarations within unnamed generate blocks previously encountered issues because the data declarations were left un-prefixed, breaking proper scoping. The LRM outlines behavior for generating names for unnamed generate blocks. The original goal was to add this implicit labelling, but doing so exposed a number of issues downstream. Additional testing highlighted other closely related scope resolution issues, which have been fixed. This change also adds support for block item declarations within unnamed blocks in SystemVerilog mode. 1. Unlabled generate blocks are now implicitly named according to the LRM in `label_genblks`, which is invoked at the beginning of module elaboration 2. The Verilog parser no longer wraps explicitly named generate blocks in a synthetic unnamed generate block to avoid creating extra hierarchy levels where they should not exist 3. The techmap phase now allows special control identifiers to be used outside of the topmost scope, which is necessary because such wires and cells often appear in unlabeled generate blocks, which now prefix the declarations within 4. Some techlibs required modifications because they relied on the previous invalid scope resolution behavior 5. `expand_genblock` has been simplified, now only expanding the outermost scope, completely deferring the inspection and elaboration of nested scopes; names are now resolved by looking in the innermost scope and stepping outward 6. Loop variables now always become localparams during unrolling, allowing them to be resolved and shadowed like any other identifier 7. Identifiers in synthetic function call scopes are now prefixed and resolved in largely the same manner as other blocks before: `$func$\func_01$tests/simple/scopes.blk.v:60$5$\blk\x` after: `\func_01$func$tests/simple/scopes.v:60$5.blk.x` 8. Support identifiers referencing a local generate scope nested more than 1 level deep, i.e. `B.C.x` while within generate scope `A`, or using a prefix of a current or parent scope, i.e. `B.C.D.x` while in `A.B`, `A.B.C`, or `A.B.C.D` 9. Variables can now be declared within unnamed blocks in SystemVerilog mode Addresses the following issues: 656, 2423, 2493
2021-01-27 12:30:22 -06:00
log_assert(body_ast->type == AST_GENBLOCK || body_ast->type == AST_BLOCK);
log_assert(!body_ast->str.empty());
buf = body_ast->clone();
2013-01-05 04:13:26 -06:00
std::stringstream sstr;
sstr << buf->str << "[" << index << "].";
verilog: significant block scoping improvements This change set contains a number of bug fixes and improvements related to scoping and resolution in generate and procedural blocks. While many of the frontend changes are interdependent, it may be possible bring the techmap changes in under a separate PR. Declarations within unnamed generate blocks previously encountered issues because the data declarations were left un-prefixed, breaking proper scoping. The LRM outlines behavior for generating names for unnamed generate blocks. The original goal was to add this implicit labelling, but doing so exposed a number of issues downstream. Additional testing highlighted other closely related scope resolution issues, which have been fixed. This change also adds support for block item declarations within unnamed blocks in SystemVerilog mode. 1. Unlabled generate blocks are now implicitly named according to the LRM in `label_genblks`, which is invoked at the beginning of module elaboration 2. The Verilog parser no longer wraps explicitly named generate blocks in a synthetic unnamed generate block to avoid creating extra hierarchy levels where they should not exist 3. The techmap phase now allows special control identifiers to be used outside of the topmost scope, which is necessary because such wires and cells often appear in unlabeled generate blocks, which now prefix the declarations within 4. Some techlibs required modifications because they relied on the previous invalid scope resolution behavior 5. `expand_genblock` has been simplified, now only expanding the outermost scope, completely deferring the inspection and elaboration of nested scopes; names are now resolved by looking in the innermost scope and stepping outward 6. Loop variables now always become localparams during unrolling, allowing them to be resolved and shadowed like any other identifier 7. Identifiers in synthetic function call scopes are now prefixed and resolved in largely the same manner as other blocks before: `$func$\func_01$tests/simple/scopes.blk.v:60$5$\blk\x` after: `\func_01$func$tests/simple/scopes.v:60$5.blk.x` 8. Support identifiers referencing a local generate scope nested more than 1 level deep, i.e. `B.C.x` while within generate scope `A`, or using a prefix of a current or parent scope, i.e. `B.C.D.x` while in `A.B`, `A.B.C`, or `A.B.C.D` 9. Variables can now be declared within unnamed blocks in SystemVerilog mode Addresses the following issues: 656, 2423, 2493
2021-01-27 12:30:22 -06:00
std::string prefix = sstr.str();
// create a scoped localparam for the current value of the loop variable
AstNode *local_index = varbuf->clone();
size_t pos = local_index->str.rfind('.');
if (pos != std::string::npos) // remove outer prefix
local_index->str = "\\" + local_index->str.substr(pos + 1);
local_index->str = prefix_id(prefix, local_index->str);
current_scope[local_index->str] = local_index;
current_ast_mod->children.push_back(local_index);
buf->expand_genblock(prefix);
2013-01-05 04:13:26 -06:00
if (type == AST_GENFOR) {
for (size_t i = 0; i < buf->children.size(); i++) {
buf->children[i]->simplify(const_fold, false, false, stage, -1, false, false);
2013-01-05 04:13:26 -06:00
current_ast_mod->children.push_back(buf->children[i]);
}
2013-01-05 04:13:26 -06:00
} else {
for (size_t i = 0; i < buf->children.size(); i++)
current_block->children.insert(current_block->children.begin() + current_block_idx++, buf->children[i]);
}
buf->children.clear();
delete buf;
// eval 3rd expression
buf = next_ast->children[1]->clone();
{
int expr_width_hint = -1;
bool expr_sign_hint = true;
buf->detectSignWidth(expr_width_hint, expr_sign_hint);
while (buf->simplify(true, false, false, stage, expr_width_hint, expr_sign_hint, true)) { }
}
2013-01-05 04:13:26 -06:00
if (buf->type != AST_CONSTANT)
2020-07-25 11:35:03 -05:00
log_file_error(filename, location.first_line, "Right hand side of 3rd expression of %s for-loop is not constant (%s)!\n", loop_type_str, type2str(buf->type).c_str());
2013-01-05 04:13:26 -06:00
delete varbuf->children[0];
varbuf->children[0] = buf;
}
if (type == AST_FOR) {
AstNode *buf = next_ast->clone();
delete buf->children[1];
buf->children[1] = varbuf->children[0]->clone();
current_block->children.insert(current_block->children.begin() + current_block_idx++, buf);
}
2013-01-05 04:13:26 -06:00
current_scope[varbuf->str] = backup_scope_varbuf;
delete varbuf;
delete_children();
did_something = true;
}
// check for local objects in unnamed block
if (type == AST_BLOCK && str.empty())
{
for (size_t i = 0; i < children.size(); i++)
if (children[i]->type == AST_WIRE || children[i]->type == AST_MEMORY || children[i]->type == AST_PARAMETER || children[i]->type == AST_LOCALPARAM || children[i]->type == AST_TYPEDEF)
verilog: significant block scoping improvements This change set contains a number of bug fixes and improvements related to scoping and resolution in generate and procedural blocks. While many of the frontend changes are interdependent, it may be possible bring the techmap changes in under a separate PR. Declarations within unnamed generate blocks previously encountered issues because the data declarations were left un-prefixed, breaking proper scoping. The LRM outlines behavior for generating names for unnamed generate blocks. The original goal was to add this implicit labelling, but doing so exposed a number of issues downstream. Additional testing highlighted other closely related scope resolution issues, which have been fixed. This change also adds support for block item declarations within unnamed blocks in SystemVerilog mode. 1. Unlabled generate blocks are now implicitly named according to the LRM in `label_genblks`, which is invoked at the beginning of module elaboration 2. The Verilog parser no longer wraps explicitly named generate blocks in a synthetic unnamed generate block to avoid creating extra hierarchy levels where they should not exist 3. The techmap phase now allows special control identifiers to be used outside of the topmost scope, which is necessary because such wires and cells often appear in unlabeled generate blocks, which now prefix the declarations within 4. Some techlibs required modifications because they relied on the previous invalid scope resolution behavior 5. `expand_genblock` has been simplified, now only expanding the outermost scope, completely deferring the inspection and elaboration of nested scopes; names are now resolved by looking in the innermost scope and stepping outward 6. Loop variables now always become localparams during unrolling, allowing them to be resolved and shadowed like any other identifier 7. Identifiers in synthetic function call scopes are now prefixed and resolved in largely the same manner as other blocks before: `$func$\func_01$tests/simple/scopes.blk.v:60$5$\blk\x` after: `\func_01$func$tests/simple/scopes.v:60$5.blk.x` 8. Support identifiers referencing a local generate scope nested more than 1 level deep, i.e. `B.C.x` while within generate scope `A`, or using a prefix of a current or parent scope, i.e. `B.C.D.x` while in `A.B`, `A.B.C`, or `A.B.C.D` 9. Variables can now be declared within unnamed blocks in SystemVerilog mode Addresses the following issues: 656, 2423, 2493
2021-01-27 12:30:22 -06:00
{
log_assert(!VERILOG_FRONTEND::sv_mode);
log_file_error(children[i]->filename, children[i]->location.first_line, "Local declaration in unnamed block is only supported in SystemVerilog mode!\n");
}
}
// transform block with name
if (type == AST_BLOCK && !str.empty())
{
verilog: significant block scoping improvements This change set contains a number of bug fixes and improvements related to scoping and resolution in generate and procedural blocks. While many of the frontend changes are interdependent, it may be possible bring the techmap changes in under a separate PR. Declarations within unnamed generate blocks previously encountered issues because the data declarations were left un-prefixed, breaking proper scoping. The LRM outlines behavior for generating names for unnamed generate blocks. The original goal was to add this implicit labelling, but doing so exposed a number of issues downstream. Additional testing highlighted other closely related scope resolution issues, which have been fixed. This change also adds support for block item declarations within unnamed blocks in SystemVerilog mode. 1. Unlabled generate blocks are now implicitly named according to the LRM in `label_genblks`, which is invoked at the beginning of module elaboration 2. The Verilog parser no longer wraps explicitly named generate blocks in a synthetic unnamed generate block to avoid creating extra hierarchy levels where they should not exist 3. The techmap phase now allows special control identifiers to be used outside of the topmost scope, which is necessary because such wires and cells often appear in unlabeled generate blocks, which now prefix the declarations within 4. Some techlibs required modifications because they relied on the previous invalid scope resolution behavior 5. `expand_genblock` has been simplified, now only expanding the outermost scope, completely deferring the inspection and elaboration of nested scopes; names are now resolved by looking in the innermost scope and stepping outward 6. Loop variables now always become localparams during unrolling, allowing them to be resolved and shadowed like any other identifier 7. Identifiers in synthetic function call scopes are now prefixed and resolved in largely the same manner as other blocks before: `$func$\func_01$tests/simple/scopes.blk.v:60$5$\blk\x` after: `\func_01$func$tests/simple/scopes.v:60$5.blk.x` 8. Support identifiers referencing a local generate scope nested more than 1 level deep, i.e. `B.C.x` while within generate scope `A`, or using a prefix of a current or parent scope, i.e. `B.C.D.x` while in `A.B`, `A.B.C`, or `A.B.C.D` 9. Variables can now be declared within unnamed blocks in SystemVerilog mode Addresses the following issues: 656, 2423, 2493
2021-01-27 12:30:22 -06:00
expand_genblock(str + ".");
std::vector<AstNode*> new_children;
for (size_t i = 0; i < children.size(); i++)
if (children[i]->type == AST_WIRE || children[i]->type == AST_MEMORY || children[i]->type == AST_PARAMETER || children[i]->type == AST_LOCALPARAM || children[i]->type == AST_TYPEDEF) {
children[i]->simplify(false, false, false, stage, -1, false, false);
current_ast_mod->children.push_back(children[i]);
current_scope[children[i]->str] = children[i];
} else
new_children.push_back(children[i]);
children.swap(new_children);
did_something = true;
str.clear();
}
// simplify unconditional generate block
if (type == AST_GENBLOCK && children.size() != 0)
{
if (!str.empty()) {
verilog: significant block scoping improvements This change set contains a number of bug fixes and improvements related to scoping and resolution in generate and procedural blocks. While many of the frontend changes are interdependent, it may be possible bring the techmap changes in under a separate PR. Declarations within unnamed generate blocks previously encountered issues because the data declarations were left un-prefixed, breaking proper scoping. The LRM outlines behavior for generating names for unnamed generate blocks. The original goal was to add this implicit labelling, but doing so exposed a number of issues downstream. Additional testing highlighted other closely related scope resolution issues, which have been fixed. This change also adds support for block item declarations within unnamed blocks in SystemVerilog mode. 1. Unlabled generate blocks are now implicitly named according to the LRM in `label_genblks`, which is invoked at the beginning of module elaboration 2. The Verilog parser no longer wraps explicitly named generate blocks in a synthetic unnamed generate block to avoid creating extra hierarchy levels where they should not exist 3. The techmap phase now allows special control identifiers to be used outside of the topmost scope, which is necessary because such wires and cells often appear in unlabeled generate blocks, which now prefix the declarations within 4. Some techlibs required modifications because they relied on the previous invalid scope resolution behavior 5. `expand_genblock` has been simplified, now only expanding the outermost scope, completely deferring the inspection and elaboration of nested scopes; names are now resolved by looking in the innermost scope and stepping outward 6. Loop variables now always become localparams during unrolling, allowing them to be resolved and shadowed like any other identifier 7. Identifiers in synthetic function call scopes are now prefixed and resolved in largely the same manner as other blocks before: `$func$\func_01$tests/simple/scopes.blk.v:60$5$\blk\x` after: `\func_01$func$tests/simple/scopes.v:60$5.blk.x` 8. Support identifiers referencing a local generate scope nested more than 1 level deep, i.e. `B.C.x` while within generate scope `A`, or using a prefix of a current or parent scope, i.e. `B.C.D.x` while in `A.B`, `A.B.C`, or `A.B.C.D` 9. Variables can now be declared within unnamed blocks in SystemVerilog mode Addresses the following issues: 656, 2423, 2493
2021-01-27 12:30:22 -06:00
expand_genblock(str + ".");
}
for (size_t i = 0; i < children.size(); i++) {
children[i]->simplify(const_fold, false, false, stage, -1, false, false);
current_ast_mod->children.push_back(children[i]);
}
children.clear();
did_something = true;
}
2013-01-05 04:13:26 -06:00
// simplify generate-if blocks
if (type == AST_GENIF && children.size() != 0)
{
AstNode *buf = children[0]->clone();
while (buf->simplify(true, false, false, stage, width_hint, sign_hint, false)) { }
2013-01-05 04:13:26 -06:00
if (buf->type != AST_CONSTANT) {
// for (auto f : log_files)
// dumpAst(f, "verilog-ast> ");
log_file_error(filename, location.first_line, "Condition for generate if is not constant!\n");
2013-01-05 04:13:26 -06:00
}
if (buf->asBool() != 0) {
2013-01-05 04:13:26 -06:00
delete buf;
buf = children[1]->clone();
} else {
delete buf;
buf = children.size() > 2 ? children[2]->clone() : NULL;
}
if (buf)
{
if (buf->type != AST_GENBLOCK)
buf = new AstNode(AST_GENBLOCK, buf);
if (!buf->str.empty()) {
verilog: significant block scoping improvements This change set contains a number of bug fixes and improvements related to scoping and resolution in generate and procedural blocks. While many of the frontend changes are interdependent, it may be possible bring the techmap changes in under a separate PR. Declarations within unnamed generate blocks previously encountered issues because the data declarations were left un-prefixed, breaking proper scoping. The LRM outlines behavior for generating names for unnamed generate blocks. The original goal was to add this implicit labelling, but doing so exposed a number of issues downstream. Additional testing highlighted other closely related scope resolution issues, which have been fixed. This change also adds support for block item declarations within unnamed blocks in SystemVerilog mode. 1. Unlabled generate blocks are now implicitly named according to the LRM in `label_genblks`, which is invoked at the beginning of module elaboration 2. The Verilog parser no longer wraps explicitly named generate blocks in a synthetic unnamed generate block to avoid creating extra hierarchy levels where they should not exist 3. The techmap phase now allows special control identifiers to be used outside of the topmost scope, which is necessary because such wires and cells often appear in unlabeled generate blocks, which now prefix the declarations within 4. Some techlibs required modifications because they relied on the previous invalid scope resolution behavior 5. `expand_genblock` has been simplified, now only expanding the outermost scope, completely deferring the inspection and elaboration of nested scopes; names are now resolved by looking in the innermost scope and stepping outward 6. Loop variables now always become localparams during unrolling, allowing them to be resolved and shadowed like any other identifier 7. Identifiers in synthetic function call scopes are now prefixed and resolved in largely the same manner as other blocks before: `$func$\func_01$tests/simple/scopes.blk.v:60$5$\blk\x` after: `\func_01$func$tests/simple/scopes.v:60$5.blk.x` 8. Support identifiers referencing a local generate scope nested more than 1 level deep, i.e. `B.C.x` while within generate scope `A`, or using a prefix of a current or parent scope, i.e. `B.C.D.x` while in `A.B`, `A.B.C`, or `A.B.C.D` 9. Variables can now be declared within unnamed blocks in SystemVerilog mode Addresses the following issues: 656, 2423, 2493
2021-01-27 12:30:22 -06:00
buf->expand_genblock(buf->str + ".");
2013-01-05 04:13:26 -06:00
}
for (size_t i = 0; i < buf->children.size(); i++) {
buf->children[i]->simplify(const_fold, false, false, stage, -1, false, false);
2013-01-05 04:13:26 -06:00
current_ast_mod->children.push_back(buf->children[i]);
}
2013-01-05 04:13:26 -06:00
buf->children.clear();
delete buf;
}
delete_children();
did_something = true;
}
// simplify generate-case blocks
if (type == AST_GENCASE && children.size() != 0)
{
AstNode *buf = children[0]->clone();
while (buf->simplify(true, false, false, stage, width_hint, sign_hint, false)) { }
if (buf->type != AST_CONSTANT) {
// for (auto f : log_files)
// dumpAst(f, "verilog-ast> ");
log_file_error(filename, location.first_line, "Condition for generate case is not constant!\n");
}
bool ref_signed = buf->is_signed;
RTLIL::Const ref_value = buf->bitsAsConst();
delete buf;
AstNode *selected_case = NULL;
for (size_t i = 1; i < children.size(); i++)
{
log_assert(children.at(i)->type == AST_COND || children.at(i)->type == AST_CONDX || children.at(i)->type == AST_CONDZ);
AstNode *this_genblock = NULL;
for (auto child : children.at(i)->children) {
log_assert(this_genblock == NULL);
if (child->type == AST_GENBLOCK)
this_genblock = child;
}
for (auto child : children.at(i)->children)
{
if (child->type == AST_DEFAULT) {
if (selected_case == NULL)
selected_case = this_genblock;
continue;
}
if (child->type == AST_GENBLOCK)
continue;
buf = child->clone();
while (buf->simplify(true, false, false, stage, width_hint, sign_hint, true)) { }
if (buf->type != AST_CONSTANT) {
// for (auto f : log_files)
// dumpAst(f, "verilog-ast> ");
log_file_error(filename, location.first_line, "Expression in generate case is not constant!\n");
}
2014-07-25 06:07:31 -05:00
bool is_selected = RTLIL::const_eq(ref_value, buf->bitsAsConst(), ref_signed && buf->is_signed, ref_signed && buf->is_signed, 1).as_bool();
delete buf;
if (is_selected) {
selected_case = this_genblock;
i = children.size();
break;
}
}
}
if (selected_case != NULL)
{
log_assert(selected_case->type == AST_GENBLOCK);
buf = selected_case->clone();
if (!buf->str.empty()) {
verilog: significant block scoping improvements This change set contains a number of bug fixes and improvements related to scoping and resolution in generate and procedural blocks. While many of the frontend changes are interdependent, it may be possible bring the techmap changes in under a separate PR. Declarations within unnamed generate blocks previously encountered issues because the data declarations were left un-prefixed, breaking proper scoping. The LRM outlines behavior for generating names for unnamed generate blocks. The original goal was to add this implicit labelling, but doing so exposed a number of issues downstream. Additional testing highlighted other closely related scope resolution issues, which have been fixed. This change also adds support for block item declarations within unnamed blocks in SystemVerilog mode. 1. Unlabled generate blocks are now implicitly named according to the LRM in `label_genblks`, which is invoked at the beginning of module elaboration 2. The Verilog parser no longer wraps explicitly named generate blocks in a synthetic unnamed generate block to avoid creating extra hierarchy levels where they should not exist 3. The techmap phase now allows special control identifiers to be used outside of the topmost scope, which is necessary because such wires and cells often appear in unlabeled generate blocks, which now prefix the declarations within 4. Some techlibs required modifications because they relied on the previous invalid scope resolution behavior 5. `expand_genblock` has been simplified, now only expanding the outermost scope, completely deferring the inspection and elaboration of nested scopes; names are now resolved by looking in the innermost scope and stepping outward 6. Loop variables now always become localparams during unrolling, allowing them to be resolved and shadowed like any other identifier 7. Identifiers in synthetic function call scopes are now prefixed and resolved in largely the same manner as other blocks before: `$func$\func_01$tests/simple/scopes.blk.v:60$5$\blk\x` after: `\func_01$func$tests/simple/scopes.v:60$5.blk.x` 8. Support identifiers referencing a local generate scope nested more than 1 level deep, i.e. `B.C.x` while within generate scope `A`, or using a prefix of a current or parent scope, i.e. `B.C.D.x` while in `A.B`, `A.B.C`, or `A.B.C.D` 9. Variables can now be declared within unnamed blocks in SystemVerilog mode Addresses the following issues: 656, 2423, 2493
2021-01-27 12:30:22 -06:00
buf->expand_genblock(buf->str + ".");
}
for (size_t i = 0; i < buf->children.size(); i++) {
buf->children[i]->simplify(const_fold, false, false, stage, -1, false, false);
current_ast_mod->children.push_back(buf->children[i]);
}
buf->children.clear();
delete buf;
}
delete_children();
did_something = true;
}
2014-06-07 04:48:50 -05:00
// unroll cell arrays
if (type == AST_CELLARRAY)
{
if (!children.at(0)->range_valid)
log_file_error(filename, location.first_line, "Non-constant array range on cell array.\n");
2014-06-07 04:48:50 -05:00
newNode = new AstNode(AST_GENBLOCK);
int num = max(children.at(0)->range_left, children.at(0)->range_right) - min(children.at(0)->range_left, children.at(0)->range_right) + 1;
2014-06-07 04:48:50 -05:00
for (int i = 0; i < num; i++) {
int idx = children.at(0)->range_left > children.at(0)->range_right ? children.at(0)->range_right + i : children.at(0)->range_right - i;
AstNode *new_cell = children.at(1)->clone();
newNode->children.push_back(new_cell);
new_cell->str += stringf("[%d]", idx);
if (new_cell->type == AST_PRIMITIVE) {
log_file_error(filename, location.first_line, "Cell arrays of primitives are currently not supported.\n");
2014-06-07 04:48:50 -05:00
} else {
log_assert(new_cell->children.at(0)->type == AST_CELLTYPE);
new_cell->children.at(0)->str = stringf("$array:%d:%d:%s", i, num, new_cell->children.at(0)->str.c_str());
}
}
goto apply_newNode;
}
2015-08-14 03:56:05 -05:00
// replace primitives with assignments
2013-01-05 04:13:26 -06:00
if (type == AST_PRIMITIVE)
{
if (children.size() < 2)
log_file_error(filename, location.first_line, "Insufficient number of arguments for primitive `%s'!\n", str.c_str());
2013-01-05 04:13:26 -06:00
std::vector<AstNode*> children_list;
for (auto child : children) {
2014-07-28 04:08:55 -05:00
log_assert(child->type == AST_ARGUMENT);
log_assert(child->children.size() == 1);
2013-01-05 04:13:26 -06:00
children_list.push_back(child->children[0]);
child->children.clear();
delete child;
}
children.clear();
if (str == "bufif0" || str == "bufif1" || str == "notif0" || str == "notif1")
{
if (children_list.size() != 3)
log_file_error(filename, location.first_line, "Invalid number of arguments for primitive `%s'!\n", str.c_str());
2013-01-05 04:13:26 -06:00
std::vector<RTLIL::State> z_const(1, RTLIL::State::Sz);
AstNode *mux_input = children_list.at(1);
if (str == "notif0" || str == "notif1") {
mux_input = new AstNode(AST_BIT_NOT, mux_input);
}
AstNode *node = new AstNode(AST_TERNARY, children_list.at(2));
if (str == "bufif0") {
node->children.push_back(AstNode::mkconst_bits(z_const, false));
node->children.push_back(mux_input);
} else {
node->children.push_back(mux_input);
node->children.push_back(AstNode::mkconst_bits(z_const, false));
}
str.clear();
type = AST_ASSIGN;
children.push_back(children_list.at(0));
children.back()->was_checked = true;
children.push_back(node);
did_something = true;
}
else if (str == "buf" || str == "not")
{
AstNode *input = children_list.back();
if (str == "not")
input = new AstNode(AST_BIT_NOT, input);
newNode = new AstNode(AST_GENBLOCK);
for (auto it = children_list.begin(); it != std::prev(children_list.end()); it++) {
newNode->children.push_back(new AstNode(AST_ASSIGN, *it, input->clone()));
newNode->children.back()->was_checked = true;
}
delete input;
did_something = true;
}
else
{
AstNodeType op_type = AST_NONE;
bool invert_results = false;
if (str == "and")
op_type = AST_BIT_AND;
if (str == "nand")
op_type = AST_BIT_AND, invert_results = true;
if (str == "or")
op_type = AST_BIT_OR;
if (str == "nor")
op_type = AST_BIT_OR, invert_results = true;
if (str == "xor")
op_type = AST_BIT_XOR;
if (str == "xnor")
op_type = AST_BIT_XOR, invert_results = true;
2014-07-28 04:08:55 -05:00
log_assert(op_type != AST_NONE);
AstNode *node = children_list[1];
if (op_type != AST_POS)
for (size_t i = 2; i < children_list.size(); i++) {
node = new AstNode(op_type, node, children_list[i]);
node->location = location;
}
if (invert_results)
node = new AstNode(AST_BIT_NOT, node);
str.clear();
type = AST_ASSIGN;
children.push_back(children_list[0]);
children.back()->was_checked = true;
children.push_back(node);
did_something = true;
}
2013-01-05 04:13:26 -06:00
}
// replace dynamic ranges in left-hand side expressions (e.g. "foo[bar] <= 1'b1;") with
// either a big case block that selects the correct single-bit assignment, or mask and
// shift operations.
if (type == AST_ASSIGN_EQ || type == AST_ASSIGN_LE)
{
2013-01-05 04:13:26 -06:00
if (children[0]->type != AST_IDENTIFIER || children[0]->children.size() == 0)
goto skip_dynamic_range_lvalue_expansion;
if (children[0]->children[0]->range_valid || did_something)
goto skip_dynamic_range_lvalue_expansion;
if (children[0]->id2ast == NULL || children[0]->id2ast->type != AST_WIRE)
goto skip_dynamic_range_lvalue_expansion;
if (!children[0]->id2ast->range_valid)
goto skip_dynamic_range_lvalue_expansion;
2013-01-05 04:13:26 -06:00
int source_width = children[0]->id2ast->range_left - children[0]->id2ast->range_right + 1;
int result_width = 1;
2013-01-05 04:13:26 -06:00
AstNode *shift_expr = NULL;
AstNode *range = children[0]->children[0];
2013-01-05 04:13:26 -06:00
if (range->children.size() == 1) {
shift_expr = range->children[0]->clone();
} else {
shift_expr = range->children[1]->clone();
AstNode *left_at_zero_ast = range->children[0]->clone();
AstNode *right_at_zero_ast = range->children[1]->clone();
while (left_at_zero_ast->simplify(true, true, false, stage, -1, false, false)) { }
while (right_at_zero_ast->simplify(true, true, false, stage, -1, false, false)) { }
2013-01-05 04:13:26 -06:00
if (left_at_zero_ast->type != AST_CONSTANT || right_at_zero_ast->type != AST_CONSTANT)
log_file_error(filename, location.first_line, "Unsupported expression on dynamic range select on signal `%s'!\n", str.c_str());
2014-10-14 16:16:50 -05:00
result_width = abs(int(left_at_zero_ast->integer - right_at_zero_ast->integer)) + 1;
2013-01-05 04:13:26 -06:00
}
bool use_case_method = false;
if (children[0]->id2ast->attributes.count(ID::nowrshmsk)) {
AstNode *node = children[0]->id2ast->attributes.at(ID::nowrshmsk);
while (node->simplify(true, false, false, stage, -1, false, false)) { }
if (node->type != AST_CONSTANT)
log_file_error(filename, location.first_line, "Non-constant value for `nowrshmsk' attribute on `%s'!\n", children[0]->id2ast->str.c_str());
if (node->asAttrConst().as_bool())
use_case_method = true;
}
if (!use_case_method && current_always->detect_latch(children[0]->str))
use_case_method = true;
if (use_case_method)
{
// big case block
did_something = true;
newNode = new AstNode(AST_CASE, shift_expr);
for (int i = 0; i < source_width; i++) {
int start_bit = children[0]->id2ast->range_right + i;
int end_bit = std::min(start_bit+result_width,source_width) - 1;
AstNode *cond = new AstNode(AST_COND, mkconst_int(start_bit, true));
AstNode *lvalue = children[0]->clone();
lvalue->delete_children();
lvalue->children.push_back(new AstNode(AST_RANGE,
mkconst_int(end_bit, true), mkconst_int(start_bit, true)));
cond->children.push_back(new AstNode(AST_BLOCK, new AstNode(type, lvalue, children[1]->clone())));
newNode->children.push_back(cond);
}
}
else
{
// mask and shift operations, disabled for now
AstNode *wire_mask = new AstNode(AST_WIRE, new AstNode(AST_RANGE, mkconst_int(source_width-1, true), mkconst_int(0, true)));
wire_mask->str = stringf("$bitselwrite$mask$%s:%d$%d", filename.c_str(), location.first_line, autoidx++);
wire_mask->attributes[ID::nosync] = AstNode::mkconst_int(1, false);
wire_mask->is_logic = true;
while (wire_mask->simplify(true, false, false, 1, -1, false, false)) { }
current_ast_mod->children.push_back(wire_mask);
AstNode *wire_data = new AstNode(AST_WIRE, new AstNode(AST_RANGE, mkconst_int(source_width-1, true), mkconst_int(0, true)));
wire_data->str = stringf("$bitselwrite$data$%s:%d$%d", filename.c_str(), location.first_line, autoidx++);
wire_data->attributes[ID::nosync] = AstNode::mkconst_int(1, false);
wire_data->is_logic = true;
while (wire_data->simplify(true, false, false, 1, -1, false, false)) { }
current_ast_mod->children.push_back(wire_data);
did_something = true;
newNode = new AstNode(AST_BLOCK);
2013-01-05 04:13:26 -06:00
AstNode *lvalue = children[0]->clone();
lvalue->delete_children();
AstNode *ref_mask = new AstNode(AST_IDENTIFIER);
ref_mask->str = wire_mask->str;
ref_mask->id2ast = wire_mask;
ref_mask->was_checked = true;
AstNode *ref_data = new AstNode(AST_IDENTIFIER);
ref_data->str = wire_data->str;
ref_data->id2ast = wire_data;
ref_data->was_checked = true;
AstNode *old_data = lvalue->clone();
if (type == AST_ASSIGN_LE)
old_data->lookahead = true;
AstNode *shamt = shift_expr;
int shamt_width_hint = 0;
bool shamt_sign_hint = true;
shamt->detectSignWidth(shamt_width_hint, shamt_sign_hint);
int start_bit = children[0]->id2ast->range_right;
bool use_shift = shamt_sign_hint;
if (start_bit != 0) {
shamt = new AstNode(AST_SUB, shamt, mkconst_int(start_bit, true));
use_shift = true;
}
AstNode *t;
t = mkconst_bits(std::vector<RTLIL::State>(result_width, State::S1), false);
if (use_shift)
t = new AstNode(AST_SHIFT, t, new AstNode(AST_NEG, shamt->clone()));
else
t = new AstNode(AST_SHIFT_LEFT, t, shamt->clone());
t = new AstNode(AST_ASSIGN_EQ, ref_mask->clone(), t);
newNode->children.push_back(t);
t = new AstNode(AST_BIT_AND, mkconst_bits(std::vector<RTLIL::State>(result_width, State::S1), false), children[1]->clone());
if (use_shift)
t = new AstNode(AST_SHIFT, t, new AstNode(AST_NEG, shamt));
else
t = new AstNode(AST_SHIFT_LEFT, t, shamt);
t = new AstNode(AST_ASSIGN_EQ, ref_data->clone(), t);
newNode->children.push_back(t);
t = new AstNode(AST_BIT_AND, old_data, new AstNode(AST_BIT_NOT, ref_mask));
t = new AstNode(AST_BIT_OR, t, ref_data);
t = new AstNode(type, lvalue, t);
newNode->children.push_back(t);
2013-01-05 04:13:26 -06:00
}
2013-01-05 04:13:26 -06:00
goto apply_newNode;
}
skip_dynamic_range_lvalue_expansion:;
if (stage > 1 && (type == AST_ASSERT || type == AST_ASSUME || type == AST_LIVE || type == AST_FAIR || type == AST_COVER) && current_block != NULL)
2014-01-19 07:03:40 -06:00
{
std::stringstream sstr;
sstr << "$formal$" << filename << ":" << location.first_line << "$" << (autoidx++);
2014-01-19 07:03:40 -06:00
std::string id_check = sstr.str() + "_CHECK", id_en = sstr.str() + "_EN";
AstNode *wire_check = new AstNode(AST_WIRE);
wire_check->str = id_check;
wire_check->was_checked = true;
2014-01-19 07:03:40 -06:00
current_ast_mod->children.push_back(wire_check);
current_scope[wire_check->str] = wire_check;
while (wire_check->simplify(true, false, false, 1, -1, false, false)) { }
2014-01-19 07:03:40 -06:00
AstNode *wire_en = new AstNode(AST_WIRE);
wire_en->str = id_en;
wire_en->was_checked = true;
2014-01-19 07:03:40 -06:00
current_ast_mod->children.push_back(wire_en);
if (current_always_clocked) {
2016-07-13 09:56:17 -05:00
current_ast_mod->children.push_back(new AstNode(AST_INITIAL, new AstNode(AST_BLOCK, new AstNode(AST_ASSIGN_LE, new AstNode(AST_IDENTIFIER), AstNode::mkconst_int(0, false, 1)))));
current_ast_mod->children.back()->children[0]->children[0]->children[0]->str = id_en;
current_ast_mod->children.back()->children[0]->children[0]->children[0]->was_checked = true;
2016-07-13 09:56:17 -05:00
}
2014-01-19 07:03:40 -06:00
current_scope[wire_en->str] = wire_en;
while (wire_en->simplify(true, false, false, 1, -1, false, false)) { }
2014-01-19 07:03:40 -06:00
AstNode *check_defval;
if (type == AST_LIVE || type == AST_FAIR) {
check_defval = new AstNode(AST_REDUCE_BOOL, children[0]->clone());
} else {
std::vector<RTLIL::State> x_bit;
x_bit.push_back(RTLIL::State::Sx);
check_defval = mkconst_bits(x_bit, false);
}
2014-01-19 07:03:40 -06:00
AstNode *assign_check = new AstNode(AST_ASSIGN_LE, new AstNode(AST_IDENTIFIER), check_defval);
2014-01-19 07:03:40 -06:00
assign_check->children[0]->str = id_check;
assign_check->children[0]->was_checked = true;
2014-01-19 07:03:40 -06:00
AstNode *assign_en = new AstNode(AST_ASSIGN_LE, new AstNode(AST_IDENTIFIER), mkconst_int(0, false, 1));
assign_en->children[0]->str = id_en;
assign_en->children[0]->was_checked = true;
2014-01-19 07:03:40 -06:00
AstNode *default_signals = new AstNode(AST_BLOCK);
default_signals->children.push_back(assign_check);
default_signals->children.push_back(assign_en);
current_top_block->children.insert(current_top_block->children.begin(), default_signals);
if (type == AST_LIVE || type == AST_FAIR) {
assign_check = nullptr;
} else {
assign_check = new AstNode(AST_ASSIGN_LE, new AstNode(AST_IDENTIFIER), new AstNode(AST_REDUCE_BOOL, children[0]->clone()));
assign_check->children[0]->str = id_check;
assign_check->children[0]->was_checked = true;
}
2014-01-19 07:03:40 -06:00
if (current_always == nullptr || current_always->type != AST_INITIAL) {
assign_en = new AstNode(AST_ASSIGN_LE, new AstNode(AST_IDENTIFIER), mkconst_int(1, false, 1));
} else {
assign_en = new AstNode(AST_ASSIGN_LE, new AstNode(AST_IDENTIFIER), new AstNode(AST_FCALL));
assign_en->children[1]->str = "\\$initstate";
}
2014-01-19 07:03:40 -06:00
assign_en->children[0]->str = id_en;
assign_en->children[0]->was_checked = true;
2014-01-19 07:03:40 -06:00
newNode = new AstNode(AST_BLOCK);
if (assign_check != nullptr)
newNode->children.push_back(assign_check);
2014-01-19 07:03:40 -06:00
newNode->children.push_back(assign_en);
AstNode *assertnode = new AstNode(type);
2020-03-17 00:00:12 -05:00
assertnode->location = location;
assertnode->str = str;
2014-01-19 07:03:40 -06:00
assertnode->children.push_back(new AstNode(AST_IDENTIFIER));
assertnode->children.push_back(new AstNode(AST_IDENTIFIER));
assertnode->children[0]->str = id_check;
assertnode->children[1]->str = id_en;
assertnode->attributes.swap(attributes);
current_ast_mod->children.push_back(assertnode);
goto apply_newNode;
}
if (stage > 1 && (type == AST_ASSERT || type == AST_ASSUME || type == AST_LIVE || type == AST_FAIR || type == AST_COVER) && children.size() == 1)
2014-01-19 07:03:40 -06:00
{
children.push_back(mkconst_int(1, false, 1));
did_something = true;
}
2013-01-05 04:13:26 -06:00
// found right-hand side identifier for memory -> replace with memory read port
if (stage > 1 && type == AST_IDENTIFIER && id2ast != NULL && id2ast->type == AST_MEMORY && !in_lvalue &&
children.size() == 1 && children[0]->type == AST_RANGE && children[0]->children.size() == 1) {
2013-01-05 04:13:26 -06:00
newNode = new AstNode(AST_MEMRD, children[0]->children[0]->clone());
newNode->str = str;
newNode->id2ast = id2ast;
2013-01-05 04:13:26 -06:00
goto apply_newNode;
}
// assignment with nontrivial member in left-hand concat expression -> split assignment
if ((type == AST_ASSIGN_EQ || type == AST_ASSIGN_LE) && children[0]->type == AST_CONCAT && width_hint > 0)
{
bool found_nontrivial_member = false;
for (auto child : children[0]->children) {
if (child->type == AST_IDENTIFIER && child->id2ast != NULL && child->id2ast->type == AST_MEMORY)
found_nontrivial_member = true;
}
if (found_nontrivial_member)
{
newNode = new AstNode(AST_BLOCK);
AstNode *wire_tmp = new AstNode(AST_WIRE, new AstNode(AST_RANGE, mkconst_int(width_hint-1, true), mkconst_int(0, true)));
wire_tmp->str = stringf("$splitcmplxassign$%s:%d$%d", filename.c_str(), location.first_line, autoidx++);
current_ast_mod->children.push_back(wire_tmp);
current_scope[wire_tmp->str] = wire_tmp;
wire_tmp->attributes[ID::nosync] = AstNode::mkconst_int(1, false);
while (wire_tmp->simplify(true, false, false, 1, -1, false, false)) { }
wire_tmp->is_logic = true;
AstNode *wire_tmp_id = new AstNode(AST_IDENTIFIER);
wire_tmp_id->str = wire_tmp->str;
newNode->children.push_back(new AstNode(AST_ASSIGN_EQ, wire_tmp_id, children[1]->clone()));
newNode->children.back()->was_checked = true;
int cursor = 0;
for (auto child : children[0]->children)
{
int child_width_hint = -1;
bool child_sign_hint = true;
child->detectSignWidth(child_width_hint, child_sign_hint);
AstNode *rhs = wire_tmp_id->clone();
rhs->children.push_back(new AstNode(AST_RANGE, AstNode::mkconst_int(cursor+child_width_hint-1, true), AstNode::mkconst_int(cursor, true)));
newNode->children.push_back(new AstNode(type, child->clone(), rhs));
cursor += child_width_hint;
}
goto apply_newNode;
}
}
2013-01-05 04:13:26 -06:00
// assignment with memory in left-hand side expression -> replace with memory write port
if (stage > 1 && (type == AST_ASSIGN_EQ || type == AST_ASSIGN_LE) && children[0]->type == AST_IDENTIFIER &&
children[0]->id2ast && children[0]->id2ast->type == AST_MEMORY && children[0]->id2ast->children.size() >= 2 &&
children[0]->id2ast->children[0]->range_valid && children[0]->id2ast->children[1]->range_valid &&
(children[0]->children.size() == 1 || children[0]->children.size() == 2) && children[0]->children[0]->type == AST_RANGE)
2013-01-05 04:13:26 -06:00
{
std::stringstream sstr;
sstr << "$memwr$" << children[0]->str << "$" << filename << ":" << location.first_line << "$" << (autoidx++);
2013-01-05 04:13:26 -06:00
std::string id_addr = sstr.str() + "_ADDR", id_data = sstr.str() + "_DATA", id_en = sstr.str() + "_EN";
int mem_width, mem_size, addr_bits;
bool mem_signed = children[0]->id2ast->is_signed;
2013-01-05 04:13:26 -06:00
children[0]->id2ast->meminfo(mem_width, mem_size, addr_bits);
newNode = new AstNode(AST_BLOCK);
AstNode *defNode = new AstNode(AST_BLOCK);
int data_range_left = children[0]->id2ast->children[0]->range_left;
int data_range_right = children[0]->id2ast->children[0]->range_right;
int mem_data_range_offset = std::min(data_range_left, data_range_right);
int addr_width_hint = -1;
bool addr_sign_hint = true;
children[0]->children[0]->children[0]->detectSignWidthWorker(addr_width_hint, addr_sign_hint);
addr_bits = std::max(addr_bits, addr_width_hint);
std::vector<RTLIL::State> x_bits_addr, x_bits_data, set_bits_en;
for (int i = 0; i < addr_bits; i++)
x_bits_addr.push_back(RTLIL::State::Sx);
for (int i = 0; i < mem_width; i++)
x_bits_data.push_back(RTLIL::State::Sx);
for (int i = 0; i < mem_width; i++)
set_bits_en.push_back(RTLIL::State::S1);
2013-01-05 04:13:26 -06:00
AstNode *node_addr = nullptr;
if (children[0]->children[0]->children[0]->isConst()) {
node_addr = children[0]->children[0]->children[0]->clone();
} else {
AstNode *wire_addr = new AstNode(AST_WIRE, new AstNode(AST_RANGE, mkconst_int(addr_bits-1, true), mkconst_int(0, true)));
wire_addr->str = id_addr;
wire_addr->was_checked = true;
current_ast_mod->children.push_back(wire_addr);
current_scope[wire_addr->str] = wire_addr;
while (wire_addr->simplify(true, false, false, 1, -1, false, false)) { }
AstNode *assign_addr = new AstNode(AST_ASSIGN_EQ, new AstNode(AST_IDENTIFIER), mkconst_bits(x_bits_addr, false));
assign_addr->children[0]->str = id_addr;
assign_addr->children[0]->was_checked = true;
defNode->children.push_back(assign_addr);
assign_addr = new AstNode(AST_ASSIGN_EQ, new AstNode(AST_IDENTIFIER), children[0]->children[0]->children[0]->clone());
assign_addr->children[0]->str = id_addr;
assign_addr->children[0]->was_checked = true;
newNode->children.push_back(assign_addr);
node_addr = new AstNode(AST_IDENTIFIER);
node_addr->str = id_addr;
}
AstNode *node_data = nullptr;
if (children[0]->children.size() == 1 && children[1]->isConst()) {
node_data = children[1]->clone();
} else {
AstNode *wire_data = new AstNode(AST_WIRE, new AstNode(AST_RANGE, mkconst_int(mem_width-1, true), mkconst_int(0, true)));
wire_data->str = id_data;
wire_data->was_checked = true;
wire_data->is_signed = mem_signed;
current_ast_mod->children.push_back(wire_data);
current_scope[wire_data->str] = wire_data;
while (wire_data->simplify(true, false, false, 1, -1, false, false)) { }
AstNode *assign_data = new AstNode(AST_ASSIGN_EQ, new AstNode(AST_IDENTIFIER), mkconst_bits(x_bits_data, false));
assign_data->children[0]->str = id_data;
assign_data->children[0]->was_checked = true;
defNode->children.push_back(assign_data);
2013-01-05 04:13:26 -06:00
node_data = new AstNode(AST_IDENTIFIER);
node_data->str = id_data;
}
2013-01-05 04:13:26 -06:00
AstNode *node_en = nullptr;
if (current_always->type == AST_INITIAL) {
node_en = AstNode::mkconst_int(1, false);
} else {
AstNode *wire_en = new AstNode(AST_WIRE, new AstNode(AST_RANGE, mkconst_int(mem_width-1, true), mkconst_int(0, true)));
wire_en->str = id_en;
wire_en->was_checked = true;
current_ast_mod->children.push_back(wire_en);
current_scope[wire_en->str] = wire_en;
while (wire_en->simplify(true, false, false, 1, -1, false, false)) { }
AstNode *assign_en = new AstNode(AST_ASSIGN_EQ, new AstNode(AST_IDENTIFIER), mkconst_int(0, false, mem_width));
assign_en->children[0]->str = id_en;
assign_en->children[0]->was_checked = true;
defNode->children.push_back(assign_en);
2013-01-05 04:13:26 -06:00
node_en = new AstNode(AST_IDENTIFIER);
node_en->str = id_en;
}
2013-01-05 04:13:26 -06:00
if (!defNode->children.empty())
current_top_block->children.insert(current_top_block->children.begin(), defNode);
else
delete defNode;
2013-01-05 04:13:26 -06:00
AstNode *assign_data = nullptr;
AstNode *assign_en = nullptr;
if (children[0]->children.size() == 2)
{
if (children[0]->children[1]->range_valid)
{
int offset = children[0]->children[1]->range_right;
int width = children[0]->children[1]->range_left - offset + 1;
offset -= mem_data_range_offset;
2013-01-05 04:13:26 -06:00
std::vector<RTLIL::State> padding_x(offset, RTLIL::State::Sx);
assign_data = new AstNode(AST_ASSIGN_EQ, new AstNode(AST_IDENTIFIER),
new AstNode(AST_CONCAT, mkconst_bits(padding_x, false), children[1]->clone()));
assign_data->children[0]->str = id_data;
assign_data->children[0]->was_checked = true;
if (current_always->type != AST_INITIAL) {
for (int i = 0; i < mem_width; i++)
set_bits_en[i] = offset <= i && i < offset+width ? RTLIL::State::S1 : RTLIL::State::S0;
assign_en = new AstNode(AST_ASSIGN_EQ, new AstNode(AST_IDENTIFIER), mkconst_bits(set_bits_en, false));
assign_en->children[0]->str = id_en;
assign_en->children[0]->was_checked = true;
}
}
else
{
AstNode *the_range = children[0]->children[1];
AstNode *left_at_zero_ast = the_range->children[0]->clone();
AstNode *right_at_zero_ast = the_range->children.size() >= 2 ? the_range->children[1]->clone() : left_at_zero_ast->clone();
AstNode *offset_ast = right_at_zero_ast->clone();
if (mem_data_range_offset)
offset_ast = new AstNode(AST_SUB, offset_ast, mkconst_int(mem_data_range_offset, true));
while (left_at_zero_ast->simplify(true, true, false, 1, -1, false, false)) { }
while (right_at_zero_ast->simplify(true, true, false, 1, -1, false, false)) { }
if (left_at_zero_ast->type != AST_CONSTANT || right_at_zero_ast->type != AST_CONSTANT)
log_file_error(filename, location.first_line, "Unsupported expression on dynamic range select on signal `%s'!\n", str.c_str());
int width = abs(int(left_at_zero_ast->integer - right_at_zero_ast->integer)) + 1;
assign_data = new AstNode(AST_ASSIGN_EQ, new AstNode(AST_IDENTIFIER),
new AstNode(AST_SHIFT_LEFT, children[1]->clone(), offset_ast->clone()));
assign_data->children[0]->str = id_data;
assign_data->children[0]->was_checked = true;
if (current_always->type != AST_INITIAL) {
for (int i = 0; i < mem_width; i++)
set_bits_en[i] = i < width ? RTLIL::State::S1 : RTLIL::State::S0;
assign_en = new AstNode(AST_ASSIGN_EQ, new AstNode(AST_IDENTIFIER),
new AstNode(AST_SHIFT_LEFT, mkconst_bits(set_bits_en, false), offset_ast->clone()));
assign_en->children[0]->str = id_en;
assign_en->children[0]->was_checked = true;
}
delete left_at_zero_ast;
delete right_at_zero_ast;
delete offset_ast;
}
}
else
{
if (!(children[0]->children.size() == 1 && children[1]->isConst())) {
assign_data = new AstNode(AST_ASSIGN_EQ, new AstNode(AST_IDENTIFIER), children[1]->clone());
assign_data->children[0]->str = id_data;
assign_data->children[0]->was_checked = true;
}
if (current_always->type != AST_INITIAL) {
assign_en = new AstNode(AST_ASSIGN_EQ, new AstNode(AST_IDENTIFIER), mkconst_bits(set_bits_en, false));
assign_en->children[0]->str = id_en;
assign_en->children[0]->was_checked = true;
}
}
if (assign_data)
newNode->children.push_back(assign_data);
if (assign_en)
newNode->children.push_back(assign_en);
2013-01-05 04:13:26 -06:00
AstNode *wrnode = new AstNode(current_always->type == AST_INITIAL ? AST_MEMINIT : AST_MEMWR, node_addr, node_data, node_en);
2013-01-05 04:13:26 -06:00
wrnode->str = children[0]->str;
wrnode->id2ast = children[0]->id2ast;
wrnode->location = location;
if (wrnode->type == AST_MEMWR) {
int portid = current_memwr_count[wrnode->str]++;
wrnode->children.push_back(mkconst_int(portid, false));
std::vector<RTLIL::State> priority_mask;
for (int i = 0; i < portid; i++) {
bool has_prio = current_memwr_visible[wrnode->str].count(i);
priority_mask.push_back(State(has_prio));
}
wrnode->children.push_back(mkconst_bits(priority_mask, false));
current_memwr_visible[wrnode->str].insert(portid);
current_always->children.push_back(wrnode);
} else {
current_ast_mod->children.push_back(wrnode);
}
2013-01-05 04:13:26 -06:00
if (newNode->children.empty()) {
delete newNode;
newNode = new AstNode();
}
2013-01-05 04:13:26 -06:00
goto apply_newNode;
}
// replace function and task calls with the code from the function or task
if ((type == AST_FCALL || type == AST_TCALL) && !str.empty())
{
if (type == AST_FCALL)
{
if (str == "\\$initstate")
{
int myidx = autoidx++;
AstNode *wire = new AstNode(AST_WIRE);
wire->str = stringf("$initstate$%d_wire", myidx);
current_ast_mod->children.push_back(wire);
while (wire->simplify(true, false, false, 1, -1, false, false)) { }
AstNode *cell = new AstNode(AST_CELL, new AstNode(AST_CELLTYPE), new AstNode(AST_ARGUMENT, new AstNode(AST_IDENTIFIER)));
cell->str = stringf("$initstate$%d", myidx);
cell->children[0]->str = "$initstate";
cell->children[1]->str = "\\Y";
cell->children[1]->children[0]->str = wire->str;
cell->children[1]->children[0]->id2ast = wire;
current_ast_mod->children.push_back(cell);
while (cell->simplify(true, false, false, 1, -1, false, false)) { }
newNode = new AstNode(AST_IDENTIFIER);
newNode->str = wire->str;
newNode->id2ast = wire;
goto apply_newNode;
}
if (str == "\\$past")
{
if (width_hint < 0)
goto replace_fcall_later;
int num_steps = 1;
if (GetSize(children) != 1 && GetSize(children) != 2)
log_file_error(filename, location.first_line, "System function %s got %d arguments, expected 1 or 2.\n",
RTLIL::unescape_id(str).c_str(), int(children.size()));
if (!current_always_clocked)
log_file_error(filename, location.first_line, "System function %s is only allowed in clocked blocks.\n",
RTLIL::unescape_id(str).c_str());
if (GetSize(children) == 2)
{
AstNode *buf = children[1]->clone();
while (buf->simplify(true, false, false, stage, -1, false, false)) { }
if (buf->type != AST_CONSTANT)
log_file_error(filename, location.first_line, "Failed to evaluate system function `%s' with non-constant value.\n", str.c_str());
num_steps = buf->asInt(true);
delete buf;
}
AstNode *block = nullptr;
for (auto child : current_always->children)
if (child->type == AST_BLOCK)
block = child;
log_assert(block != nullptr);
if (num_steps == 0) {
newNode = children[0]->clone();
goto apply_newNode;
}
int myidx = autoidx++;
AstNode *outreg = nullptr;
for (int i = 0; i < num_steps; i++)
{
AstNode *reg = new AstNode(AST_WIRE, new AstNode(AST_RANGE,
mkconst_int(width_hint-1, true), mkconst_int(0, true)));
reg->str = stringf("$past$%s:%d$%d$%d", filename.c_str(), location.first_line, myidx, i);
reg->is_reg = true;
current_ast_mod->children.push_back(reg);
while (reg->simplify(true, false, false, 1, -1, false, false)) { }
AstNode *regid = new AstNode(AST_IDENTIFIER);
regid->str = reg->str;
regid->id2ast = reg;
regid->was_checked = true;
AstNode *rhs = nullptr;
if (outreg == nullptr) {
rhs = children.at(0)->clone();
} else {
rhs = new AstNode(AST_IDENTIFIER);
rhs->str = outreg->str;
rhs->id2ast = outreg;
}
block->children.push_back(new AstNode(AST_ASSIGN_LE, regid, rhs));
outreg = reg;
}
newNode = new AstNode(AST_IDENTIFIER);
newNode->str = outreg->str;
newNode->id2ast = outreg;
goto apply_newNode;
}
if (str == "\\$stable" || str == "\\$rose" || str == "\\$fell" || str == "\\$changed")
{
if (GetSize(children) != 1)
log_file_error(filename, location.first_line, "System function %s got %d arguments, expected 1.\n",
RTLIL::unescape_id(str).c_str(), int(children.size()));
if (!current_always_clocked)
log_file_error(filename, location.first_line, "System function %s is only allowed in clocked blocks.\n",
RTLIL::unescape_id(str).c_str());
AstNode *present = children.at(0)->clone();
AstNode *past = clone();
past->str = "\\$past";
if (str == "\\$stable")
newNode = new AstNode(AST_EQ, past, present);
else if (str == "\\$changed")
newNode = new AstNode(AST_NE, past, present);
else if (str == "\\$rose")
2018-11-03 12:39:32 -05:00
newNode = new AstNode(AST_LOGIC_AND,
new AstNode(AST_LOGIC_NOT, new AstNode(AST_BIT_AND, past, mkconst_int(1,false))),
2018-11-03 12:39:32 -05:00
new AstNode(AST_BIT_AND, present, mkconst_int(1,false)));
else if (str == "\\$fell")
2018-11-03 12:39:32 -05:00
newNode = new AstNode(AST_LOGIC_AND,
new AstNode(AST_BIT_AND, past, mkconst_int(1,false)),
new AstNode(AST_LOGIC_NOT, new AstNode(AST_BIT_AND, present, mkconst_int(1,false))));
else
log_abort();
goto apply_newNode;
}
2016-10-14 08:24:03 -05:00
// $anyconst and $anyseq are mapped in AstNode::genRTLIL()
if (str == "\\$anyconst" || str == "\\$anyseq" || str == "\\$allconst" || str == "\\$allseq") {
recursion_counter--;
2016-07-27 08:41:22 -05:00
return false;
}
2016-07-27 08:41:22 -05:00
if (str == "\\$clog2")
{
2014-06-14 06:36:23 -05:00
if (children.size() != 1)
log_file_error(filename, location.first_line, "System function %s got %d arguments, expected 1.\n",
RTLIL::unescape_id(str).c_str(), int(children.size()));
2014-06-14 06:36:23 -05:00
AstNode *buf = children[0]->clone();
while (buf->simplify(true, false, false, stage, width_hint, sign_hint, false)) { }
if (buf->type != AST_CONSTANT)
log_file_error(filename, location.first_line, "Failed to evaluate system function `%s' with non-constant value.\n", str.c_str());
RTLIL::Const arg_value = buf->bitsAsConst();
2014-09-08 05:25:23 -05:00
if (arg_value.as_bool())
arg_value = const_sub(arg_value, 1, false, false, GetSize(arg_value));
2014-07-25 06:07:31 -05:00
delete buf;
uint32_t result = 0;
for (size_t i = 0; i < arg_value.bits.size(); i++)
if (arg_value.bits.at(i) == RTLIL::State::S1)
2014-09-06 12:31:04 -05:00
result = i + 1;
newNode = mkconst_int(result, true);
goto apply_newNode;
}
if (str == "\\$size" || str == "\\$bits" || str == "\\$high" || str == "\\$low" || str == "\\$left" || str == "\\$right")
{
int dim = 1;
if (str == "\\$bits") {
if (children.size() != 1)
log_file_error(filename, location.first_line, "System function %s got %d arguments, expected 1.\n",
RTLIL::unescape_id(str).c_str(), int(children.size()));
} else {
if (children.size() != 1 && children.size() != 2)
log_file_error(filename, location.first_line, "System function %s got %d arguments, expected 1 or 2.\n",
RTLIL::unescape_id(str).c_str(), int(children.size()));
if (children.size() == 2) {
AstNode *buf = children[1]->clone();
// Evaluate constant expression
while (buf->simplify(true, false, false, stage, width_hint, sign_hint, false)) { }
dim = buf->asInt(false);
delete buf;
}
}
AstNode *buf = children[0]->clone();
2017-09-26 01:11:25 -05:00
int mem_depth = 1;
int result, high = 0, low = 0, left = 0, right = 0, width = 1; // defaults for a simple wire
2017-09-26 01:11:25 -05:00
AstNode *id_ast = NULL;
// Is this needed?
//while (buf->simplify(true, false, false, stage, width_hint, sign_hint, false)) { }
buf->detectSignWidth(width_hint, sign_hint);
if (buf->type == AST_IDENTIFIER) {
id_ast = buf->id2ast;
if (id_ast == NULL && current_scope.count(buf->str))
id_ast = current_scope.at(buf->str);
if (!id_ast)
log_file_error(filename, location.first_line, "Failed to resolve identifier %s for width detection!\n", buf->str.c_str());
// a slice of our identifier means we advance to the next dimension, e.g. $size(a[3])
if (buf->children.size() > 0) {
// something is hanging below this identifier
if (buf->children[0]->type == AST_RANGE && buf->integer == 0)
// if integer == 0, this node was originally created as AST_RANGE so it's dimension is 1
dim++;
// more than one range, e.g. $size(a[3][2])
else // created an AST_MULTIRANGE, converted to AST_RANGE, but original dimension saved in 'integer' field
dim += buf->integer; // increment by multirange size
}
// We have 4 cases:
2020-09-16 02:57:06 -05:00
// wire x; ==> AST_WIRE, no AST_RANGE children
// wire [1:0]x; ==> AST_WIRE, AST_RANGE children
// wire [1:0]x[1:0]; ==> AST_MEMORY, two AST_RANGE children (1st for packed, 2nd for unpacked)
// wire [1:0]x[1:0][1:0]; ==> AST_MEMORY, one AST_RANGE child (0) for packed, then AST_MULTIRANGE child (1) for unpacked
// (updated: actually by the time we are here, AST_MULTIRANGE is converted into one big AST_RANGE)
// case 0 handled by default
if ((id_ast->type == AST_WIRE || id_ast->type == AST_MEMORY) && id_ast->children.size() > 0) {
// handle packed array left/right for case 1, and cases 2/3 when requesting the last dimension (packed side)
AstNode *wire_range = id_ast->children[0];
left = wire_range->children[0]->integer;
right = wire_range->children[1]->integer;
high = max(left, right);
low = min(left, right);
}
if (id_ast->type == AST_MEMORY) {
// We got here only if the argument is a memory
// Otherwise $size() and $bits() return the expression width
AstNode *mem_range = id_ast->children[1];
if (str == "\\$bits") {
2017-09-26 01:11:25 -05:00
if (mem_range->type == AST_RANGE) {
if (!mem_range->range_valid)
log_file_error(filename, location.first_line, "Failed to detect width of memory access `%s'!\n", buf->str.c_str());
2017-09-26 01:11:25 -05:00
mem_depth = mem_range->range_left - mem_range->range_right + 1;
} else
log_file_error(filename, location.first_line, "Unknown memory depth AST type in `%s'!\n", buf->str.c_str());
} else {
// $size(), $left(), $right(), $high(), $low()
int dims = 1;
if (mem_range->type == AST_RANGE) {
if (id_ast->multirange_dimensions.empty()) {
if (!mem_range->range_valid)
log_file_error(filename, location.first_line, "Failed to detect width of memory access `%s'!\n", buf->str.c_str());
if (dim == 1) {
left = mem_range->range_right;
right = mem_range->range_left;
high = max(left, right);
low = min(left, right);
}
} else {
dims = GetSize(id_ast->multirange_dimensions)/2;
if (dim <= dims) {
width_hint = id_ast->multirange_dimensions[2*dim-1];
high = id_ast->multirange_dimensions[2*dim-2] + id_ast->multirange_dimensions[2*dim-1] - 1;
low = id_ast->multirange_dimensions[2*dim-2];
if (id_ast->multirange_swapped[dim-1]) {
left = low;
right = high;
} else {
right = low;
left = high;
}
} else if ((dim > dims+1) || (dim < 0))
log_file_error(filename, location.first_line, "Dimension %d out of range in `%s', as it only has dimensions 1..%d!\n", dim, buf->str.c_str(), dims+1);
}
} else {
log_file_error(filename, location.first_line, "Unknown memory depth AST type in `%s'!\n", buf->str.c_str());
}
2017-09-26 01:11:25 -05:00
}
}
width = high - low + 1;
} else {
width = width_hint;
2017-09-26 01:11:25 -05:00
}
delete buf;
if (str == "\\$high")
result = high;
else if (str == "\\$low")
result = low;
else if (str == "\\$left")
result = left;
else if (str == "\\$right")
result = right;
else if (str == "\\$size")
result = width;
else {
result = width * mem_depth;
}
newNode = mkconst_int(result, false);
goto apply_newNode;
}
2014-06-14 06:36:23 -05:00
if (str == "\\$ln" || str == "\\$log10" || str == "\\$exp" || str == "\\$sqrt" || str == "\\$pow" ||
str == "\\$floor" || str == "\\$ceil" || str == "\\$sin" || str == "\\$cos" || str == "\\$tan" ||
str == "\\$asin" || str == "\\$acos" || str == "\\$atan" || str == "\\$atan2" || str == "\\$hypot" ||
2017-01-03 10:40:58 -06:00
str == "\\$sinh" || str == "\\$cosh" || str == "\\$tanh" || str == "\\$asinh" || str == "\\$acosh" || str == "\\$atanh" ||
str == "\\$rtoi" || str == "\\$itor")
2014-06-14 06:36:23 -05:00
{
bool func_with_two_arguments = str == "\\$pow" || str == "\\$atan2" || str == "\\$hypot";
double x = 0, y = 0;
if (func_with_two_arguments) {
if (children.size() != 2)
log_file_error(filename, location.first_line, "System function %s got %d arguments, expected 2.\n",
RTLIL::unescape_id(str).c_str(), int(children.size()));
2014-06-14 06:36:23 -05:00
} else {
if (children.size() != 1)
log_file_error(filename, location.first_line, "System function %s got %d arguments, expected 1.\n",
RTLIL::unescape_id(str).c_str(), int(children.size()));
2014-06-14 06:36:23 -05:00
}
if (children.size() >= 1) {
while (children[0]->simplify(true, false, false, stage, width_hint, sign_hint, false)) { }
if (!children[0]->isConst())
log_file_error(filename, location.first_line, "Failed to evaluate system function `%s' with non-constant argument.\n",
RTLIL::unescape_id(str).c_str());
2014-06-14 06:36:23 -05:00
int child_width_hint = width_hint;
bool child_sign_hint = sign_hint;
children[0]->detectSignWidth(child_width_hint, child_sign_hint);
x = children[0]->asReal(child_sign_hint);
}
if (children.size() >= 2) {
while (children[1]->simplify(true, false, false, stage, width_hint, sign_hint, false)) { }
if (!children[1]->isConst())
log_file_error(filename, location.first_line, "Failed to evaluate system function `%s' with non-constant argument.\n",
RTLIL::unescape_id(str).c_str());
2014-06-14 06:36:23 -05:00
int child_width_hint = width_hint;
bool child_sign_hint = sign_hint;
children[1]->detectSignWidth(child_width_hint, child_sign_hint);
y = children[1]->asReal(child_sign_hint);
}
2017-01-03 10:40:58 -06:00
if (str == "\\$rtoi") {
newNode = AstNode::mkconst_int(x, true);
} else {
newNode = new AstNode(AST_REALVALUE);
if (str == "\\$ln") newNode->realvalue = ::log(x);
else if (str == "\\$log10") newNode->realvalue = ::log10(x);
else if (str == "\\$exp") newNode->realvalue = ::exp(x);
else if (str == "\\$sqrt") newNode->realvalue = ::sqrt(x);
else if (str == "\\$pow") newNode->realvalue = ::pow(x, y);
else if (str == "\\$floor") newNode->realvalue = ::floor(x);
else if (str == "\\$ceil") newNode->realvalue = ::ceil(x);
else if (str == "\\$sin") newNode->realvalue = ::sin(x);
else if (str == "\\$cos") newNode->realvalue = ::cos(x);
else if (str == "\\$tan") newNode->realvalue = ::tan(x);
else if (str == "\\$asin") newNode->realvalue = ::asin(x);
else if (str == "\\$acos") newNode->realvalue = ::acos(x);
else if (str == "\\$atan") newNode->realvalue = ::atan(x);
else if (str == "\\$atan2") newNode->realvalue = ::atan2(x, y);
else if (str == "\\$hypot") newNode->realvalue = ::hypot(x, y);
else if (str == "\\$sinh") newNode->realvalue = ::sinh(x);
else if (str == "\\$cosh") newNode->realvalue = ::cosh(x);
else if (str == "\\$tanh") newNode->realvalue = ::tanh(x);
else if (str == "\\$asinh") newNode->realvalue = ::asinh(x);
else if (str == "\\$acosh") newNode->realvalue = ::acosh(x);
else if (str == "\\$atanh") newNode->realvalue = ::atanh(x);
else if (str == "\\$itor") newNode->realvalue = x;
else log_abort();
}
2014-06-14 06:36:23 -05:00
goto apply_newNode;
}
if (str == "\\$sformatf") {
AstNode *node_string = children[0];
while (node_string->simplify(true, false, false, stage, width_hint, sign_hint, false)) { }
if (node_string->type != AST_CONSTANT)
log_file_error(filename, location.first_line, "Failed to evaluate system function `%s' with non-constant 1st argument.\n", str.c_str());
std::string sformat = node_string->bitsAsConst().decode_string();
std::string sout = process_format_str(sformat, 1, stage, width_hint, sign_hint);
newNode = AstNode::mkconst_str(sout);
goto apply_newNode;
}
2021-02-22 17:55:55 -06:00
if (str == "\\$countbits") {
if (children.size() < 2)
log_file_error(filename, location.first_line, "System function %s got %d arguments, expected at least 2.\n",
RTLIL::unescape_id(str).c_str(), int(children.size()));
std::vector<RTLIL::State> control_bits;
// Determine which bits to count
for (size_t i = 1; i < children.size(); i++) {
AstNode *node = children[i];
while (node->simplify(true, false, false, stage, -1, false, false)) { }
if (node->type != AST_CONSTANT)
log_file_error(filename, location.first_line, "Failed to evaluate system function `%s' with non-constant control bit argument.\n", str.c_str());
if (node->bits.size() != 1)
log_file_error(filename, location.first_line, "Failed to evaluate system function `%s' with control bit width != 1.\n", str.c_str());
control_bits.push_back(node->bits[0]);
}
// Detect width of exp (first argument of $countbits)
int exp_width = -1;
bool exp_sign = false;
AstNode *exp = children[0];
exp->detectSignWidth(exp_width, exp_sign, NULL);
newNode = mkconst_int(0, false);
for (int i = 0; i < exp_width; i++) {
// Generate nodes for: exp << i >> ($size(exp) - 1)
// ^^ ^^
AstNode *lsh_node = new AstNode(AST_SHIFT_LEFT, exp->clone(), mkconst_int(i, false));
AstNode *rsh_node = new AstNode(AST_SHIFT_RIGHT, lsh_node, mkconst_int(exp_width - 1, false));
AstNode *or_node = nullptr;
for (RTLIL::State control_bit : control_bits) {
// Generate node for: (exp << i >> ($size(exp) - 1)) === control_bit
// ^^^
AstNode *eq_node = new AstNode(AST_EQX, rsh_node->clone(), mkconst_bits({control_bit}, false));
// Or the result for each checked bit value
if (or_node)
or_node = new AstNode(AST_LOGIC_OR, or_node, eq_node);
else
or_node = eq_node;
}
// We should have at least one element in control_bits,
// because we checked for the number of arguments above
log_assert(or_node != nullptr);
delete rsh_node;
// Generate node for adding with result of previous bit
newNode = new AstNode(AST_ADD, newNode, or_node);
}
goto apply_newNode;
}
if (str == "\\$countones" || str == "\\$isunknown" || str == "\\$onehot" || str == "\\$onehot0") {
if (children.size() != 1)
log_file_error(filename, location.first_line, "System function %s got %d arguments, expected 1.\n",
RTLIL::unescape_id(str).c_str(), int(children.size()));
AstNode *countbits = clone();
countbits->str = "\\$countbits";
if (str == "\\$countones") {
countbits->children.push_back(mkconst_bits({RTLIL::State::S1}, false));
newNode = countbits;
} else if (str == "\\$isunknown") {
countbits->children.push_back(mkconst_bits({RTLIL::Sx}, false));
countbits->children.push_back(mkconst_bits({RTLIL::Sz}, false));
newNode = new AstNode(AST_GT, countbits, mkconst_int(0, false));
} else if (str == "\\$onehot") {
countbits->children.push_back(mkconst_bits({RTLIL::State::S1}, false));
newNode = new AstNode(AST_EQ, countbits, mkconst_int(1, false));
} else if (str == "\\$onehot0") {
countbits->children.push_back(mkconst_bits({RTLIL::State::S1}, false));
newNode = new AstNode(AST_LE, countbits, mkconst_int(1, false));
} else {
log_abort();
}
goto apply_newNode;
}
if (current_scope.count(str) != 0 && current_scope[str]->type == AST_DPI_FUNCTION)
{
AstNode *dpi_decl = current_scope[str];
std::string rtype, fname;
std::vector<std::string> argtypes;
std::vector<AstNode*> args;
rtype = RTLIL::unescape_id(dpi_decl->children.at(0)->str);
fname = RTLIL::unescape_id(dpi_decl->children.at(1)->str);
for (int i = 2; i < GetSize(dpi_decl->children); i++)
{
if (i-2 >= GetSize(children))
log_file_error(filename, location.first_line, "Insufficient number of arguments in DPI function call.\n");
argtypes.push_back(RTLIL::unescape_id(dpi_decl->children.at(i)->str));
args.push_back(children.at(i-2)->clone());
while (args.back()->simplify(true, false, false, stage, -1, false, true)) { }
if (args.back()->type != AST_CONSTANT && args.back()->type != AST_REALVALUE)
log_file_error(filename, location.first_line, "Failed to evaluate DPI function with non-constant argument.\n");
}
newNode = dpi_call(rtype, fname, argtypes, args);
for (auto arg : args)
delete arg;
goto apply_newNode;
}
if (current_scope.count(str) == 0 || current_scope[str]->type != AST_FUNCTION)
log_file_error(filename, location.first_line, "Can't resolve function name `%s'.\n", str.c_str());
2013-01-05 04:13:26 -06:00
}
2015-09-17 22:34:56 -05:00
if (type == AST_TCALL)
{
2016-03-21 10:19:51 -05:00
if (str == "$finish" || str == "$stop")
2015-09-17 22:34:56 -05:00
{
if (!current_always || current_always->type != AST_INITIAL)
log_file_error(filename, location.first_line, "System task `%s' outside initial block is unsupported.\n", str.c_str());
log_file_error(filename, location.first_line, "System task `%s' executed.\n", str.c_str());
2015-09-17 22:34:56 -05:00
}
2014-10-26 14:33:10 -05:00
if (str == "\\$readmemh" || str == "\\$readmemb")
{
if (GetSize(children) < 2 || GetSize(children) > 4)
log_file_error(filename, location.first_line, "System function %s got %d arguments, expected 2-4.\n",
RTLIL::unescape_id(str).c_str(), int(children.size()));
2014-10-26 14:33:10 -05:00
AstNode *node_filename = children[0]->clone();
while (node_filename->simplify(true, false, false, stage, width_hint, sign_hint, false)) { }
if (node_filename->type != AST_CONSTANT)
log_file_error(filename, location.first_line, "Failed to evaluate system function `%s' with non-constant 1st argument.\n", str.c_str());
2014-10-26 14:33:10 -05:00
AstNode *node_memory = children[1]->clone();
while (node_memory->simplify(true, false, false, stage, width_hint, sign_hint, false)) { }
if (node_memory->type != AST_IDENTIFIER || node_memory->id2ast == nullptr || node_memory->id2ast->type != AST_MEMORY)
log_file_error(filename, location.first_line, "Failed to evaluate system function `%s' with non-memory 2nd argument.\n", str.c_str());
2014-10-26 14:33:10 -05:00
int start_addr = -1, finish_addr = -1;
if (GetSize(children) > 2) {
AstNode *node_addr = children[2]->clone();
while (node_addr->simplify(true, false, false, stage, width_hint, sign_hint, false)) { }
if (node_addr->type != AST_CONSTANT)
log_file_error(filename, location.first_line, "Failed to evaluate system function `%s' with non-constant 3rd argument.\n", str.c_str());
2016-02-13 10:31:24 -06:00
start_addr = int(node_addr->asInt(false));
2014-10-26 14:33:10 -05:00
}
if (GetSize(children) > 3) {
AstNode *node_addr = children[3]->clone();
while (node_addr->simplify(true, false, false, stage, width_hint, sign_hint, false)) { }
if (node_addr->type != AST_CONSTANT)
log_file_error(filename, location.first_line, "Failed to evaluate system function `%s' with non-constant 4th argument.\n", str.c_str());
2016-02-13 10:31:24 -06:00
finish_addr = int(node_addr->asInt(false));
2014-10-26 14:33:10 -05:00
}
2015-07-31 03:40:09 -05:00
bool unconditional_init = false;
if (current_always->type == AST_INITIAL) {
pool<AstNode*> queue;
2015-07-31 03:40:09 -05:00
log_assert(current_always->children[0]->type == AST_BLOCK);
queue.insert(current_always->children[0]);
while (!unconditional_init && !queue.empty()) {
pool<AstNode*> next_queue;
for (auto n : queue)
for (auto c : n->children) {
if (c == this)
unconditional_init = true;
next_queue.insert(c);
2015-07-31 03:40:09 -05:00
}
next_queue.swap(queue);
}
2015-07-31 03:40:09 -05:00
}
newNode = readmem(str == "\\$readmemh", node_filename->bitsAsConst().decode_string(), node_memory->id2ast, start_addr, finish_addr, unconditional_init);
delete node_filename;
delete node_memory;
2014-10-26 14:33:10 -05:00
goto apply_newNode;
}
2013-01-05 04:13:26 -06:00
if (current_scope.count(str) == 0 || current_scope[str]->type != AST_TASK)
log_file_error(filename, location.first_line, "Can't resolve task name `%s'.\n", str.c_str());
2013-01-05 04:13:26 -06:00
}
std::stringstream sstr;
verilog: significant block scoping improvements This change set contains a number of bug fixes and improvements related to scoping and resolution in generate and procedural blocks. While many of the frontend changes are interdependent, it may be possible bring the techmap changes in under a separate PR. Declarations within unnamed generate blocks previously encountered issues because the data declarations were left un-prefixed, breaking proper scoping. The LRM outlines behavior for generating names for unnamed generate blocks. The original goal was to add this implicit labelling, but doing so exposed a number of issues downstream. Additional testing highlighted other closely related scope resolution issues, which have been fixed. This change also adds support for block item declarations within unnamed blocks in SystemVerilog mode. 1. Unlabled generate blocks are now implicitly named according to the LRM in `label_genblks`, which is invoked at the beginning of module elaboration 2. The Verilog parser no longer wraps explicitly named generate blocks in a synthetic unnamed generate block to avoid creating extra hierarchy levels where they should not exist 3. The techmap phase now allows special control identifiers to be used outside of the topmost scope, which is necessary because such wires and cells often appear in unlabeled generate blocks, which now prefix the declarations within 4. Some techlibs required modifications because they relied on the previous invalid scope resolution behavior 5. `expand_genblock` has been simplified, now only expanding the outermost scope, completely deferring the inspection and elaboration of nested scopes; names are now resolved by looking in the innermost scope and stepping outward 6. Loop variables now always become localparams during unrolling, allowing them to be resolved and shadowed like any other identifier 7. Identifiers in synthetic function call scopes are now prefixed and resolved in largely the same manner as other blocks before: `$func$\func_01$tests/simple/scopes.blk.v:60$5$\blk\x` after: `\func_01$func$tests/simple/scopes.v:60$5.blk.x` 8. Support identifiers referencing a local generate scope nested more than 1 level deep, i.e. `B.C.x` while within generate scope `A`, or using a prefix of a current or parent scope, i.e. `B.C.D.x` while in `A.B`, `A.B.C`, or `A.B.C.D` 9. Variables can now be declared within unnamed blocks in SystemVerilog mode Addresses the following issues: 656, 2423, 2493
2021-01-27 12:30:22 -06:00
sstr << str << "$func$" << filename << ":" << location.first_line << "$" << (autoidx++) << '.';
std::string prefix = sstr.str();
verilog: significant block scoping improvements This change set contains a number of bug fixes and improvements related to scoping and resolution in generate and procedural blocks. While many of the frontend changes are interdependent, it may be possible bring the techmap changes in under a separate PR. Declarations within unnamed generate blocks previously encountered issues because the data declarations were left un-prefixed, breaking proper scoping. The LRM outlines behavior for generating names for unnamed generate blocks. The original goal was to add this implicit labelling, but doing so exposed a number of issues downstream. Additional testing highlighted other closely related scope resolution issues, which have been fixed. This change also adds support for block item declarations within unnamed blocks in SystemVerilog mode. 1. Unlabled generate blocks are now implicitly named according to the LRM in `label_genblks`, which is invoked at the beginning of module elaboration 2. The Verilog parser no longer wraps explicitly named generate blocks in a synthetic unnamed generate block to avoid creating extra hierarchy levels where they should not exist 3. The techmap phase now allows special control identifiers to be used outside of the topmost scope, which is necessary because such wires and cells often appear in unlabeled generate blocks, which now prefix the declarations within 4. Some techlibs required modifications because they relied on the previous invalid scope resolution behavior 5. `expand_genblock` has been simplified, now only expanding the outermost scope, completely deferring the inspection and elaboration of nested scopes; names are now resolved by looking in the innermost scope and stepping outward 6. Loop variables now always become localparams during unrolling, allowing them to be resolved and shadowed like any other identifier 7. Identifiers in synthetic function call scopes are now prefixed and resolved in largely the same manner as other blocks before: `$func$\func_01$tests/simple/scopes.blk.v:60$5$\blk\x` after: `\func_01$func$tests/simple/scopes.v:60$5.blk.x` 8. Support identifiers referencing a local generate scope nested more than 1 level deep, i.e. `B.C.x` while within generate scope `A`, or using a prefix of a current or parent scope, i.e. `B.C.D.x` while in `A.B`, `A.B.C`, or `A.B.C.D` 9. Variables can now be declared within unnamed blocks in SystemVerilog mode Addresses the following issues: 656, 2423, 2493
2021-01-27 12:30:22 -06:00
AstNode *decl = current_scope[str];
if (unevaluated_tern_branch && decl->is_recursive_function())
goto replace_fcall_later;
verilog: significant block scoping improvements This change set contains a number of bug fixes and improvements related to scoping and resolution in generate and procedural blocks. While many of the frontend changes are interdependent, it may be possible bring the techmap changes in under a separate PR. Declarations within unnamed generate blocks previously encountered issues because the data declarations were left un-prefixed, breaking proper scoping. The LRM outlines behavior for generating names for unnamed generate blocks. The original goal was to add this implicit labelling, but doing so exposed a number of issues downstream. Additional testing highlighted other closely related scope resolution issues, which have been fixed. This change also adds support for block item declarations within unnamed blocks in SystemVerilog mode. 1. Unlabled generate blocks are now implicitly named according to the LRM in `label_genblks`, which is invoked at the beginning of module elaboration 2. The Verilog parser no longer wraps explicitly named generate blocks in a synthetic unnamed generate block to avoid creating extra hierarchy levels where they should not exist 3. The techmap phase now allows special control identifiers to be used outside of the topmost scope, which is necessary because such wires and cells often appear in unlabeled generate blocks, which now prefix the declarations within 4. Some techlibs required modifications because they relied on the previous invalid scope resolution behavior 5. `expand_genblock` has been simplified, now only expanding the outermost scope, completely deferring the inspection and elaboration of nested scopes; names are now resolved by looking in the innermost scope and stepping outward 6. Loop variables now always become localparams during unrolling, allowing them to be resolved and shadowed like any other identifier 7. Identifiers in synthetic function call scopes are now prefixed and resolved in largely the same manner as other blocks before: `$func$\func_01$tests/simple/scopes.blk.v:60$5$\blk\x` after: `\func_01$func$tests/simple/scopes.v:60$5.blk.x` 8. Support identifiers referencing a local generate scope nested more than 1 level deep, i.e. `B.C.x` while within generate scope `A`, or using a prefix of a current or parent scope, i.e. `B.C.D.x` while in `A.B`, `A.B.C`, or `A.B.C.D` 9. Variables can now be declared within unnamed blocks in SystemVerilog mode Addresses the following issues: 656, 2423, 2493
2021-01-27 12:30:22 -06:00
decl = decl->clone();
decl->replace_result_wire_name_in_function(str, "$result"); // enables recursion
decl->expand_genblock(prefix);
if (decl->type == AST_FUNCTION && !decl->attributes.count(ID::via_celltype))
{
bool require_const_eval = decl->has_const_only_constructs();
bool all_args_const = true;
for (auto child : children) {
while (child->simplify(true, false, false, 1, -1, false, true)) { }
if (child->type != AST_CONSTANT && child->type != AST_REALVALUE)
all_args_const = false;
}
if (all_args_const) {
verilog: significant block scoping improvements This change set contains a number of bug fixes and improvements related to scoping and resolution in generate and procedural blocks. While many of the frontend changes are interdependent, it may be possible bring the techmap changes in under a separate PR. Declarations within unnamed generate blocks previously encountered issues because the data declarations were left un-prefixed, breaking proper scoping. The LRM outlines behavior for generating names for unnamed generate blocks. The original goal was to add this implicit labelling, but doing so exposed a number of issues downstream. Additional testing highlighted other closely related scope resolution issues, which have been fixed. This change also adds support for block item declarations within unnamed blocks in SystemVerilog mode. 1. Unlabled generate blocks are now implicitly named according to the LRM in `label_genblks`, which is invoked at the beginning of module elaboration 2. The Verilog parser no longer wraps explicitly named generate blocks in a synthetic unnamed generate block to avoid creating extra hierarchy levels where they should not exist 3. The techmap phase now allows special control identifiers to be used outside of the topmost scope, which is necessary because such wires and cells often appear in unlabeled generate blocks, which now prefix the declarations within 4. Some techlibs required modifications because they relied on the previous invalid scope resolution behavior 5. `expand_genblock` has been simplified, now only expanding the outermost scope, completely deferring the inspection and elaboration of nested scopes; names are now resolved by looking in the innermost scope and stepping outward 6. Loop variables now always become localparams during unrolling, allowing them to be resolved and shadowed like any other identifier 7. Identifiers in synthetic function call scopes are now prefixed and resolved in largely the same manner as other blocks before: `$func$\func_01$tests/simple/scopes.blk.v:60$5$\blk\x` after: `\func_01$func$tests/simple/scopes.v:60$5.blk.x` 8. Support identifiers referencing a local generate scope nested more than 1 level deep, i.e. `B.C.x` while within generate scope `A`, or using a prefix of a current or parent scope, i.e. `B.C.D.x` while in `A.B`, `A.B.C`, or `A.B.C.D` 9. Variables can now be declared within unnamed blocks in SystemVerilog mode Addresses the following issues: 656, 2423, 2493
2021-01-27 12:30:22 -06:00
AstNode *func_workspace = decl->clone();
func_workspace->str = prefix_id(prefix, "$result");
newNode = func_workspace->eval_const_function(this, in_param || require_const_eval);
delete func_workspace;
if (newNode) {
delete decl;
goto apply_newNode;
}
}
2014-06-06 15:55:02 -05:00
if (in_param)
log_file_error(filename, location.first_line, "Non-constant function call in constant expression.\n");
if (require_const_eval)
log_file_error(filename, location.first_line, "Function %s can only be called with constant arguments.\n", str.c_str());
}
2013-01-05 04:13:26 -06:00
size_t arg_count = 0;
dict<std::string, AstNode*> wire_cache;
vector<AstNode*> new_stmts;
vector<AstNode*> output_assignments;
2013-01-05 04:13:26 -06:00
if (current_block == NULL)
{
2014-07-28 04:08:55 -05:00
log_assert(type == AST_FCALL);
2013-01-05 04:13:26 -06:00
AstNode *wire = NULL;
verilog: significant block scoping improvements This change set contains a number of bug fixes and improvements related to scoping and resolution in generate and procedural blocks. While many of the frontend changes are interdependent, it may be possible bring the techmap changes in under a separate PR. Declarations within unnamed generate blocks previously encountered issues because the data declarations were left un-prefixed, breaking proper scoping. The LRM outlines behavior for generating names for unnamed generate blocks. The original goal was to add this implicit labelling, but doing so exposed a number of issues downstream. Additional testing highlighted other closely related scope resolution issues, which have been fixed. This change also adds support for block item declarations within unnamed blocks in SystemVerilog mode. 1. Unlabled generate blocks are now implicitly named according to the LRM in `label_genblks`, which is invoked at the beginning of module elaboration 2. The Verilog parser no longer wraps explicitly named generate blocks in a synthetic unnamed generate block to avoid creating extra hierarchy levels where they should not exist 3. The techmap phase now allows special control identifiers to be used outside of the topmost scope, which is necessary because such wires and cells often appear in unlabeled generate blocks, which now prefix the declarations within 4. Some techlibs required modifications because they relied on the previous invalid scope resolution behavior 5. `expand_genblock` has been simplified, now only expanding the outermost scope, completely deferring the inspection and elaboration of nested scopes; names are now resolved by looking in the innermost scope and stepping outward 6. Loop variables now always become localparams during unrolling, allowing them to be resolved and shadowed like any other identifier 7. Identifiers in synthetic function call scopes are now prefixed and resolved in largely the same manner as other blocks before: `$func$\func_01$tests/simple/scopes.blk.v:60$5$\blk\x` after: `\func_01$func$tests/simple/scopes.v:60$5.blk.x` 8. Support identifiers referencing a local generate scope nested more than 1 level deep, i.e. `B.C.x` while within generate scope `A`, or using a prefix of a current or parent scope, i.e. `B.C.D.x` while in `A.B`, `A.B.C`, or `A.B.C.D` 9. Variables can now be declared within unnamed blocks in SystemVerilog mode Addresses the following issues: 656, 2423, 2493
2021-01-27 12:30:22 -06:00
std::string res_name = prefix_id(prefix, "$result");
2013-01-05 04:13:26 -06:00
for (auto child : decl->children)
verilog: significant block scoping improvements This change set contains a number of bug fixes and improvements related to scoping and resolution in generate and procedural blocks. While many of the frontend changes are interdependent, it may be possible bring the techmap changes in under a separate PR. Declarations within unnamed generate blocks previously encountered issues because the data declarations were left un-prefixed, breaking proper scoping. The LRM outlines behavior for generating names for unnamed generate blocks. The original goal was to add this implicit labelling, but doing so exposed a number of issues downstream. Additional testing highlighted other closely related scope resolution issues, which have been fixed. This change also adds support for block item declarations within unnamed blocks in SystemVerilog mode. 1. Unlabled generate blocks are now implicitly named according to the LRM in `label_genblks`, which is invoked at the beginning of module elaboration 2. The Verilog parser no longer wraps explicitly named generate blocks in a synthetic unnamed generate block to avoid creating extra hierarchy levels where they should not exist 3. The techmap phase now allows special control identifiers to be used outside of the topmost scope, which is necessary because such wires and cells often appear in unlabeled generate blocks, which now prefix the declarations within 4. Some techlibs required modifications because they relied on the previous invalid scope resolution behavior 5. `expand_genblock` has been simplified, now only expanding the outermost scope, completely deferring the inspection and elaboration of nested scopes; names are now resolved by looking in the innermost scope and stepping outward 6. Loop variables now always become localparams during unrolling, allowing them to be resolved and shadowed like any other identifier 7. Identifiers in synthetic function call scopes are now prefixed and resolved in largely the same manner as other blocks before: `$func$\func_01$tests/simple/scopes.blk.v:60$5$\blk\x` after: `\func_01$func$tests/simple/scopes.v:60$5.blk.x` 8. Support identifiers referencing a local generate scope nested more than 1 level deep, i.e. `B.C.x` while within generate scope `A`, or using a prefix of a current or parent scope, i.e. `B.C.D.x` while in `A.B`, `A.B.C`, or `A.B.C.D` 9. Variables can now be declared within unnamed blocks in SystemVerilog mode Addresses the following issues: 656, 2423, 2493
2021-01-27 12:30:22 -06:00
if (child->type == AST_WIRE && child->str == res_name)
2013-01-05 04:13:26 -06:00
wire = child->clone();
2014-07-28 04:08:55 -05:00
log_assert(wire != NULL);
2013-01-05 04:13:26 -06:00
wire->port_id = 0;
wire->is_input = false;
wire->is_output = false;
verilog: significant block scoping improvements This change set contains a number of bug fixes and improvements related to scoping and resolution in generate and procedural blocks. While many of the frontend changes are interdependent, it may be possible bring the techmap changes in under a separate PR. Declarations within unnamed generate blocks previously encountered issues because the data declarations were left un-prefixed, breaking proper scoping. The LRM outlines behavior for generating names for unnamed generate blocks. The original goal was to add this implicit labelling, but doing so exposed a number of issues downstream. Additional testing highlighted other closely related scope resolution issues, which have been fixed. This change also adds support for block item declarations within unnamed blocks in SystemVerilog mode. 1. Unlabled generate blocks are now implicitly named according to the LRM in `label_genblks`, which is invoked at the beginning of module elaboration 2. The Verilog parser no longer wraps explicitly named generate blocks in a synthetic unnamed generate block to avoid creating extra hierarchy levels where they should not exist 3. The techmap phase now allows special control identifiers to be used outside of the topmost scope, which is necessary because such wires and cells often appear in unlabeled generate blocks, which now prefix the declarations within 4. Some techlibs required modifications because they relied on the previous invalid scope resolution behavior 5. `expand_genblock` has been simplified, now only expanding the outermost scope, completely deferring the inspection and elaboration of nested scopes; names are now resolved by looking in the innermost scope and stepping outward 6. Loop variables now always become localparams during unrolling, allowing them to be resolved and shadowed like any other identifier 7. Identifiers in synthetic function call scopes are now prefixed and resolved in largely the same manner as other blocks before: `$func$\func_01$tests/simple/scopes.blk.v:60$5$\blk\x` after: `\func_01$func$tests/simple/scopes.v:60$5.blk.x` 8. Support identifiers referencing a local generate scope nested more than 1 level deep, i.e. `B.C.x` while within generate scope `A`, or using a prefix of a current or parent scope, i.e. `B.C.D.x` while in `A.B`, `A.B.C`, or `A.B.C.D` 9. Variables can now be declared within unnamed blocks in SystemVerilog mode Addresses the following issues: 656, 2423, 2493
2021-01-27 12:30:22 -06:00
current_scope[wire->str] = wire;
2013-01-05 04:13:26 -06:00
current_ast_mod->children.push_back(wire);
while (wire->simplify(true, false, false, 1, -1, false, false)) { }
2013-01-05 04:13:26 -06:00
AstNode *lvalue = new AstNode(AST_IDENTIFIER);
lvalue->str = wire->str;
AstNode *always = new AstNode(AST_ALWAYS, new AstNode(AST_BLOCK,
new AstNode(AST_ASSIGN_EQ, lvalue, clone())));
always->children[0]->children[0]->was_checked = true;
2013-01-05 04:13:26 -06:00
current_ast_mod->children.push_back(always);
goto replace_fcall_with_id;
}
if (decl->attributes.count(ID::via_celltype))
{
std::string celltype = decl->attributes.at(ID::via_celltype)->asAttrConst().decode_string();
std::string outport = str;
if (celltype.find(' ') != std::string::npos) {
int pos = celltype.find(' ');
outport = RTLIL::escape_id(celltype.substr(pos+1));
celltype = RTLIL::escape_id(celltype.substr(0, pos));
} else
celltype = RTLIL::escape_id(celltype);
AstNode *cell = new AstNode(AST_CELL, new AstNode(AST_CELLTYPE));
cell->str = prefix.substr(0, GetSize(prefix)-1);
cell->children[0]->str = celltype;
for (auto attr : decl->attributes)
if (attr.first.str().rfind("\\via_celltype_defparam_", 0) == 0)
{
AstNode *cell_arg = new AstNode(AST_PARASET, attr.second->clone());
cell_arg->str = RTLIL::escape_id(attr.first.substr(strlen("\\via_celltype_defparam_")));
cell->children.push_back(cell_arg);
}
for (auto child : decl->children)
if (child->type == AST_WIRE && (child->is_input || child->is_output || (type == AST_FCALL && child->str == str)))
{
AstNode *wire = child->clone();
wire->port_id = 0;
wire->is_input = false;
wire->is_output = false;
current_ast_mod->children.push_back(wire);
while (wire->simplify(true, false, false, 1, -1, false, false)) { }
AstNode *wire_id = new AstNode(AST_IDENTIFIER);
wire_id->str = wire->str;
if ((child->is_input || child->is_output) && arg_count < children.size())
{
AstNode *arg = children[arg_count++]->clone();
AstNode *assign = child->is_input ?
new AstNode(AST_ASSIGN_EQ, wire_id->clone(), arg) :
new AstNode(AST_ASSIGN_EQ, arg, wire_id->clone());
assign->children[0]->was_checked = true;
for (auto it = current_block->children.begin(); it != current_block->children.end(); it++) {
if (*it != current_block_child)
continue;
current_block->children.insert(it, assign);
break;
}
}
AstNode *cell_arg = new AstNode(AST_ARGUMENT, wire_id);
cell_arg->str = child->str == str ? outport : child->str;
cell->children.push_back(cell_arg);
}
current_ast_mod->children.push_back(cell);
goto replace_fcall_with_id;
}
2013-01-05 04:13:26 -06:00
for (auto child : decl->children)
if (child->type == AST_WIRE || child->type == AST_MEMORY || child->type == AST_PARAMETER || child->type == AST_LOCALPARAM || child->type == AST_ENUM_ITEM)
2013-01-05 04:13:26 -06:00
{
AstNode *wire = nullptr;
if (wire_cache.count(child->str))
{
wire = wire_cache.at(child->str);
bool contains_value = wire->type == AST_LOCALPARAM;
if (wire->children.size() == contains_value) {
for (auto c : child->children)
wire->children.push_back(c->clone());
} else if (!child->children.empty()) {
while (child->simplify(true, false, false, stage, -1, false, false)) { }
if (GetSize(child->children) == GetSize(wire->children) - contains_value) {
for (int i = 0; i < GetSize(child->children); i++)
if (*child->children.at(i) != *wire->children.at(i + contains_value))
goto tcall_incompatible_wires;
} else {
tcall_incompatible_wires:
log_file_error(filename, location.first_line, "Incompatible re-declaration of wire %s.\n", child->str.c_str());
}
}
}
else
{
wire = child->clone();
wire->port_id = 0;
wire->is_input = false;
wire->is_output = false;
wire->is_reg = true;
wire->attributes[ID::nosync] = AstNode::mkconst_int(1, false);
2020-02-17 03:40:02 -06:00
if (child->type == AST_ENUM_ITEM)
wire->attributes[ID::enum_base_type] = child->attributes[ID::enum_base_type];
wire_cache[child->str] = wire;
verilog: significant block scoping improvements This change set contains a number of bug fixes and improvements related to scoping and resolution in generate and procedural blocks. While many of the frontend changes are interdependent, it may be possible bring the techmap changes in under a separate PR. Declarations within unnamed generate blocks previously encountered issues because the data declarations were left un-prefixed, breaking proper scoping. The LRM outlines behavior for generating names for unnamed generate blocks. The original goal was to add this implicit labelling, but doing so exposed a number of issues downstream. Additional testing highlighted other closely related scope resolution issues, which have been fixed. This change also adds support for block item declarations within unnamed blocks in SystemVerilog mode. 1. Unlabled generate blocks are now implicitly named according to the LRM in `label_genblks`, which is invoked at the beginning of module elaboration 2. The Verilog parser no longer wraps explicitly named generate blocks in a synthetic unnamed generate block to avoid creating extra hierarchy levels where they should not exist 3. The techmap phase now allows special control identifiers to be used outside of the topmost scope, which is necessary because such wires and cells often appear in unlabeled generate blocks, which now prefix the declarations within 4. Some techlibs required modifications because they relied on the previous invalid scope resolution behavior 5. `expand_genblock` has been simplified, now only expanding the outermost scope, completely deferring the inspection and elaboration of nested scopes; names are now resolved by looking in the innermost scope and stepping outward 6. Loop variables now always become localparams during unrolling, allowing them to be resolved and shadowed like any other identifier 7. Identifiers in synthetic function call scopes are now prefixed and resolved in largely the same manner as other blocks before: `$func$\func_01$tests/simple/scopes.blk.v:60$5$\blk\x` after: `\func_01$func$tests/simple/scopes.v:60$5.blk.x` 8. Support identifiers referencing a local generate scope nested more than 1 level deep, i.e. `B.C.x` while within generate scope `A`, or using a prefix of a current or parent scope, i.e. `B.C.D.x` while in `A.B`, `A.B.C`, or `A.B.C.D` 9. Variables can now be declared within unnamed blocks in SystemVerilog mode Addresses the following issues: 656, 2423, 2493
2021-01-27 12:30:22 -06:00
current_scope[wire->str] = wire;
current_ast_mod->children.push_back(wire);
}
verilog: significant block scoping improvements This change set contains a number of bug fixes and improvements related to scoping and resolution in generate and procedural blocks. While many of the frontend changes are interdependent, it may be possible bring the techmap changes in under a separate PR. Declarations within unnamed generate blocks previously encountered issues because the data declarations were left un-prefixed, breaking proper scoping. The LRM outlines behavior for generating names for unnamed generate blocks. The original goal was to add this implicit labelling, but doing so exposed a number of issues downstream. Additional testing highlighted other closely related scope resolution issues, which have been fixed. This change also adds support for block item declarations within unnamed blocks in SystemVerilog mode. 1. Unlabled generate blocks are now implicitly named according to the LRM in `label_genblks`, which is invoked at the beginning of module elaboration 2. The Verilog parser no longer wraps explicitly named generate blocks in a synthetic unnamed generate block to avoid creating extra hierarchy levels where they should not exist 3. The techmap phase now allows special control identifiers to be used outside of the topmost scope, which is necessary because such wires and cells often appear in unlabeled generate blocks, which now prefix the declarations within 4. Some techlibs required modifications because they relied on the previous invalid scope resolution behavior 5. `expand_genblock` has been simplified, now only expanding the outermost scope, completely deferring the inspection and elaboration of nested scopes; names are now resolved by looking in the innermost scope and stepping outward 6. Loop variables now always become localparams during unrolling, allowing them to be resolved and shadowed like any other identifier 7. Identifiers in synthetic function call scopes are now prefixed and resolved in largely the same manner as other blocks before: `$func$\func_01$tests/simple/scopes.blk.v:60$5$\blk\x` after: `\func_01$func$tests/simple/scopes.v:60$5.blk.x` 8. Support identifiers referencing a local generate scope nested more than 1 level deep, i.e. `B.C.x` while within generate scope `A`, or using a prefix of a current or parent scope, i.e. `B.C.D.x` while in `A.B`, `A.B.C`, or `A.B.C.D` 9. Variables can now be declared within unnamed blocks in SystemVerilog mode Addresses the following issues: 656, 2423, 2493
2021-01-27 12:30:22 -06:00
while (wire->simplify(true, false, false, 1, -1, false, false)) { }
2013-01-05 04:13:26 -06:00
2014-08-14 15:26:10 -05:00
if ((child->is_input || child->is_output) && arg_count < children.size())
2013-01-05 04:13:26 -06:00
{
AstNode *arg = children[arg_count++]->clone();
// convert purely constant arguments into localparams
if (child->is_input && child->type == AST_WIRE && arg->type == AST_CONSTANT && node_contains_assignment_to(decl, child)) {
wire->type = AST_LOCALPARAM;
wire->attributes.erase(ID::nosync);
wire->children.insert(wire->children.begin(), arg->clone());
// args without a range implicitly have width 1
if (wire->children.back()->type != AST_RANGE) {
// check if this wire is redeclared with an explicit size
bool uses_explicit_size = false;
for (const AstNode *other_child : decl->children)
if (other_child->type == AST_WIRE && child->str == other_child->str
&& !other_child->children.empty()
&& other_child->children.back()->type == AST_RANGE) {
uses_explicit_size = true;
break;
}
if (!uses_explicit_size) {
AstNode* range = new AstNode();
range->type = AST_RANGE;
wire->children.push_back(range);
range->children.push_back(mkconst_int(0, true));
range->children.push_back(mkconst_int(0, true));
}
}
// updates the sizing
while (wire->simplify(true, false, false, 1, -1, false, false)) { }
continue;
}
2013-01-05 04:13:26 -06:00
AstNode *wire_id = new AstNode(AST_IDENTIFIER);
wire_id->str = wire->str;
2014-08-14 15:26:10 -05:00
AstNode *assign = child->is_input ?
new AstNode(AST_ASSIGN_EQ, wire_id, arg) :
new AstNode(AST_ASSIGN_EQ, arg, wire_id);
assign->children[0]->was_checked = true;
if (child->is_input)
new_stmts.push_back(assign);
else
output_assignments.push_back(assign);
2013-01-05 04:13:26 -06:00
}
}
for (auto child : decl->children)
if (child->type != AST_WIRE && child->type != AST_MEMORY && child->type != AST_PARAMETER && child->type != AST_LOCALPARAM)
verilog: significant block scoping improvements This change set contains a number of bug fixes and improvements related to scoping and resolution in generate and procedural blocks. While many of the frontend changes are interdependent, it may be possible bring the techmap changes in under a separate PR. Declarations within unnamed generate blocks previously encountered issues because the data declarations were left un-prefixed, breaking proper scoping. The LRM outlines behavior for generating names for unnamed generate blocks. The original goal was to add this implicit labelling, but doing so exposed a number of issues downstream. Additional testing highlighted other closely related scope resolution issues, which have been fixed. This change also adds support for block item declarations within unnamed blocks in SystemVerilog mode. 1. Unlabled generate blocks are now implicitly named according to the LRM in `label_genblks`, which is invoked at the beginning of module elaboration 2. The Verilog parser no longer wraps explicitly named generate blocks in a synthetic unnamed generate block to avoid creating extra hierarchy levels where they should not exist 3. The techmap phase now allows special control identifiers to be used outside of the topmost scope, which is necessary because such wires and cells often appear in unlabeled generate blocks, which now prefix the declarations within 4. Some techlibs required modifications because they relied on the previous invalid scope resolution behavior 5. `expand_genblock` has been simplified, now only expanding the outermost scope, completely deferring the inspection and elaboration of nested scopes; names are now resolved by looking in the innermost scope and stepping outward 6. Loop variables now always become localparams during unrolling, allowing them to be resolved and shadowed like any other identifier 7. Identifiers in synthetic function call scopes are now prefixed and resolved in largely the same manner as other blocks before: `$func$\func_01$tests/simple/scopes.blk.v:60$5$\blk\x` after: `\func_01$func$tests/simple/scopes.v:60$5.blk.x` 8. Support identifiers referencing a local generate scope nested more than 1 level deep, i.e. `B.C.x` while within generate scope `A`, or using a prefix of a current or parent scope, i.e. `B.C.D.x` while in `A.B`, `A.B.C`, or `A.B.C.D` 9. Variables can now be declared within unnamed blocks in SystemVerilog mode Addresses the following issues: 656, 2423, 2493
2021-01-27 12:30:22 -06:00
new_stmts.push_back(child->clone());
2013-01-05 04:13:26 -06:00
new_stmts.insert(new_stmts.end(), output_assignments.begin(), output_assignments.end());
for (auto it = current_block->children.begin(); ; it++) {
log_assert(it != current_block->children.end());
if (*it == current_block_child) {
current_block->children.insert(it, new_stmts.begin(), new_stmts.end());
break;
2013-01-05 04:13:26 -06:00
}
}
2013-01-05 04:13:26 -06:00
replace_fcall_with_id:
verilog: significant block scoping improvements This change set contains a number of bug fixes and improvements related to scoping and resolution in generate and procedural blocks. While many of the frontend changes are interdependent, it may be possible bring the techmap changes in under a separate PR. Declarations within unnamed generate blocks previously encountered issues because the data declarations were left un-prefixed, breaking proper scoping. The LRM outlines behavior for generating names for unnamed generate blocks. The original goal was to add this implicit labelling, but doing so exposed a number of issues downstream. Additional testing highlighted other closely related scope resolution issues, which have been fixed. This change also adds support for block item declarations within unnamed blocks in SystemVerilog mode. 1. Unlabled generate blocks are now implicitly named according to the LRM in `label_genblks`, which is invoked at the beginning of module elaboration 2. The Verilog parser no longer wraps explicitly named generate blocks in a synthetic unnamed generate block to avoid creating extra hierarchy levels where they should not exist 3. The techmap phase now allows special control identifiers to be used outside of the topmost scope, which is necessary because such wires and cells often appear in unlabeled generate blocks, which now prefix the declarations within 4. Some techlibs required modifications because they relied on the previous invalid scope resolution behavior 5. `expand_genblock` has been simplified, now only expanding the outermost scope, completely deferring the inspection and elaboration of nested scopes; names are now resolved by looking in the innermost scope and stepping outward 6. Loop variables now always become localparams during unrolling, allowing them to be resolved and shadowed like any other identifier 7. Identifiers in synthetic function call scopes are now prefixed and resolved in largely the same manner as other blocks before: `$func$\func_01$tests/simple/scopes.blk.v:60$5$\blk\x` after: `\func_01$func$tests/simple/scopes.v:60$5.blk.x` 8. Support identifiers referencing a local generate scope nested more than 1 level deep, i.e. `B.C.x` while within generate scope `A`, or using a prefix of a current or parent scope, i.e. `B.C.D.x` while in `A.B`, `A.B.C`, or `A.B.C.D` 9. Variables can now be declared within unnamed blocks in SystemVerilog mode Addresses the following issues: 656, 2423, 2493
2021-01-27 12:30:22 -06:00
delete decl;
2013-01-05 04:13:26 -06:00
if (type == AST_FCALL) {
delete_children();
type = AST_IDENTIFIER;
verilog: significant block scoping improvements This change set contains a number of bug fixes and improvements related to scoping and resolution in generate and procedural blocks. While many of the frontend changes are interdependent, it may be possible bring the techmap changes in under a separate PR. Declarations within unnamed generate blocks previously encountered issues because the data declarations were left un-prefixed, breaking proper scoping. The LRM outlines behavior for generating names for unnamed generate blocks. The original goal was to add this implicit labelling, but doing so exposed a number of issues downstream. Additional testing highlighted other closely related scope resolution issues, which have been fixed. This change also adds support for block item declarations within unnamed blocks in SystemVerilog mode. 1. Unlabled generate blocks are now implicitly named according to the LRM in `label_genblks`, which is invoked at the beginning of module elaboration 2. The Verilog parser no longer wraps explicitly named generate blocks in a synthetic unnamed generate block to avoid creating extra hierarchy levels where they should not exist 3. The techmap phase now allows special control identifiers to be used outside of the topmost scope, which is necessary because such wires and cells often appear in unlabeled generate blocks, which now prefix the declarations within 4. Some techlibs required modifications because they relied on the previous invalid scope resolution behavior 5. `expand_genblock` has been simplified, now only expanding the outermost scope, completely deferring the inspection and elaboration of nested scopes; names are now resolved by looking in the innermost scope and stepping outward 6. Loop variables now always become localparams during unrolling, allowing them to be resolved and shadowed like any other identifier 7. Identifiers in synthetic function call scopes are now prefixed and resolved in largely the same manner as other blocks before: `$func$\func_01$tests/simple/scopes.blk.v:60$5$\blk\x` after: `\func_01$func$tests/simple/scopes.v:60$5.blk.x` 8. Support identifiers referencing a local generate scope nested more than 1 level deep, i.e. `B.C.x` while within generate scope `A`, or using a prefix of a current or parent scope, i.e. `B.C.D.x` while in `A.B`, `A.B.C`, or `A.B.C.D` 9. Variables can now be declared within unnamed blocks in SystemVerilog mode Addresses the following issues: 656, 2423, 2493
2021-01-27 12:30:22 -06:00
str = prefix_id(prefix, "$result");
2013-01-05 04:13:26 -06:00
}
if (type == AST_TCALL)
str = "";
did_something = true;
}
replace_fcall_later:;
2013-01-05 04:13:26 -06:00
// perform const folding when activated
if (const_fold)
2013-01-05 04:13:26 -06:00
{
bool string_op;
std::vector<RTLIL::State> tmp_bits;
2013-01-05 04:13:26 -06:00
RTLIL::Const (*const_func)(const RTLIL::Const&, const RTLIL::Const&, bool, bool, int);
RTLIL::Const dummy_arg;
switch (type)
{
case AST_IDENTIFIER:
if (current_scope.count(str) > 0 && (current_scope[str]->type == AST_PARAMETER || current_scope[str]->type == AST_LOCALPARAM || current_scope[str]->type == AST_ENUM_ITEM)) {
if (current_scope[str]->children[0]->type == AST_CONSTANT) {
if (children.size() != 0 && children[0]->type == AST_RANGE && children[0]->range_valid) {
2013-01-05 04:13:26 -06:00
std::vector<RTLIL::State> data;
2014-07-28 09:45:26 -05:00
bool param_upto = current_scope[str]->range_valid && current_scope[str]->range_swapped;
int param_offset = current_scope[str]->range_valid ? current_scope[str]->range_right : 0;
int param_width = current_scope[str]->range_valid ? current_scope[str]->range_left - current_scope[str]->range_right + 1 :
GetSize(current_scope[str]->children[0]->bits);
2014-07-28 09:45:26 -05:00
int tmp_range_left = children[0]->range_left, tmp_range_right = children[0]->range_right;
if (param_upto) {
tmp_range_left = (param_width + 2*param_offset) - children[0]->range_right - 1;
tmp_range_right = (param_width + 2*param_offset) - children[0]->range_left - 1;
}
for (int i = tmp_range_right; i <= tmp_range_left; i++) {
int index = i - param_offset;
if (0 <= index && index < param_width)
data.push_back(current_scope[str]->children[0]->bits[index]);
else
data.push_back(RTLIL::State::Sx);
}
2013-01-05 04:13:26 -06:00
newNode = mkconst_bits(data, false);
} else
if (children.size() == 0)
newNode = current_scope[str]->children[0]->clone();
2014-06-14 04:27:05 -05:00
} else
if (current_scope[str]->children[0]->isConst())
newNode = current_scope[str]->children[0]->clone();
2013-01-05 04:13:26 -06:00
}
else if (at_zero && current_scope.count(str) > 0) {
AstNode *node = current_scope[str];
if (node->type == AST_WIRE || node->type == AST_AUTOWIRE || node->type == AST_MEMORY)
newNode = mkconst_int(0, sign_hint, width_hint);
}
break;
case AST_MEMRD:
if (at_zero) {
newNode = mkconst_int(0, sign_hint, width_hint);
2013-01-05 04:13:26 -06:00
}
break;
case AST_BIT_NOT:
if (children[0]->type == AST_CONSTANT) {
RTLIL::Const y = RTLIL::const_not(children[0]->bitsAsConst(width_hint, sign_hint), dummy_arg, sign_hint, false, width_hint);
newNode = mkconst_bits(y.bits, sign_hint);
2013-01-05 04:13:26 -06:00
}
break;
case AST_TO_SIGNED:
case AST_TO_UNSIGNED:
if (children[0]->type == AST_CONSTANT) {
RTLIL::Const y = children[0]->bitsAsConst(width_hint, sign_hint);
newNode = mkconst_bits(y.bits, type == AST_TO_SIGNED);
}
break;
2013-01-05 04:13:26 -06:00
if (0) { case AST_BIT_AND: const_func = RTLIL::const_and; }
if (0) { case AST_BIT_OR: const_func = RTLIL::const_or; }
if (0) { case AST_BIT_XOR: const_func = RTLIL::const_xor; }
if (0) { case AST_BIT_XNOR: const_func = RTLIL::const_xnor; }
if (children[0]->type == AST_CONSTANT && children[1]->type == AST_CONSTANT) {
RTLIL::Const y = const_func(children[0]->bitsAsConst(width_hint, sign_hint),
children[1]->bitsAsConst(width_hint, sign_hint), sign_hint, sign_hint, width_hint);
newNode = mkconst_bits(y.bits, sign_hint);
2013-01-05 04:13:26 -06:00
}
break;
if (0) { case AST_REDUCE_AND: const_func = RTLIL::const_reduce_and; }
if (0) { case AST_REDUCE_OR: const_func = RTLIL::const_reduce_or; }
if (0) { case AST_REDUCE_XOR: const_func = RTLIL::const_reduce_xor; }
if (0) { case AST_REDUCE_XNOR: const_func = RTLIL::const_reduce_xnor; }
if (0) { case AST_REDUCE_BOOL: const_func = RTLIL::const_reduce_bool; }
if (children[0]->type == AST_CONSTANT) {
RTLIL::Const y = const_func(RTLIL::Const(children[0]->bits), dummy_arg, false, false, -1);
2013-01-05 04:13:26 -06:00
newNode = mkconst_bits(y.bits, false);
}
break;
case AST_LOGIC_NOT:
if (children[0]->type == AST_CONSTANT) {
RTLIL::Const y = RTLIL::const_logic_not(RTLIL::Const(children[0]->bits), dummy_arg, children[0]->is_signed, false, -1);
newNode = mkconst_bits(y.bits, false);
2014-06-14 04:27:05 -05:00
} else
if (children[0]->isConst()) {
newNode = mkconst_int(children[0]->asReal(sign_hint) == 0, false, 1);
2013-01-05 04:13:26 -06:00
}
break;
if (0) { case AST_LOGIC_AND: const_func = RTLIL::const_logic_and; }
if (0) { case AST_LOGIC_OR: const_func = RTLIL::const_logic_or; }
if (children[0]->type == AST_CONSTANT && children[1]->type == AST_CONSTANT) {
RTLIL::Const y = const_func(RTLIL::Const(children[0]->bits), RTLIL::Const(children[1]->bits),
children[0]->is_signed, children[1]->is_signed, -1);
newNode = mkconst_bits(y.bits, false);
2014-06-14 04:27:05 -05:00
} else
if (children[0]->isConst() && children[1]->isConst()) {
if (type == AST_LOGIC_AND)
newNode = mkconst_int((children[0]->asReal(sign_hint) != 0) && (children[1]->asReal(sign_hint) != 0), false, 1);
else
newNode = mkconst_int((children[0]->asReal(sign_hint) != 0) || (children[1]->asReal(sign_hint) != 0), false, 1);
2013-01-05 04:13:26 -06:00
}
break;
if (0) { case AST_SHIFT_LEFT: const_func = RTLIL::const_shl; }
if (0) { case AST_SHIFT_RIGHT: const_func = RTLIL::const_shr; }
if (0) { case AST_SHIFT_SLEFT: const_func = RTLIL::const_sshl; }
if (0) { case AST_SHIFT_SRIGHT: const_func = RTLIL::const_sshr; }
2013-11-07 15:20:00 -06:00
if (0) { case AST_POW: const_func = RTLIL::const_pow; }
2013-01-05 04:13:26 -06:00
if (children[0]->type == AST_CONSTANT && children[1]->type == AST_CONSTANT) {
RTLIL::Const y = const_func(children[0]->bitsAsConst(width_hint, sign_hint),
RTLIL::Const(children[1]->bits), sign_hint, type == AST_POW ? children[1]->is_signed : false, width_hint);
newNode = mkconst_bits(y.bits, sign_hint);
2014-06-14 04:27:05 -05:00
} else
if (type == AST_POW && children[0]->isConst() && children[1]->isConst()) {
newNode = new AstNode(AST_REALVALUE);
newNode->realvalue = pow(children[0]->asReal(sign_hint), children[1]->asReal(sign_hint));
2013-01-05 04:13:26 -06:00
}
break;
if (0) { case AST_LT: const_func = RTLIL::const_lt; }
if (0) { case AST_LE: const_func = RTLIL::const_le; }
if (0) { case AST_EQ: const_func = RTLIL::const_eq; }
if (0) { case AST_NE: const_func = RTLIL::const_ne; }
if (0) { case AST_EQX: const_func = RTLIL::const_eqx; }
if (0) { case AST_NEX: const_func = RTLIL::const_nex; }
if (0) { case AST_GE: const_func = RTLIL::const_ge; }
if (0) { case AST_GT: const_func = RTLIL::const_gt; }
2013-01-05 04:13:26 -06:00
if (children[0]->type == AST_CONSTANT && children[1]->type == AST_CONSTANT) {
int cmp_width = max(children[0]->bits.size(), children[1]->bits.size());
bool cmp_signed = children[0]->is_signed && children[1]->is_signed;
RTLIL::Const y = const_func(children[0]->bitsAsConst(cmp_width, cmp_signed),
children[1]->bitsAsConst(cmp_width, cmp_signed), cmp_signed, cmp_signed, 1);
2013-01-05 04:13:26 -06:00
newNode = mkconst_bits(y.bits, false);
2014-06-14 04:27:05 -05:00
} else
if (children[0]->isConst() && children[1]->isConst()) {
bool cmp_signed = (children[0]->type == AST_REALVALUE || children[0]->is_signed) && (children[1]->type == AST_REALVALUE || children[1]->is_signed);
2014-06-14 04:27:05 -05:00
switch (type) {
case AST_LT: newNode = mkconst_int(children[0]->asReal(cmp_signed) < children[1]->asReal(cmp_signed), false, 1); break;
case AST_LE: newNode = mkconst_int(children[0]->asReal(cmp_signed) <= children[1]->asReal(cmp_signed), false, 1); break;
case AST_EQ: newNode = mkconst_int(children[0]->asReal(cmp_signed) == children[1]->asReal(cmp_signed), false, 1); break;
case AST_NE: newNode = mkconst_int(children[0]->asReal(cmp_signed) != children[1]->asReal(cmp_signed), false, 1); break;
case AST_EQX: newNode = mkconst_int(children[0]->asReal(cmp_signed) == children[1]->asReal(cmp_signed), false, 1); break;
case AST_NEX: newNode = mkconst_int(children[0]->asReal(cmp_signed) != children[1]->asReal(cmp_signed), false, 1); break;
case AST_GE: newNode = mkconst_int(children[0]->asReal(cmp_signed) >= children[1]->asReal(cmp_signed), false, 1); break;
case AST_GT: newNode = mkconst_int(children[0]->asReal(cmp_signed) > children[1]->asReal(cmp_signed), false, 1); break;
2014-06-14 04:27:05 -05:00
default: log_abort();
}
2013-01-05 04:13:26 -06:00
}
break;
if (0) { case AST_ADD: const_func = RTLIL::const_add; }
if (0) { case AST_SUB: const_func = RTLIL::const_sub; }
if (0) { case AST_MUL: const_func = RTLIL::const_mul; }
if (0) { case AST_DIV: const_func = RTLIL::const_div; }
if (0) { case AST_MOD: const_func = RTLIL::const_mod; }
2014-06-14 04:27:05 -05:00
if (children[0]->type == AST_CONSTANT && children[1]->type == AST_CONSTANT) {
RTLIL::Const y = const_func(children[0]->bitsAsConst(width_hint, sign_hint),
children[1]->bitsAsConst(width_hint, sign_hint), sign_hint, sign_hint, width_hint);
newNode = mkconst_bits(y.bits, sign_hint);
} else
2014-06-14 01:51:22 -05:00
if (children[0]->isConst() && children[1]->isConst()) {
2014-06-14 04:27:05 -05:00
newNode = new AstNode(AST_REALVALUE);
switch (type) {
case AST_ADD: newNode->realvalue = children[0]->asReal(sign_hint) + children[1]->asReal(sign_hint); break;
case AST_SUB: newNode->realvalue = children[0]->asReal(sign_hint) - children[1]->asReal(sign_hint); break;
case AST_MUL: newNode->realvalue = children[0]->asReal(sign_hint) * children[1]->asReal(sign_hint); break;
case AST_DIV: newNode->realvalue = children[0]->asReal(sign_hint) / children[1]->asReal(sign_hint); break;
case AST_MOD: newNode->realvalue = fmod(children[0]->asReal(sign_hint), children[1]->asReal(sign_hint)); break;
default: log_abort();
2014-06-14 01:51:22 -05:00
}
2013-01-05 04:13:26 -06:00
}
break;
if (0) { case AST_SELFSZ: const_func = RTLIL::const_pos; }
2013-01-05 04:13:26 -06:00
if (0) { case AST_POS: const_func = RTLIL::const_pos; }
if (0) { case AST_NEG: const_func = RTLIL::const_neg; }
if (children[0]->type == AST_CONSTANT) {
RTLIL::Const y = const_func(children[0]->bitsAsConst(width_hint, sign_hint), dummy_arg, sign_hint, false, width_hint);
newNode = mkconst_bits(y.bits, sign_hint);
2014-06-14 04:27:05 -05:00
} else
if (children[0]->isConst()) {
newNode = new AstNode(AST_REALVALUE);
if (type == AST_NEG)
2014-06-14 04:27:05 -05:00
newNode->realvalue = -children[0]->asReal(sign_hint);
else
newNode->realvalue = +children[0]->asReal(sign_hint);
2013-01-05 04:13:26 -06:00
}
break;
case AST_TERNARY:
if (children[0]->isConst())
{
auto pair = get_tern_choice();
AstNode *choice = pair.first;
AstNode *not_choice = pair.second;
2014-06-14 04:27:05 -05:00
if (choice != NULL) {
if (choice->type == AST_CONSTANT) {
int other_width_hint = width_hint;
bool other_sign_hint = sign_hint, other_real = false;
not_choice->detectSignWidth(other_width_hint, other_sign_hint, &other_real);
if (other_real) {
newNode = new AstNode(AST_REALVALUE);
choice->detectSignWidth(width_hint, sign_hint);
newNode->realvalue = choice->asReal(sign_hint);
} else {
RTLIL::Const y = choice->bitsAsConst(width_hint, sign_hint);
if (choice->is_string && y.bits.size() % 8 == 0 && sign_hint == false)
newNode = mkconst_str(y.bits);
else
newNode = mkconst_bits(y.bits, sign_hint);
}
2014-06-14 04:27:05 -05:00
} else
if (choice->isConst()) {
newNode = choice->clone();
}
} else if (children[1]->type == AST_CONSTANT && children[2]->type == AST_CONSTANT) {
RTLIL::Const a = children[1]->bitsAsConst(width_hint, sign_hint);
RTLIL::Const b = children[2]->bitsAsConst(width_hint, sign_hint);
2014-07-28 04:08:55 -05:00
log_assert(a.bits.size() == b.bits.size());
for (size_t i = 0; i < a.bits.size(); i++)
if (a.bits[i] != b.bits[i])
a.bits[i] = RTLIL::State::Sx;
newNode = mkconst_bits(a.bits, sign_hint);
} else if (children[1]->isConst() && children[2]->isConst()) {
newNode = new AstNode(AST_REALVALUE);
if (children[1]->asReal(sign_hint) == children[2]->asReal(sign_hint))
newNode->realvalue = children[1]->asReal(sign_hint);
else
// IEEE Std 1800-2012 Sec. 11.4.11 states that the entry in Table 7-1 for
// the data type in question should be returned if the ?: is ambiguous. The
// value in Table 7-1 for the 'real' type is 0.0.
newNode->realvalue = 0.0;
}
2013-01-05 04:13:26 -06:00
}
break;
2020-06-19 21:09:43 -05:00
case AST_CAST_SIZE:
if (children.at(0)->type == AST_CONSTANT && children.at(1)->type == AST_CONSTANT) {
int width = children[0]->bitsAsConst().as_int();
RTLIL::Const val;
if (children[1]->is_unsized)
val = children[1]->bitsAsUnsizedConst(width);
else
val = children[1]->bitsAsConst(width);
2020-06-19 21:09:43 -05:00
newNode = mkconst_bits(val.bits, children[1]->is_signed);
}
break;
case AST_CONCAT:
string_op = !children.empty();
for (auto it = children.begin(); it != children.end(); it++) {
if ((*it)->type != AST_CONSTANT)
goto not_const;
if (!(*it)->is_string)
string_op = false;
tmp_bits.insert(tmp_bits.end(), (*it)->bits.begin(), (*it)->bits.end());
}
newNode = string_op ? mkconst_str(tmp_bits) : mkconst_bits(tmp_bits, false);
break;
case AST_REPLICATE:
if (children.at(0)->type != AST_CONSTANT || children.at(1)->type != AST_CONSTANT)
goto not_const;
for (int i = 0; i < children[0]->bitsAsConst().as_int(); i++)
tmp_bits.insert(tmp_bits.end(), children.at(1)->bits.begin(), children.at(1)->bits.end());
newNode = children.at(1)->is_string ? mkconst_str(tmp_bits) : mkconst_bits(tmp_bits, false);
break;
2013-01-05 04:13:26 -06:00
default:
not_const:
2013-01-05 04:13:26 -06:00
break;
}
}
// if any of the above set 'newNode' -> use 'newNode' as template to update 'this'
if (newNode) {
apply_newNode:
// fprintf(stderr, "----\n");
// dumpAst(stderr, "- ");
// newNode->dumpAst(stderr, "+ ");
2014-07-28 04:08:55 -05:00
log_assert(newNode != NULL);
2013-01-05 04:13:26 -06:00
newNode->filename = filename;
newNode->location = location;
2013-01-05 04:13:26 -06:00
newNode->cloneInto(this);
delete newNode;
did_something = true;
}
if (!did_something)
basic_prep = true;
recursion_counter--;
2013-01-05 04:13:26 -06:00
return did_something;
}
void AstNode::replace_result_wire_name_in_function(const std::string &from, const std::string &to)
{
for (AstNode *child : children)
child->replace_result_wire_name_in_function(from, to);
if (str == from && type != AST_FCALL && type != AST_TCALL)
str = to;
}
2014-10-26 14:33:10 -05:00
// replace a readmem[bh] TCALL ast node with a block of memory assignments
2015-07-31 03:40:09 -05:00
AstNode *AstNode::readmem(bool is_readmemh, std::string mem_filename, AstNode *memory, int start_addr, int finish_addr, bool unconditional_init)
2014-10-26 14:33:10 -05:00
{
2015-09-25 06:49:48 -05:00
int mem_width, mem_size, addr_bits;
memory->meminfo(mem_width, mem_size, addr_bits);
2014-10-26 14:33:10 -05:00
AstNode *block = new AstNode(AST_BLOCK);
2015-07-31 03:40:09 -05:00
AstNode *meminit = nullptr;
int next_meminit_cursor=0;
2015-07-31 03:40:09 -05:00
vector<State> meminit_bits;
int meminit_size=0;
2015-07-31 03:40:09 -05:00
2014-10-26 14:33:10 -05:00
std::ifstream f;
f.open(mem_filename.c_str());
if (f.fail()) {
#ifdef _WIN32
char slash = '\\';
#else
char slash = '/';
#endif
std::string path = filename.substr(0, filename.find_last_of(slash)+1);
f.open(path + mem_filename.c_str());
yosys_input_files.insert(path + mem_filename);
} else {
yosys_input_files.insert(mem_filename);
}
if (f.fail() || GetSize(mem_filename) == 0)
log_file_error(filename, location.first_line, "Can not open file `%s` for %s.\n", mem_filename.c_str(), str.c_str());
2014-10-26 14:33:10 -05:00
log_assert(GetSize(memory->children) == 2 && memory->children[1]->type == AST_RANGE && memory->children[1]->range_valid);
int range_left = memory->children[1]->range_left, range_right = memory->children[1]->range_right;
int range_min = min(range_left, range_right), range_max = max(range_left, range_right);
if (start_addr < 0)
start_addr = range_min;
if (finish_addr < 0)
2015-09-25 06:49:48 -05:00
finish_addr = range_max + 1;
2014-10-26 14:33:10 -05:00
bool in_comment = false;
int increment = start_addr <= finish_addr ? +1 : -1;
int cursor = start_addr;
2014-10-26 14:33:10 -05:00
while (!f.eof())
{
std::string line, token;
std::getline(f, line);
for (int i = 0; i < GetSize(line); i++) {
2019-08-07 14:20:08 -05:00
if (in_comment && line.compare(i, 2, "*/") == 0) {
2014-10-26 14:33:10 -05:00
line[i] = ' ';
line[i+1] = ' ';
in_comment = false;
continue;
}
2019-08-07 14:20:08 -05:00
if (!in_comment && line.compare(i, 2, "/*") == 0)
2014-10-26 14:33:10 -05:00
in_comment = true;
if (in_comment)
line[i] = ' ';
}
while (1)
{
token = next_token(line, " \t\r\n");
2019-08-07 14:20:08 -05:00
if (token.empty() || token.compare(0, 2, "//") == 0)
2014-10-26 14:33:10 -05:00
break;
if (token[0] == '@') {
token = token.substr(1);
const char *nptr = token.c_str();
char *endptr;
cursor = strtol(nptr, &endptr, 16);
if (!*nptr || *endptr)
log_file_error(filename, location.first_line, "Can not parse address `%s` for %s.\n", nptr, str.c_str());
2014-10-26 14:33:10 -05:00
continue;
}
2015-09-25 06:49:48 -05:00
AstNode *value = VERILOG_FRONTEND::const2ast(stringf("%d'%c", mem_width, is_readmemh ? 'h' : 'b') + token);
2014-10-26 14:33:10 -05:00
2015-07-31 03:40:09 -05:00
if (unconditional_init)
{
if (meminit == nullptr || cursor != next_meminit_cursor)
{
if (meminit != nullptr) {
meminit->children[1] = AstNode::mkconst_bits(meminit_bits, false);
meminit->children[2] = AstNode::mkconst_int(meminit_size, false);
}
meminit = new AstNode(AST_MEMINIT);
meminit->children.push_back(AstNode::mkconst_int(cursor, false));
meminit->children.push_back(nullptr);
meminit->children.push_back(nullptr);
meminit->str = memory->str;
meminit->id2ast = memory;
meminit_bits.clear();
meminit_size = 0;
current_ast_mod->children.push_back(meminit);
next_meminit_cursor = cursor;
}
meminit_size++;
next_meminit_cursor++;
meminit_bits.insert(meminit_bits.end(), value->bits.begin(), value->bits.end());
delete value;
}
else
{
block->children.push_back(new AstNode(AST_ASSIGN_EQ, new AstNode(AST_IDENTIFIER, new AstNode(AST_RANGE, AstNode::mkconst_int(cursor, false))), value));
block->children.back()->children[0]->str = memory->str;
block->children.back()->children[0]->id2ast = memory;
block->children.back()->children[0]->was_checked = true;
2015-07-31 03:40:09 -05:00
}
2014-10-26 14:33:10 -05:00
cursor += increment;
if ((cursor == finish_addr+increment) || (increment > 0 && cursor > range_max) || (increment < 0 && cursor < range_min))
break;
2014-10-26 14:33:10 -05:00
}
if ((cursor == finish_addr+increment) || (increment > 0 && cursor > range_max) || (increment < 0 && cursor < range_min))
2014-10-26 14:33:10 -05:00
break;
}
2015-07-31 03:40:09 -05:00
if (meminit != nullptr) {
meminit->children[1] = AstNode::mkconst_bits(meminit_bits, false);
meminit->children[2] = AstNode::mkconst_int(meminit_size, false);
}
2014-10-26 14:33:10 -05:00
return block;
}
verilog: significant block scoping improvements This change set contains a number of bug fixes and improvements related to scoping and resolution in generate and procedural blocks. While many of the frontend changes are interdependent, it may be possible bring the techmap changes in under a separate PR. Declarations within unnamed generate blocks previously encountered issues because the data declarations were left un-prefixed, breaking proper scoping. The LRM outlines behavior for generating names for unnamed generate blocks. The original goal was to add this implicit labelling, but doing so exposed a number of issues downstream. Additional testing highlighted other closely related scope resolution issues, which have been fixed. This change also adds support for block item declarations within unnamed blocks in SystemVerilog mode. 1. Unlabled generate blocks are now implicitly named according to the LRM in `label_genblks`, which is invoked at the beginning of module elaboration 2. The Verilog parser no longer wraps explicitly named generate blocks in a synthetic unnamed generate block to avoid creating extra hierarchy levels where they should not exist 3. The techmap phase now allows special control identifiers to be used outside of the topmost scope, which is necessary because such wires and cells often appear in unlabeled generate blocks, which now prefix the declarations within 4. Some techlibs required modifications because they relied on the previous invalid scope resolution behavior 5. `expand_genblock` has been simplified, now only expanding the outermost scope, completely deferring the inspection and elaboration of nested scopes; names are now resolved by looking in the innermost scope and stepping outward 6. Loop variables now always become localparams during unrolling, allowing them to be resolved and shadowed like any other identifier 7. Identifiers in synthetic function call scopes are now prefixed and resolved in largely the same manner as other blocks before: `$func$\func_01$tests/simple/scopes.blk.v:60$5$\blk\x` after: `\func_01$func$tests/simple/scopes.v:60$5.blk.x` 8. Support identifiers referencing a local generate scope nested more than 1 level deep, i.e. `B.C.x` while within generate scope `A`, or using a prefix of a current or parent scope, i.e. `B.C.D.x` while in `A.B`, `A.B.C`, or `A.B.C.D` 9. Variables can now be declared within unnamed blocks in SystemVerilog mode Addresses the following issues: 656, 2423, 2493
2021-01-27 12:30:22 -06:00
// annotate the names of all wires and other named objects in a named generate
// or procedural block; nested blocks are themselves annotated such that the
// prefix is carried forward, but resolution of their children is deferred
void AstNode::expand_genblock(const std::string &prefix)
2013-01-05 04:13:26 -06:00
{
if (type == AST_IDENTIFIER || type == AST_FCALL || type == AST_TCALL || type == AST_WIRETYPE) {
verilog: significant block scoping improvements This change set contains a number of bug fixes and improvements related to scoping and resolution in generate and procedural blocks. While many of the frontend changes are interdependent, it may be possible bring the techmap changes in under a separate PR. Declarations within unnamed generate blocks previously encountered issues because the data declarations were left un-prefixed, breaking proper scoping. The LRM outlines behavior for generating names for unnamed generate blocks. The original goal was to add this implicit labelling, but doing so exposed a number of issues downstream. Additional testing highlighted other closely related scope resolution issues, which have been fixed. This change also adds support for block item declarations within unnamed blocks in SystemVerilog mode. 1. Unlabled generate blocks are now implicitly named according to the LRM in `label_genblks`, which is invoked at the beginning of module elaboration 2. The Verilog parser no longer wraps explicitly named generate blocks in a synthetic unnamed generate block to avoid creating extra hierarchy levels where they should not exist 3. The techmap phase now allows special control identifiers to be used outside of the topmost scope, which is necessary because such wires and cells often appear in unlabeled generate blocks, which now prefix the declarations within 4. Some techlibs required modifications because they relied on the previous invalid scope resolution behavior 5. `expand_genblock` has been simplified, now only expanding the outermost scope, completely deferring the inspection and elaboration of nested scopes; names are now resolved by looking in the innermost scope and stepping outward 6. Loop variables now always become localparams during unrolling, allowing them to be resolved and shadowed like any other identifier 7. Identifiers in synthetic function call scopes are now prefixed and resolved in largely the same manner as other blocks before: `$func$\func_01$tests/simple/scopes.blk.v:60$5$\blk\x` after: `\func_01$func$tests/simple/scopes.v:60$5.blk.x` 8. Support identifiers referencing a local generate scope nested more than 1 level deep, i.e. `B.C.x` while within generate scope `A`, or using a prefix of a current or parent scope, i.e. `B.C.D.x` while in `A.B`, `A.B.C`, or `A.B.C.D` 9. Variables can now be declared within unnamed blocks in SystemVerilog mode Addresses the following issues: 656, 2423, 2493
2021-01-27 12:30:22 -06:00
log_assert(!str.empty());
// search starting in the innermost scope and then stepping outward
for (size_t ppos = prefix.size() - 1; ppos; --ppos) {
if (prefix.at(ppos) != '.') continue;
std::string new_prefix = prefix.substr(0, ppos + 1);
auto attempt_resolve = [&new_prefix](const std::string &ident) -> std::string {
std::string new_name = prefix_id(new_prefix, ident);
if (current_scope.count(new_name))
return new_name;
return {};
};
// attempt to resolve the full identifier
std::string resolved = attempt_resolve(str);
if (!resolved.empty()) {
str = resolved;
break;
}
2013-01-05 04:13:26 -06:00
verilog: significant block scoping improvements This change set contains a number of bug fixes and improvements related to scoping and resolution in generate and procedural blocks. While many of the frontend changes are interdependent, it may be possible bring the techmap changes in under a separate PR. Declarations within unnamed generate blocks previously encountered issues because the data declarations were left un-prefixed, breaking proper scoping. The LRM outlines behavior for generating names for unnamed generate blocks. The original goal was to add this implicit labelling, but doing so exposed a number of issues downstream. Additional testing highlighted other closely related scope resolution issues, which have been fixed. This change also adds support for block item declarations within unnamed blocks in SystemVerilog mode. 1. Unlabled generate blocks are now implicitly named according to the LRM in `label_genblks`, which is invoked at the beginning of module elaboration 2. The Verilog parser no longer wraps explicitly named generate blocks in a synthetic unnamed generate block to avoid creating extra hierarchy levels where they should not exist 3. The techmap phase now allows special control identifiers to be used outside of the topmost scope, which is necessary because such wires and cells often appear in unlabeled generate blocks, which now prefix the declarations within 4. Some techlibs required modifications because they relied on the previous invalid scope resolution behavior 5. `expand_genblock` has been simplified, now only expanding the outermost scope, completely deferring the inspection and elaboration of nested scopes; names are now resolved by looking in the innermost scope and stepping outward 6. Loop variables now always become localparams during unrolling, allowing them to be resolved and shadowed like any other identifier 7. Identifiers in synthetic function call scopes are now prefixed and resolved in largely the same manner as other blocks before: `$func$\func_01$tests/simple/scopes.blk.v:60$5$\blk\x` after: `\func_01$func$tests/simple/scopes.v:60$5.blk.x` 8. Support identifiers referencing a local generate scope nested more than 1 level deep, i.e. `B.C.x` while within generate scope `A`, or using a prefix of a current or parent scope, i.e. `B.C.D.x` while in `A.B`, `A.B.C`, or `A.B.C.D` 9. Variables can now be declared within unnamed blocks in SystemVerilog mode Addresses the following issues: 656, 2423, 2493
2021-01-27 12:30:22 -06:00
// attempt to resolve hierarchical prefixes within the identifier,
// as the prefix could refer to a local scope which exists but
// hasn't yet been elaborated
for (size_t spos = str.size() - 1; spos; --spos) {
if (str.at(spos) != '.') continue;
resolved = attempt_resolve(str.substr(0, spos));
if (!resolved.empty()) {
str = resolved + str.substr(spos);
ppos = 1; // break outer loop
break;
}
}
}
verilog: significant block scoping improvements This change set contains a number of bug fixes and improvements related to scoping and resolution in generate and procedural blocks. While many of the frontend changes are interdependent, it may be possible bring the techmap changes in under a separate PR. Declarations within unnamed generate blocks previously encountered issues because the data declarations were left un-prefixed, breaking proper scoping. The LRM outlines behavior for generating names for unnamed generate blocks. The original goal was to add this implicit labelling, but doing so exposed a number of issues downstream. Additional testing highlighted other closely related scope resolution issues, which have been fixed. This change also adds support for block item declarations within unnamed blocks in SystemVerilog mode. 1. Unlabled generate blocks are now implicitly named according to the LRM in `label_genblks`, which is invoked at the beginning of module elaboration 2. The Verilog parser no longer wraps explicitly named generate blocks in a synthetic unnamed generate block to avoid creating extra hierarchy levels where they should not exist 3. The techmap phase now allows special control identifiers to be used outside of the topmost scope, which is necessary because such wires and cells often appear in unlabeled generate blocks, which now prefix the declarations within 4. Some techlibs required modifications because they relied on the previous invalid scope resolution behavior 5. `expand_genblock` has been simplified, now only expanding the outermost scope, completely deferring the inspection and elaboration of nested scopes; names are now resolved by looking in the innermost scope and stepping outward 6. Loop variables now always become localparams during unrolling, allowing them to be resolved and shadowed like any other identifier 7. Identifiers in synthetic function call scopes are now prefixed and resolved in largely the same manner as other blocks before: `$func$\func_01$tests/simple/scopes.blk.v:60$5$\blk\x` after: `\func_01$func$tests/simple/scopes.v:60$5.blk.x` 8. Support identifiers referencing a local generate scope nested more than 1 level deep, i.e. `B.C.x` while within generate scope `A`, or using a prefix of a current or parent scope, i.e. `B.C.D.x` while in `A.B`, `A.B.C`, or `A.B.C.D` 9. Variables can now be declared within unnamed blocks in SystemVerilog mode Addresses the following issues: 656, 2423, 2493
2021-01-27 12:30:22 -06:00
}
verilog: significant block scoping improvements This change set contains a number of bug fixes and improvements related to scoping and resolution in generate and procedural blocks. While many of the frontend changes are interdependent, it may be possible bring the techmap changes in under a separate PR. Declarations within unnamed generate blocks previously encountered issues because the data declarations were left un-prefixed, breaking proper scoping. The LRM outlines behavior for generating names for unnamed generate blocks. The original goal was to add this implicit labelling, but doing so exposed a number of issues downstream. Additional testing highlighted other closely related scope resolution issues, which have been fixed. This change also adds support for block item declarations within unnamed blocks in SystemVerilog mode. 1. Unlabled generate blocks are now implicitly named according to the LRM in `label_genblks`, which is invoked at the beginning of module elaboration 2. The Verilog parser no longer wraps explicitly named generate blocks in a synthetic unnamed generate block to avoid creating extra hierarchy levels where they should not exist 3. The techmap phase now allows special control identifiers to be used outside of the topmost scope, which is necessary because such wires and cells often appear in unlabeled generate blocks, which now prefix the declarations within 4. Some techlibs required modifications because they relied on the previous invalid scope resolution behavior 5. `expand_genblock` has been simplified, now only expanding the outermost scope, completely deferring the inspection and elaboration of nested scopes; names are now resolved by looking in the innermost scope and stepping outward 6. Loop variables now always become localparams during unrolling, allowing them to be resolved and shadowed like any other identifier 7. Identifiers in synthetic function call scopes are now prefixed and resolved in largely the same manner as other blocks before: `$func$\func_01$tests/simple/scopes.blk.v:60$5$\blk\x` after: `\func_01$func$tests/simple/scopes.v:60$5.blk.x` 8. Support identifiers referencing a local generate scope nested more than 1 level deep, i.e. `B.C.x` while within generate scope `A`, or using a prefix of a current or parent scope, i.e. `B.C.D.x` while in `A.B`, `A.B.C`, or `A.B.C.D` 9. Variables can now be declared within unnamed blocks in SystemVerilog mode Addresses the following issues: 656, 2423, 2493
2021-01-27 12:30:22 -06:00
auto prefix_node = [&prefix](AstNode* child) {
if (child->str.empty()) return;
std::string new_name = prefix_id(prefix, child->str);
if (child->type == AST_FUNCTION)
child->replace_result_wire_name_in_function(child->str, new_name);
else
child->str = new_name;
current_scope[new_name] = child;
};
2013-01-05 04:13:26 -06:00
for (size_t i = 0; i < children.size(); i++) {
AstNode *child = children[i];
switch (child->type) {
case AST_WIRE:
case AST_MEMORY:
case AST_PARAMETER:
case AST_LOCALPARAM:
case AST_FUNCTION:
case AST_TASK:
case AST_CELL:
case AST_TYPEDEF:
case AST_ENUM_ITEM:
case AST_GENVAR:
prefix_node(child);
break;
case AST_BLOCK:
case AST_GENBLOCK:
if (!child->str.empty())
prefix_node(child);
break;
case AST_ENUM:
current_scope[child->str] = child;
2020-01-16 16:05:45 -06:00
for (auto enode : child->children){
log_assert(enode->type == AST_ENUM_ITEM);
prefix_node(enode);
2020-01-16 16:05:45 -06:00
}
break;
default:
break;
2020-01-16 16:05:45 -06:00
}
2013-01-05 04:13:26 -06:00
}
for (size_t i = 0; i < children.size(); i++) {
AstNode *child = children[i];
// AST_PREFIX member names should not be prefixed; a nested AST_PREFIX
// still needs to recursed-into
if (type == AST_PREFIX && i == 1 && child->type == AST_IDENTIFIER)
continue;
// functions/tasks may reference wires, constants, etc. in this scope
if (child->type == AST_FUNCTION || child->type == AST_TASK)
verilog: significant block scoping improvements This change set contains a number of bug fixes and improvements related to scoping and resolution in generate and procedural blocks. While many of the frontend changes are interdependent, it may be possible bring the techmap changes in under a separate PR. Declarations within unnamed generate blocks previously encountered issues because the data declarations were left un-prefixed, breaking proper scoping. The LRM outlines behavior for generating names for unnamed generate blocks. The original goal was to add this implicit labelling, but doing so exposed a number of issues downstream. Additional testing highlighted other closely related scope resolution issues, which have been fixed. This change also adds support for block item declarations within unnamed blocks in SystemVerilog mode. 1. Unlabled generate blocks are now implicitly named according to the LRM in `label_genblks`, which is invoked at the beginning of module elaboration 2. The Verilog parser no longer wraps explicitly named generate blocks in a synthetic unnamed generate block to avoid creating extra hierarchy levels where they should not exist 3. The techmap phase now allows special control identifiers to be used outside of the topmost scope, which is necessary because such wires and cells often appear in unlabeled generate blocks, which now prefix the declarations within 4. Some techlibs required modifications because they relied on the previous invalid scope resolution behavior 5. `expand_genblock` has been simplified, now only expanding the outermost scope, completely deferring the inspection and elaboration of nested scopes; names are now resolved by looking in the innermost scope and stepping outward 6. Loop variables now always become localparams during unrolling, allowing them to be resolved and shadowed like any other identifier 7. Identifiers in synthetic function call scopes are now prefixed and resolved in largely the same manner as other blocks before: `$func$\func_01$tests/simple/scopes.blk.v:60$5$\blk\x` after: `\func_01$func$tests/simple/scopes.v:60$5.blk.x` 8. Support identifiers referencing a local generate scope nested more than 1 level deep, i.e. `B.C.x` while within generate scope `A`, or using a prefix of a current or parent scope, i.e. `B.C.D.x` while in `A.B`, `A.B.C`, or `A.B.C.D` 9. Variables can now be declared within unnamed blocks in SystemVerilog mode Addresses the following issues: 656, 2423, 2493
2021-01-27 12:30:22 -06:00
continue;
// named blocks pick up the current prefix and will expanded later
if ((child->type == AST_GENBLOCK || child->type == AST_BLOCK) && !child->str.empty())
continue;
verilog: significant block scoping improvements This change set contains a number of bug fixes and improvements related to scoping and resolution in generate and procedural blocks. While many of the frontend changes are interdependent, it may be possible bring the techmap changes in under a separate PR. Declarations within unnamed generate blocks previously encountered issues because the data declarations were left un-prefixed, breaking proper scoping. The LRM outlines behavior for generating names for unnamed generate blocks. The original goal was to add this implicit labelling, but doing so exposed a number of issues downstream. Additional testing highlighted other closely related scope resolution issues, which have been fixed. This change also adds support for block item declarations within unnamed blocks in SystemVerilog mode. 1. Unlabled generate blocks are now implicitly named according to the LRM in `label_genblks`, which is invoked at the beginning of module elaboration 2. The Verilog parser no longer wraps explicitly named generate blocks in a synthetic unnamed generate block to avoid creating extra hierarchy levels where they should not exist 3. The techmap phase now allows special control identifiers to be used outside of the topmost scope, which is necessary because such wires and cells often appear in unlabeled generate blocks, which now prefix the declarations within 4. Some techlibs required modifications because they relied on the previous invalid scope resolution behavior 5. `expand_genblock` has been simplified, now only expanding the outermost scope, completely deferring the inspection and elaboration of nested scopes; names are now resolved by looking in the innermost scope and stepping outward 6. Loop variables now always become localparams during unrolling, allowing them to be resolved and shadowed like any other identifier 7. Identifiers in synthetic function call scopes are now prefixed and resolved in largely the same manner as other blocks before: `$func$\func_01$tests/simple/scopes.blk.v:60$5$\blk\x` after: `\func_01$func$tests/simple/scopes.v:60$5.blk.x` 8. Support identifiers referencing a local generate scope nested more than 1 level deep, i.e. `B.C.x` while within generate scope `A`, or using a prefix of a current or parent scope, i.e. `B.C.D.x` while in `A.B`, `A.B.C`, or `A.B.C.D` 9. Variables can now be declared within unnamed blocks in SystemVerilog mode Addresses the following issues: 656, 2423, 2493
2021-01-27 12:30:22 -06:00
child->expand_genblock(prefix);
}
2013-01-05 04:13:26 -06:00
}
verilog: significant block scoping improvements This change set contains a number of bug fixes and improvements related to scoping and resolution in generate and procedural blocks. While many of the frontend changes are interdependent, it may be possible bring the techmap changes in under a separate PR. Declarations within unnamed generate blocks previously encountered issues because the data declarations were left un-prefixed, breaking proper scoping. The LRM outlines behavior for generating names for unnamed generate blocks. The original goal was to add this implicit labelling, but doing so exposed a number of issues downstream. Additional testing highlighted other closely related scope resolution issues, which have been fixed. This change also adds support for block item declarations within unnamed blocks in SystemVerilog mode. 1. Unlabled generate blocks are now implicitly named according to the LRM in `label_genblks`, which is invoked at the beginning of module elaboration 2. The Verilog parser no longer wraps explicitly named generate blocks in a synthetic unnamed generate block to avoid creating extra hierarchy levels where they should not exist 3. The techmap phase now allows special control identifiers to be used outside of the topmost scope, which is necessary because such wires and cells often appear in unlabeled generate blocks, which now prefix the declarations within 4. Some techlibs required modifications because they relied on the previous invalid scope resolution behavior 5. `expand_genblock` has been simplified, now only expanding the outermost scope, completely deferring the inspection and elaboration of nested scopes; names are now resolved by looking in the innermost scope and stepping outward 6. Loop variables now always become localparams during unrolling, allowing them to be resolved and shadowed like any other identifier 7. Identifiers in synthetic function call scopes are now prefixed and resolved in largely the same manner as other blocks before: `$func$\func_01$tests/simple/scopes.blk.v:60$5$\blk\x` after: `\func_01$func$tests/simple/scopes.v:60$5.blk.x` 8. Support identifiers referencing a local generate scope nested more than 1 level deep, i.e. `B.C.x` while within generate scope `A`, or using a prefix of a current or parent scope, i.e. `B.C.D.x` while in `A.B`, `A.B.C`, or `A.B.C.D` 9. Variables can now be declared within unnamed blocks in SystemVerilog mode Addresses the following issues: 656, 2423, 2493
2021-01-27 12:30:22 -06:00
// add implicit AST_GENBLOCK names according to IEEE 1364-2005 Section 12.4.3 or
// IEEE 1800-2017 Section 27.6
void AstNode::label_genblks(std::set<std::string>& existing, int &counter)
2013-01-05 04:13:26 -06:00
{
verilog: significant block scoping improvements This change set contains a number of bug fixes and improvements related to scoping and resolution in generate and procedural blocks. While many of the frontend changes are interdependent, it may be possible bring the techmap changes in under a separate PR. Declarations within unnamed generate blocks previously encountered issues because the data declarations were left un-prefixed, breaking proper scoping. The LRM outlines behavior for generating names for unnamed generate blocks. The original goal was to add this implicit labelling, but doing so exposed a number of issues downstream. Additional testing highlighted other closely related scope resolution issues, which have been fixed. This change also adds support for block item declarations within unnamed blocks in SystemVerilog mode. 1. Unlabled generate blocks are now implicitly named according to the LRM in `label_genblks`, which is invoked at the beginning of module elaboration 2. The Verilog parser no longer wraps explicitly named generate blocks in a synthetic unnamed generate block to avoid creating extra hierarchy levels where they should not exist 3. The techmap phase now allows special control identifiers to be used outside of the topmost scope, which is necessary because such wires and cells often appear in unlabeled generate blocks, which now prefix the declarations within 4. Some techlibs required modifications because they relied on the previous invalid scope resolution behavior 5. `expand_genblock` has been simplified, now only expanding the outermost scope, completely deferring the inspection and elaboration of nested scopes; names are now resolved by looking in the innermost scope and stepping outward 6. Loop variables now always become localparams during unrolling, allowing them to be resolved and shadowed like any other identifier 7. Identifiers in synthetic function call scopes are now prefixed and resolved in largely the same manner as other blocks before: `$func$\func_01$tests/simple/scopes.blk.v:60$5$\blk\x` after: `\func_01$func$tests/simple/scopes.v:60$5.blk.x` 8. Support identifiers referencing a local generate scope nested more than 1 level deep, i.e. `B.C.x` while within generate scope `A`, or using a prefix of a current or parent scope, i.e. `B.C.D.x` while in `A.B`, `A.B.C`, or `A.B.C.D` 9. Variables can now be declared within unnamed blocks in SystemVerilog mode Addresses the following issues: 656, 2423, 2493
2021-01-27 12:30:22 -06:00
switch (type) {
case AST_GENIF:
case AST_GENFOR:
case AST_GENCASE:
// seeing a proper generate control flow construct increments the
// counter once
++counter;
for (AstNode *child : children)
child->label_genblks(existing, counter);
break;
verilog: significant block scoping improvements This change set contains a number of bug fixes and improvements related to scoping and resolution in generate and procedural blocks. While many of the frontend changes are interdependent, it may be possible bring the techmap changes in under a separate PR. Declarations within unnamed generate blocks previously encountered issues because the data declarations were left un-prefixed, breaking proper scoping. The LRM outlines behavior for generating names for unnamed generate blocks. The original goal was to add this implicit labelling, but doing so exposed a number of issues downstream. Additional testing highlighted other closely related scope resolution issues, which have been fixed. This change also adds support for block item declarations within unnamed blocks in SystemVerilog mode. 1. Unlabled generate blocks are now implicitly named according to the LRM in `label_genblks`, which is invoked at the beginning of module elaboration 2. The Verilog parser no longer wraps explicitly named generate blocks in a synthetic unnamed generate block to avoid creating extra hierarchy levels where they should not exist 3. The techmap phase now allows special control identifiers to be used outside of the topmost scope, which is necessary because such wires and cells often appear in unlabeled generate blocks, which now prefix the declarations within 4. Some techlibs required modifications because they relied on the previous invalid scope resolution behavior 5. `expand_genblock` has been simplified, now only expanding the outermost scope, completely deferring the inspection and elaboration of nested scopes; names are now resolved by looking in the innermost scope and stepping outward 6. Loop variables now always become localparams during unrolling, allowing them to be resolved and shadowed like any other identifier 7. Identifiers in synthetic function call scopes are now prefixed and resolved in largely the same manner as other blocks before: `$func$\func_01$tests/simple/scopes.blk.v:60$5$\blk\x` after: `\func_01$func$tests/simple/scopes.v:60$5.blk.x` 8. Support identifiers referencing a local generate scope nested more than 1 level deep, i.e. `B.C.x` while within generate scope `A`, or using a prefix of a current or parent scope, i.e. `B.C.D.x` while in `A.B`, `A.B.C`, or `A.B.C.D` 9. Variables can now be declared within unnamed blocks in SystemVerilog mode Addresses the following issues: 656, 2423, 2493
2021-01-27 12:30:22 -06:00
case AST_GENBLOCK: {
// if this block is unlabeled, generate its corresponding unique name
for (int padding = 0; str.empty(); ++padding) {
std::string candidate = "\\genblk";
for (int i = 0; i < padding; ++i)
candidate += '0';
candidate += std::to_string(counter);
if (!existing.count(candidate))
str = candidate;
}
// within a genblk, the counter starts fresh
std::set<std::string> existing_local = existing;
int counter_local = 0;
for (AstNode *child : children)
child->label_genblks(existing_local, counter_local);
break;
}
verilog: significant block scoping improvements This change set contains a number of bug fixes and improvements related to scoping and resolution in generate and procedural blocks. While many of the frontend changes are interdependent, it may be possible bring the techmap changes in under a separate PR. Declarations within unnamed generate blocks previously encountered issues because the data declarations were left un-prefixed, breaking proper scoping. The LRM outlines behavior for generating names for unnamed generate blocks. The original goal was to add this implicit labelling, but doing so exposed a number of issues downstream. Additional testing highlighted other closely related scope resolution issues, which have been fixed. This change also adds support for block item declarations within unnamed blocks in SystemVerilog mode. 1. Unlabled generate blocks are now implicitly named according to the LRM in `label_genblks`, which is invoked at the beginning of module elaboration 2. The Verilog parser no longer wraps explicitly named generate blocks in a synthetic unnamed generate block to avoid creating extra hierarchy levels where they should not exist 3. The techmap phase now allows special control identifiers to be used outside of the topmost scope, which is necessary because such wires and cells often appear in unlabeled generate blocks, which now prefix the declarations within 4. Some techlibs required modifications because they relied on the previous invalid scope resolution behavior 5. `expand_genblock` has been simplified, now only expanding the outermost scope, completely deferring the inspection and elaboration of nested scopes; names are now resolved by looking in the innermost scope and stepping outward 6. Loop variables now always become localparams during unrolling, allowing them to be resolved and shadowed like any other identifier 7. Identifiers in synthetic function call scopes are now prefixed and resolved in largely the same manner as other blocks before: `$func$\func_01$tests/simple/scopes.blk.v:60$5$\blk\x` after: `\func_01$func$tests/simple/scopes.v:60$5.blk.x` 8. Support identifiers referencing a local generate scope nested more than 1 level deep, i.e. `B.C.x` while within generate scope `A`, or using a prefix of a current or parent scope, i.e. `B.C.D.x` while in `A.B`, `A.B.C`, or `A.B.C.D` 9. Variables can now be declared within unnamed blocks in SystemVerilog mode Addresses the following issues: 656, 2423, 2493
2021-01-27 12:30:22 -06:00
default:
// track names which could conflict with implicit genblk names
if (str.rfind("\\genblk", 0) == 0)
existing.insert(str);
for (AstNode *child : children)
child->label_genblks(existing, counter);
break;
}
2013-01-05 04:13:26 -06:00
}
2014-06-17 14:39:25 -05:00
// helper function for mem2reg_as_needed_pass1
2014-12-28 20:11:50 -06:00
static void mark_memories_assign_lhs_complex(dict<AstNode*, pool<std::string>> &mem2reg_places,
dict<AstNode*, uint32_t> &mem2reg_candidates, AstNode *that)
2014-06-17 14:39:25 -05:00
{
for (auto &child : that->children)
mark_memories_assign_lhs_complex(mem2reg_places, mem2reg_candidates, child);
if (that->type == AST_IDENTIFIER && that->id2ast && that->id2ast->type == AST_MEMORY) {
AstNode *mem = that->id2ast;
if (!(mem2reg_candidates[mem] & AstNode::MEM2REG_FL_CMPLX_LHS))
mem2reg_places[mem].insert(stringf("%s:%d", that->filename.c_str(), that->location.first_line));
2014-06-17 14:39:25 -05:00
mem2reg_candidates[mem] |= AstNode::MEM2REG_FL_CMPLX_LHS;
}
}
2013-01-05 04:13:26 -06:00
// find memories that should be replaced by registers
2014-12-28 20:11:50 -06:00
void AstNode::mem2reg_as_needed_pass1(dict<AstNode*, pool<std::string>> &mem2reg_places,
dict<AstNode*, uint32_t> &mem2reg_candidates, dict<AstNode*, uint32_t> &proc_flags, uint32_t &flags)
2013-01-05 04:13:26 -06:00
{
uint32_t children_flags = 0;
int lhs_children_counter = 0;
if (type == AST_TYPEDEF)
return; // don't touch content of typedefs
if (type == AST_ASSIGN || type == AST_ASSIGN_LE || type == AST_ASSIGN_EQ)
{
2014-06-17 14:39:25 -05:00
// mark all memories that are used in a complex expression on the left side of an assignment
for (auto &lhs_child : children[0]->children)
mark_memories_assign_lhs_complex(mem2reg_places, mem2reg_candidates, lhs_child);
if (children[0]->type == AST_IDENTIFIER && children[0]->id2ast && children[0]->id2ast->type == AST_MEMORY)
{
AstNode *mem = children[0]->id2ast;
// activate mem2reg if this is assigned in an async proc
if (flags & AstNode::MEM2REG_FL_ASYNC) {
if (!(mem2reg_candidates[mem] & AstNode::MEM2REG_FL_SET_ASYNC))
mem2reg_places[mem].insert(stringf("%s:%d", filename.c_str(), location.first_line));
mem2reg_candidates[mem] |= AstNode::MEM2REG_FL_SET_ASYNC;
}
// remember if this is assigned blocking (=)
if (type == AST_ASSIGN_EQ) {
if (!(proc_flags[mem] & AstNode::MEM2REG_FL_EQ1))
mem2reg_places[mem].insert(stringf("%s:%d", filename.c_str(), location.first_line));
proc_flags[mem] |= AstNode::MEM2REG_FL_EQ1;
}
// for proper (non-init) writes: remember if this is a constant index or not
if ((flags & MEM2REG_FL_INIT) == 0) {
if (children[0]->children.size() && children[0]->children[0]->type == AST_RANGE && children[0]->children[0]->children.size()) {
if (children[0]->children[0]->children[0]->type == AST_CONSTANT)
mem2reg_candidates[mem] |= AstNode::MEM2REG_FL_CONST_LHS;
else
mem2reg_candidates[mem] |= AstNode::MEM2REG_FL_VAR_LHS;
}
}
// remember where this is
if (flags & MEM2REG_FL_INIT) {
if (!(mem2reg_candidates[mem] & AstNode::MEM2REG_FL_SET_INIT))
mem2reg_places[mem].insert(stringf("%s:%d", filename.c_str(), location.first_line));
mem2reg_candidates[mem] |= AstNode::MEM2REG_FL_SET_INIT;
} else {
if (!(mem2reg_candidates[mem] & AstNode::MEM2REG_FL_SET_ELSE))
mem2reg_places[mem].insert(stringf("%s:%d", filename.c_str(), location.first_line));
mem2reg_candidates[mem] |= AstNode::MEM2REG_FL_SET_ELSE;
2013-01-05 04:13:26 -06:00
}
}
lhs_children_counter = 1;
}
if (type == AST_IDENTIFIER && id2ast && id2ast->type == AST_MEMORY)
{
AstNode *mem = id2ast;
// flag if used after blocking assignment (in same proc)
if ((proc_flags[mem] & AstNode::MEM2REG_FL_EQ1) && !(mem2reg_candidates[mem] & AstNode::MEM2REG_FL_EQ2)) {
mem2reg_places[mem].insert(stringf("%s:%d", filename.c_str(), location.first_line));
mem2reg_candidates[mem] |= AstNode::MEM2REG_FL_EQ2;
}
}
// also activate if requested, either by using mem2reg attribute or by declaring array as 'wire' instead of 'reg' or 'logic'
if (type == AST_MEMORY && (get_bool_attribute(ID::mem2reg) || (flags & AstNode::MEM2REG_FL_ALL) || !(is_reg || is_logic)))
mem2reg_candidates[this] |= AstNode::MEM2REG_FL_FORCED;
2013-01-05 04:13:26 -06:00
2020-03-12 14:57:01 -05:00
if (type == AST_MODULE && get_bool_attribute(ID::mem2reg))
children_flags |= AstNode::MEM2REG_FL_ALL;
2014-12-28 20:11:50 -06:00
dict<AstNode*, uint32_t> *proc_flags_p = NULL;
2013-01-05 04:13:26 -06:00
if (type == AST_ALWAYS) {
2013-11-21 14:26:56 -06:00
int count_edge_events = 0;
for (auto child : children)
2013-01-05 04:13:26 -06:00
if (child->type == AST_POSEDGE || child->type == AST_NEGEDGE)
2013-11-21 14:26:56 -06:00
count_edge_events++;
if (count_edge_events != 1)
children_flags |= AstNode::MEM2REG_FL_ASYNC;
2014-12-28 20:11:50 -06:00
proc_flags_p = new dict<AstNode*, uint32_t>;
}
if (type == AST_INITIAL) {
children_flags |= AstNode::MEM2REG_FL_INIT;
2014-12-28 20:11:50 -06:00
proc_flags_p = new dict<AstNode*, uint32_t>;
2013-01-05 04:13:26 -06:00
}
uint32_t backup_flags = flags;
flags |= children_flags;
2014-07-28 04:08:55 -05:00
log_assert((flags & ~0x000000ff) == 0);
2013-01-05 04:13:26 -06:00
for (auto child : children)
{
if (lhs_children_counter > 0) {
lhs_children_counter--;
if (child->children.size() && child->children[0]->type == AST_RANGE && child->children[0]->children.size()) {
for (auto c : child->children[0]->children) {
if (proc_flags_p)
c->mem2reg_as_needed_pass1(mem2reg_places, mem2reg_candidates, *proc_flags_p, flags);
else
c->mem2reg_as_needed_pass1(mem2reg_places, mem2reg_candidates, proc_flags, flags);
}
}
} else
if (proc_flags_p)
child->mem2reg_as_needed_pass1(mem2reg_places, mem2reg_candidates, *proc_flags_p, flags);
else
child->mem2reg_as_needed_pass1(mem2reg_places, mem2reg_candidates, proc_flags, flags);
}
flags &= ~children_flags | backup_flags;
if (proc_flags_p) {
2015-01-24 05:16:46 -06:00
#ifndef NDEBUG
for (auto it : *proc_flags_p)
log_assert((it.second & ~0xff000000) == 0);
2015-01-24 05:16:46 -06:00
#endif
delete proc_flags_p;
}
2013-01-05 04:13:26 -06:00
}
2014-12-28 20:11:50 -06:00
bool AstNode::mem2reg_check(pool<AstNode*> &mem2reg_set)
{
if (type != AST_IDENTIFIER || !id2ast || !mem2reg_set.count(id2ast))
return false;
if (children.empty() || children[0]->type != AST_RANGE || GetSize(children[0]->children) != 1)
log_file_error(filename, location.first_line, "Invalid array access.\n");
return true;
}
void AstNode::mem2reg_remove(pool<AstNode*> &mem2reg_set, vector<AstNode*> &delnodes)
{
log_assert(mem2reg_set.count(this) == 0);
if (mem2reg_set.count(id2ast))
id2ast = nullptr;
for (size_t i = 0; i < children.size(); i++) {
if (mem2reg_set.count(children[i]) > 0) {
delnodes.push_back(children[i]);
children.erase(children.begin() + (i--));
} else {
children[i]->mem2reg_remove(mem2reg_set, delnodes);
}
}
}
2013-01-05 04:13:26 -06:00
// actually replace memories with registers
2016-08-21 06:23:58 -05:00
bool AstNode::mem2reg_as_needed_pass2(pool<AstNode*> &mem2reg_set, AstNode *mod, AstNode *block, AstNode *&async_block)
2013-01-05 04:13:26 -06:00
{
2015-07-29 09:37:08 -05:00
bool did_something = false;
2013-01-05 04:13:26 -06:00
if (type == AST_BLOCK)
block = this;
2016-08-21 06:23:58 -05:00
if (type == AST_FUNCTION || type == AST_TASK)
return false;
if (type == AST_TYPEDEF)
return false;
if (type == AST_MEMINIT && id2ast && mem2reg_set.count(id2ast))
{
log_assert(children[0]->type == AST_CONSTANT);
log_assert(children[1]->type == AST_CONSTANT);
log_assert(children[2]->type == AST_CONSTANT);
int cursor = children[0]->asInt(false);
Const data = children[1]->bitsAsConst();
int length = children[2]->asInt(false);
if (length != 0)
{
AstNode *block = new AstNode(AST_INITIAL, new AstNode(AST_BLOCK));
mod->children.push_back(block);
block = block->children[0];
int wordsz = GetSize(data) / length;
for (int i = 0; i < length; i++) {
block->children.push_back(new AstNode(AST_ASSIGN_EQ, new AstNode(AST_IDENTIFIER, new AstNode(AST_RANGE, AstNode::mkconst_int(cursor+i, false))), mkconst_bits(data.extract(i*wordsz, wordsz).bits, false)));
block->children.back()->children[0]->str = str;
block->children.back()->children[0]->id2ast = id2ast;
block->children.back()->children[0]->was_checked = true;
}
}
AstNode *newNode = new AstNode(AST_NONE);
newNode->cloneInto(this);
delete newNode;
did_something = true;
}
2016-08-21 06:23:58 -05:00
if (type == AST_ASSIGN && block == NULL && children[0]->mem2reg_check(mem2reg_set))
{
if (async_block == NULL) {
async_block = new AstNode(AST_ALWAYS, new AstNode(AST_BLOCK));
mod->children.push_back(async_block);
}
AstNode *newNode = clone();
newNode->type = AST_ASSIGN_EQ;
newNode->children[0]->was_checked = true;
2016-08-21 06:23:58 -05:00
async_block->children[0]->children.push_back(newNode);
newNode = new AstNode(AST_NONE);
newNode->cloneInto(this);
delete newNode;
did_something = true;
}
if ((type == AST_ASSIGN_LE || type == AST_ASSIGN_EQ) && children[0]->mem2reg_check(mem2reg_set) &&
children[0]->children[0]->children[0]->type != AST_CONSTANT)
2013-01-05 04:13:26 -06:00
{
std::stringstream sstr;
sstr << "$mem2reg_wr$" << children[0]->str << "$" << filename << ":" << location.first_line << "$" << (autoidx++);
2013-01-05 04:13:26 -06:00
std::string id_addr = sstr.str() + "_ADDR", id_data = sstr.str() + "_DATA";
int mem_width, mem_size, addr_bits;
bool mem_signed = children[0]->id2ast->is_signed;
2013-01-05 04:13:26 -06:00
children[0]->id2ast->meminfo(mem_width, mem_size, addr_bits);
AstNode *wire_addr = new AstNode(AST_WIRE, new AstNode(AST_RANGE, mkconst_int(addr_bits-1, true), mkconst_int(0, true)));
wire_addr->str = id_addr;
wire_addr->is_reg = true;
wire_addr->was_checked = true;
wire_addr->attributes[ID::nosync] = AstNode::mkconst_int(1, false);
2013-01-05 04:13:26 -06:00
mod->children.push_back(wire_addr);
while (wire_addr->simplify(true, false, false, 1, -1, false, false)) { }
2013-01-05 04:13:26 -06:00
AstNode *wire_data = new AstNode(AST_WIRE, new AstNode(AST_RANGE, mkconst_int(mem_width-1, true), mkconst_int(0, true)));
wire_data->str = id_data;
wire_data->is_reg = true;
wire_data->was_checked = true;
wire_data->is_signed = mem_signed;
wire_data->attributes[ID::nosync] = AstNode::mkconst_int(1, false);
2013-01-05 04:13:26 -06:00
mod->children.push_back(wire_data);
while (wire_data->simplify(true, false, false, 1, -1, false, false)) { }
2013-01-05 04:13:26 -06:00
2014-07-28 04:08:55 -05:00
log_assert(block != NULL);
2013-01-05 04:13:26 -06:00
size_t assign_idx = 0;
while (assign_idx < block->children.size() && block->children[assign_idx] != this)
assign_idx++;
2014-07-28 04:08:55 -05:00
log_assert(assign_idx < block->children.size());
2013-01-05 04:13:26 -06:00
AstNode *assign_addr = new AstNode(AST_ASSIGN_EQ, new AstNode(AST_IDENTIFIER), children[0]->children[0]->children[0]->clone());
assign_addr->children[0]->str = id_addr;
assign_addr->children[0]->was_checked = true;
2013-01-05 04:13:26 -06:00
block->children.insert(block->children.begin()+assign_idx+1, assign_addr);
AstNode *case_node = new AstNode(AST_CASE, new AstNode(AST_IDENTIFIER));
case_node->children[0]->str = id_addr;
for (int i = 0; i < mem_size; i++) {
if (children[0]->children[0]->children[0]->type == AST_CONSTANT && int(children[0]->children[0]->children[0]->integer) != i)
continue;
AstNode *cond_node = new AstNode(AST_COND, AstNode::mkconst_int(i, false, addr_bits), new AstNode(AST_BLOCK));
AstNode *assign_reg = new AstNode(type, new AstNode(AST_IDENTIFIER), new AstNode(AST_IDENTIFIER));
if (children[0]->children.size() == 2)
assign_reg->children[0]->children.push_back(children[0]->children[1]->clone());
2013-01-05 04:13:26 -06:00
assign_reg->children[0]->str = stringf("%s[%d]", children[0]->str.c_str(), i);
assign_reg->children[1]->str = id_data;
cond_node->children[1]->children.push_back(assign_reg);
case_node->children.push_back(cond_node);
}
block->children.insert(block->children.begin()+assign_idx+2, case_node);
children[0]->delete_children();
children[0]->range_valid = false;
children[0]->id2ast = NULL;
children[0]->str = id_data;
type = AST_ASSIGN_EQ;
children[0]->was_checked = true;
2015-07-29 09:37:08 -05:00
did_something = true;
2013-01-05 04:13:26 -06:00
}
if (mem2reg_check(mem2reg_set))
2013-01-05 04:13:26 -06:00
{
AstNode *bit_part_sel = NULL;
if (children.size() == 2)
bit_part_sel = children[1]->clone();
if (children[0]->children[0]->type == AST_CONSTANT)
{
int id = children[0]->children[0]->integer;
str = stringf("%s[%d]", str.c_str(), id);
2013-01-05 04:13:26 -06:00
delete_children();
range_valid = false;
id2ast = NULL;
}
else
{
std::stringstream sstr;
sstr << "$mem2reg_rd$" << str << "$" << filename << ":" << location.first_line << "$" << (autoidx++);
std::string id_addr = sstr.str() + "_ADDR", id_data = sstr.str() + "_DATA";
int mem_width, mem_size, addr_bits;
bool mem_signed = id2ast->is_signed;
id2ast->meminfo(mem_width, mem_size, addr_bits);
AstNode *wire_addr = new AstNode(AST_WIRE, new AstNode(AST_RANGE, mkconst_int(addr_bits-1, true), mkconst_int(0, true)));
wire_addr->str = id_addr;
wire_addr->is_reg = true;
wire_addr->was_checked = true;
if (block)
wire_addr->attributes[ID::nosync] = AstNode::mkconst_int(1, false);
mod->children.push_back(wire_addr);
while (wire_addr->simplify(true, false, false, 1, -1, false, false)) { }
AstNode *wire_data = new AstNode(AST_WIRE, new AstNode(AST_RANGE, mkconst_int(mem_width-1, true), mkconst_int(0, true)));
wire_data->str = id_data;
wire_data->is_reg = true;
wire_data->was_checked = true;
wire_data->is_signed = mem_signed;
if (block)
wire_data->attributes[ID::nosync] = AstNode::mkconst_int(1, false);
mod->children.push_back(wire_data);
while (wire_data->simplify(true, false, false, 1, -1, false, false)) { }
AstNode *assign_addr = new AstNode(block ? AST_ASSIGN_EQ : AST_ASSIGN, new AstNode(AST_IDENTIFIER), children[0]->children[0]->clone());
assign_addr->children[0]->str = id_addr;
assign_addr->children[0]->was_checked = true;
AstNode *case_node = new AstNode(AST_CASE, new AstNode(AST_IDENTIFIER));
case_node->children[0]->str = id_addr;
for (int i = 0; i < mem_size; i++) {
if (children[0]->children[0]->type == AST_CONSTANT && int(children[0]->children[0]->integer) != i)
continue;
AstNode *cond_node = new AstNode(AST_COND, AstNode::mkconst_int(i, false, addr_bits), new AstNode(AST_BLOCK));
AstNode *assign_reg = new AstNode(AST_ASSIGN_EQ, new AstNode(AST_IDENTIFIER), new AstNode(AST_IDENTIFIER));
assign_reg->children[0]->str = id_data;
assign_reg->children[0]->was_checked = true;
assign_reg->children[1]->str = stringf("%s[%d]", str.c_str(), i);
cond_node->children[1]->children.push_back(assign_reg);
case_node->children.push_back(cond_node);
}
2013-01-05 04:13:26 -06:00
std::vector<RTLIL::State> x_bits;
for (int i = 0; i < mem_width; i++)
x_bits.push_back(RTLIL::State::Sx);
2013-01-05 04:13:26 -06:00
AstNode *cond_node = new AstNode(AST_COND, new AstNode(AST_DEFAULT), new AstNode(AST_BLOCK));
AstNode *assign_reg = new AstNode(AST_ASSIGN_EQ, new AstNode(AST_IDENTIFIER), AstNode::mkconst_bits(x_bits, false));
2013-01-05 04:13:26 -06:00
assign_reg->children[0]->str = id_data;
assign_reg->children[0]->was_checked = true;
2013-01-05 04:13:26 -06:00
cond_node->children[1]->children.push_back(assign_reg);
case_node->children.push_back(cond_node);
if (block)
{
size_t assign_idx = 0;
while (assign_idx < block->children.size() && !block->children[assign_idx]->contains(this))
assign_idx++;
2014-07-28 04:08:55 -05:00
log_assert(assign_idx < block->children.size());
block->children.insert(block->children.begin()+assign_idx, case_node);
block->children.insert(block->children.begin()+assign_idx, assign_addr);
}
else
{
AstNode *proc = new AstNode(AST_ALWAYS, new AstNode(AST_BLOCK));
proc->children[0]->children.push_back(case_node);
mod->children.push_back(proc);
mod->children.push_back(assign_addr);
}
2013-01-05 04:13:26 -06:00
delete_children();
range_valid = false;
id2ast = NULL;
str = id_data;
2013-01-05 04:13:26 -06:00
}
if (bit_part_sel)
children.push_back(bit_part_sel);
did_something = true;
2013-01-05 04:13:26 -06:00
}
2014-07-28 04:08:55 -05:00
log_assert(id2ast == NULL || mem2reg_set.count(id2ast) == 0);
2013-01-05 04:13:26 -06:00
auto children_list = children;
for (size_t i = 0; i < children_list.size(); i++)
2016-08-21 06:23:58 -05:00
if (children_list[i]->mem2reg_as_needed_pass2(mem2reg_set, mod, block, async_block))
2015-07-29 09:37:08 -05:00
did_something = true;
return did_something;
2013-01-05 04:13:26 -06:00
}
2015-08-14 03:56:05 -05:00
// calculate memory dimensions
2013-01-05 04:13:26 -06:00
void AstNode::meminfo(int &mem_width, int &mem_size, int &addr_bits)
{
2014-07-28 04:08:55 -05:00
log_assert(type == AST_MEMORY);
2013-01-05 04:13:26 -06:00
mem_width = children[0]->range_left - children[0]->range_right + 1;
mem_size = children[1]->range_left - children[1]->range_right;
if (mem_size < 0)
mem_size *= -1;
mem_size += min(children[1]->range_left, children[1]->range_right) + 1;
2013-01-05 04:13:26 -06:00
addr_bits = 1;
while ((1 << addr_bits) < mem_size)
addr_bits++;
}
bool AstNode::detect_latch(const std::string &var)
{
switch (type)
{
case AST_ALWAYS:
for (auto &c : children)
{
switch (c->type)
{
case AST_POSEDGE:
case AST_NEGEDGE:
return false;
case AST_EDGE:
break;
case AST_BLOCK:
if (!c->detect_latch(var))
return false;
break;
default:
log_abort();
}
}
return true;
case AST_BLOCK:
for (auto &c : children)
if (!c->detect_latch(var))
return false;
return true;
case AST_CASE:
{
bool r = true;
for (auto &c : children) {
if (c->type == AST_COND) {
if (c->children.at(1)->detect_latch(var))
return true;
r = false;
}
if (c->type == AST_DEFAULT) {
if (c->children.at(0)->detect_latch(var))
return true;
r = false;
}
}
return r;
}
case AST_ASSIGN_EQ:
case AST_ASSIGN_LE:
if (children.at(0)->type == AST_IDENTIFIER &&
children.at(0)->children.empty() && children.at(0)->str == var)
return false;
return true;
default:
return true;
}
}
bool AstNode::has_const_only_constructs()
2014-06-06 15:55:02 -05:00
{
if (type == AST_WHILE || type == AST_REPEAT)
return true;
for (auto child : children)
if (child->has_const_only_constructs())
2014-06-06 15:55:02 -05:00
return true;
return false;
}
bool AstNode::is_simple_const_expr()
{
if (type == AST_IDENTIFIER)
return false;
for (auto child : children)
if (!child->is_simple_const_expr())
return false;
return true;
}
// helper function for AstNode::eval_const_function()
bool AstNode::replace_variables(std::map<std::string, AstNode::varinfo_t> &variables, AstNode *fcall, bool must_succeed)
{
if (type == AST_IDENTIFIER && variables.count(str)) {
int offset = variables.at(str).offset, width = variables.at(str).val.bits.size();
if (!children.empty()) {
if (children.size() != 1 || children.at(0)->type != AST_RANGE) {
if (!must_succeed)
return false;
log_file_error(filename, location.first_line, "Memory access in constant function is not supported\n%s: ...called from here.\n",
fcall->loc_string().c_str());
}
if (!children.at(0)->replace_variables(variables, fcall, must_succeed))
return false;
while (simplify(true, false, false, 1, -1, false, true)) { }
if (!children.at(0)->range_valid) {
if (!must_succeed)
return false;
log_file_error(filename, location.first_line, "Non-constant range\n%s: ... called from here.\n",
fcall->loc_string().c_str());
}
offset = min(children.at(0)->range_left, children.at(0)->range_right);
width = min(std::abs(children.at(0)->range_left - children.at(0)->range_right) + 1, width);
}
offset -= variables.at(str).offset;
std::vector<RTLIL::State> &var_bits = variables.at(str).val.bits;
std::vector<RTLIL::State> new_bits(var_bits.begin() + offset, var_bits.begin() + offset + width);
AstNode *newNode = mkconst_bits(new_bits, variables.at(str).is_signed);
newNode->cloneInto(this);
delete newNode;
return true;
}
for (auto &child : children)
if (!child->replace_variables(variables, fcall, must_succeed))
return false;
return true;
}
// attempt to statically evaluate a functions with all-const arguments
AstNode *AstNode::eval_const_function(AstNode *fcall, bool must_succeed)
{
std::map<std::string, AstNode*> backup_scope = current_scope;
std::map<std::string, AstNode::varinfo_t> variables;
AstNode *block = new AstNode(AST_BLOCK);
AstNode *result = nullptr;
size_t argidx = 0;
for (auto child : children)
{
block->children.push_back(child->clone());
}
while (!block->children.empty())
{
AstNode *stmt = block->children.front();
#if 0
log("-----------------------------------\n");
for (auto &it : variables)
log("%20s %40s\n", it.first.c_str(), log_signal(it.second.val));
stmt->dumpAst(NULL, "stmt> ");
#endif
if (stmt->type == AST_WIRE)
{
while (stmt->simplify(true, false, false, 1, -1, false, true)) { }
if (!stmt->range_valid) {
if (!must_succeed)
goto finished;
log_file_error(stmt->filename, stmt->location.first_line, "Can't determine size of variable %s\n%s: ... called from here.\n",
stmt->str.c_str(), fcall->loc_string().c_str());
}
AstNode::varinfo_t &variable = variables[stmt->str];
int width = abs(stmt->range_left - stmt->range_right) + 1;
// if this variable has already been declared as an input, check the
// sizes match if it already had an explicit size
if (variable.arg && variable.explicitly_sized && variable.val.size() != width) {
log_file_error(filename, location.first_line, "Incompatible re-declaration of constant function wire %s.\n", stmt->str.c_str());
}
variable.val = RTLIL::Const(RTLIL::State::Sx, width);
variable.offset = min(stmt->range_left, stmt->range_right);
variable.is_signed = stmt->is_signed;
variable.explicitly_sized = stmt->children.size() &&
stmt->children.back()->type == AST_RANGE;
// identify the argument corresponding to this wire, if applicable
if (stmt->is_input && argidx < fcall->children.size()) {
variable.arg = fcall->children.at(argidx++);
}
// load the constant arg's value into this variable
if (variable.arg) {
if (variable.arg->type == AST_CONSTANT) {
variable.val = variable.arg->bitsAsConst(width);
} else {
log_assert(variable.arg->type == AST_REALVALUE);
variable.val = variable.arg->realAsConst(width);
}
}
current_scope[stmt->str] = stmt;
block->children.erase(block->children.begin());
continue;
}
log_assert(variables.count(str) != 0);
if (stmt->type == AST_LOCALPARAM)
{
while (stmt->simplify(true, false, false, 1, -1, false, true)) { }
current_scope[stmt->str] = stmt;
block->children.erase(block->children.begin());
continue;
}
if (stmt->type == AST_ASSIGN_EQ)
{
if (stmt->children.at(0)->type == AST_IDENTIFIER && stmt->children.at(0)->children.size() != 0 &&
stmt->children.at(0)->children.at(0)->type == AST_RANGE)
if (!stmt->children.at(0)->children.at(0)->replace_variables(variables, fcall, must_succeed))
goto finished;
if (!stmt->children.at(1)->replace_variables(variables, fcall, must_succeed))
goto finished;
while (stmt->simplify(true, false, false, 1, -1, false, true)) { }
if (stmt->type != AST_ASSIGN_EQ)
continue;
if (stmt->children.at(1)->type != AST_CONSTANT) {
if (!must_succeed)
goto finished;
log_file_error(stmt->filename, stmt->location.first_line, "Non-constant expression in constant function\n%s: ... called from here. X\n",
fcall->loc_string().c_str());
}
if (stmt->children.at(0)->type != AST_IDENTIFIER) {
if (!must_succeed)
goto finished;
log_file_error(stmt->filename, stmt->location.first_line, "Unsupported composite left hand side in constant function\n%s: ... called from here.\n",
fcall->loc_string().c_str());
}
if (!variables.count(stmt->children.at(0)->str)) {
if (!must_succeed)
goto finished;
log_file_error(stmt->filename, stmt->location.first_line, "Assignment to non-local variable in constant function\n%s: ... called from here.\n",
fcall->loc_string().c_str());
}
2014-06-06 15:55:02 -05:00
if (stmt->children.at(0)->children.empty()) {
variables[stmt->children.at(0)->str].val = stmt->children.at(1)->bitsAsConst(variables[stmt->children.at(0)->str].val.bits.size());
} else {
AstNode *range = stmt->children.at(0)->children.at(0);
if (!range->range_valid) {
if (!must_succeed)
goto finished;
log_file_error(range->filename, range->location.first_line, "Non-constant range\n%s: ... called from here.\n",
fcall->loc_string().c_str());
}
int offset = min(range->range_left, range->range_right);
int width = std::abs(range->range_left - range->range_right) + 1;
2014-06-06 15:55:02 -05:00
varinfo_t &v = variables[stmt->children.at(0)->str];
RTLIL::Const r = stmt->children.at(1)->bitsAsConst(v.val.bits.size());
for (int i = 0; i < width; i++)
v.val.bits.at(i+offset-v.offset) = r.bits.at(i);
}
delete block->children.front();
block->children.erase(block->children.begin());
continue;
}
if (stmt->type == AST_FOR)
{
block->children.insert(block->children.begin(), stmt->children.at(0));
stmt->children.at(3)->children.push_back(stmt->children.at(2));
stmt->children.erase(stmt->children.begin() + 2);
stmt->children.erase(stmt->children.begin());
stmt->type = AST_WHILE;
continue;
}
if (stmt->type == AST_WHILE)
{
AstNode *cond = stmt->children.at(0)->clone();
if (!cond->replace_variables(variables, fcall, must_succeed))
goto finished;
while (cond->simplify(true, false, false, 1, -1, false, true)) { }
if (cond->type != AST_CONSTANT) {
if (!must_succeed)
goto finished;
log_file_error(stmt->filename, stmt->location.first_line, "Non-constant expression in constant function\n%s: ... called from here.\n",
fcall->loc_string().c_str());
}
if (cond->asBool()) {
block->children.insert(block->children.begin(), stmt->children.at(1)->clone());
} else {
delete block->children.front();
block->children.erase(block->children.begin());
}
delete cond;
continue;
}
if (stmt->type == AST_REPEAT)
{
AstNode *num = stmt->children.at(0)->clone();
if (!num->replace_variables(variables, fcall, must_succeed))
goto finished;
while (num->simplify(true, false, false, 1, -1, false, true)) { }
if (num->type != AST_CONSTANT) {
if (!must_succeed)
goto finished;
log_file_error(stmt->filename, stmt->location.first_line, "Non-constant expression in constant function\n%s: ... called from here.\n",
fcall->loc_string().c_str());
}
block->children.erase(block->children.begin());
for (int i = 0; i < num->bitsAsConst().as_int(); i++)
block->children.insert(block->children.begin(), stmt->children.at(1)->clone());
delete stmt;
delete num;
continue;
}
if (stmt->type == AST_CASE)
{
AstNode *expr = stmt->children.at(0)->clone();
if (!expr->replace_variables(variables, fcall, must_succeed))
goto finished;
while (expr->simplify(true, false, false, 1, -1, false, true)) { }
AstNode *sel_case = NULL;
for (size_t i = 1; i < stmt->children.size(); i++)
{
bool found_match = false;
log_assert(stmt->children.at(i)->type == AST_COND || stmt->children.at(i)->type == AST_CONDX || stmt->children.at(i)->type == AST_CONDZ);
if (stmt->children.at(i)->children.front()->type == AST_DEFAULT) {
sel_case = stmt->children.at(i)->children.back();
continue;
}
for (size_t j = 0; j+1 < stmt->children.at(i)->children.size() && !found_match; j++)
{
AstNode *cond = stmt->children.at(i)->children.at(j)->clone();
if (!cond->replace_variables(variables, fcall, must_succeed))
goto finished;
cond = new AstNode(AST_EQ, expr->clone(), cond);
while (cond->simplify(true, false, false, 1, -1, false, true)) { }
if (cond->type != AST_CONSTANT) {
if (!must_succeed)
goto finished;
log_file_error(stmt->filename, stmt->location.first_line, "Non-constant expression in constant function\n%s: ... called from here.\n",
fcall->loc_string().c_str());
}
found_match = cond->asBool();
delete cond;
}
if (found_match) {
sel_case = stmt->children.at(i)->children.back();
break;
}
}
block->children.erase(block->children.begin());
if (sel_case)
block->children.insert(block->children.begin(), sel_case->clone());
delete stmt;
delete expr;
continue;
}
if (stmt->type == AST_BLOCK)
{
verilog: significant block scoping improvements This change set contains a number of bug fixes and improvements related to scoping and resolution in generate and procedural blocks. While many of the frontend changes are interdependent, it may be possible bring the techmap changes in under a separate PR. Declarations within unnamed generate blocks previously encountered issues because the data declarations were left un-prefixed, breaking proper scoping. The LRM outlines behavior for generating names for unnamed generate blocks. The original goal was to add this implicit labelling, but doing so exposed a number of issues downstream. Additional testing highlighted other closely related scope resolution issues, which have been fixed. This change also adds support for block item declarations within unnamed blocks in SystemVerilog mode. 1. Unlabled generate blocks are now implicitly named according to the LRM in `label_genblks`, which is invoked at the beginning of module elaboration 2. The Verilog parser no longer wraps explicitly named generate blocks in a synthetic unnamed generate block to avoid creating extra hierarchy levels where they should not exist 3. The techmap phase now allows special control identifiers to be used outside of the topmost scope, which is necessary because such wires and cells often appear in unlabeled generate blocks, which now prefix the declarations within 4. Some techlibs required modifications because they relied on the previous invalid scope resolution behavior 5. `expand_genblock` has been simplified, now only expanding the outermost scope, completely deferring the inspection and elaboration of nested scopes; names are now resolved by looking in the innermost scope and stepping outward 6. Loop variables now always become localparams during unrolling, allowing them to be resolved and shadowed like any other identifier 7. Identifiers in synthetic function call scopes are now prefixed and resolved in largely the same manner as other blocks before: `$func$\func_01$tests/simple/scopes.blk.v:60$5$\blk\x` after: `\func_01$func$tests/simple/scopes.v:60$5.blk.x` 8. Support identifiers referencing a local generate scope nested more than 1 level deep, i.e. `B.C.x` while within generate scope `A`, or using a prefix of a current or parent scope, i.e. `B.C.D.x` while in `A.B`, `A.B.C`, or `A.B.C.D` 9. Variables can now be declared within unnamed blocks in SystemVerilog mode Addresses the following issues: 656, 2423, 2493
2021-01-27 12:30:22 -06:00
if (!stmt->str.empty())
stmt->expand_genblock(stmt->str + ".");
block->children.erase(block->children.begin());
block->children.insert(block->children.begin(), stmt->children.begin(), stmt->children.end());
stmt->children.clear();
delete stmt;
continue;
}
if (!must_succeed)
goto finished;
log_file_error(stmt->filename, stmt->location.first_line, "Unsupported language construct in constant function\n%s: ... called from here.\n",
fcall->loc_string().c_str());
log_abort();
}
result = AstNode::mkconst_bits(variables.at(str).val.bits, variables.at(str).is_signed);
finished:
delete block;
current_scope = backup_scope;
return result;
}
void AstNode::allocateDefaultEnumValues()
{
log_assert(type==AST_ENUM);
int last_enum_int = -1;
for (auto node : children) {
log_assert(node->type==AST_ENUM_ITEM);
node->attributes[ID::enum_base_type] = mkconst_str(str);
for (size_t i = 0; i < node->children.size(); i++) {
switch (node->children[i]->type) {
case AST_NONE:
// replace with auto-incremented constant
delete node->children[i];
node->children[i] = AstNode::mkconst_int(++last_enum_int, true);
break;
case AST_CONSTANT:
// explicit constant (or folded expression)
// TODO: can't extend 'x or 'z item
last_enum_int = node->children[i]->integer;
break;
default:
// ignore ranges
break;
}
// TODO: range check
}
}
}
bool AstNode::is_recursive_function() const
{
std::set<const AstNode *> visited;
std::function<bool(const AstNode *node)> visit = [&](const AstNode *node) {
if (visited.count(node))
return node == this;
visited.insert(node);
if (node->type == AST_FCALL) {
auto it = current_scope.find(node->str);
if (it != current_scope.end() && visit(it->second))
return true;
}
for (const AstNode *child : node->children) {
if (visit(child))
return true;
}
return false;
};
log_assert(type == AST_FUNCTION);
return visit(this);
}
std::pair<AstNode*, AstNode*> AstNode::get_tern_choice()
{
if (!children[0]->isConst())
return {};
bool found_sure_true = false;
bool found_maybe_true = false;
if (children[0]->type == AST_CONSTANT)
for (auto &bit : children[0]->bits) {
if (bit == RTLIL::State::S1)
found_sure_true = true;
if (bit > RTLIL::State::S1)
found_maybe_true = true;
}
else
found_sure_true = children[0]->asReal(true) != 0;
AstNode *choice = nullptr, *not_choice = nullptr;
if (found_sure_true)
choice = children[1], not_choice = children[2];
else if (!found_maybe_true)
choice = children[2], not_choice = children[1];
return {choice, not_choice};
}
YOSYS_NAMESPACE_END