2013-01-05 04:13:26 -06:00
|
|
|
/*
|
|
|
|
* yosys -- Yosys Open SYnthesis Suite
|
|
|
|
*
|
2021-06-07 17:39:36 -05:00
|
|
|
* Copyright (C) 2012 Claire Xenia Wolf <claire@yosyshq.com>
|
2015-07-02 04:14:30 -05:00
|
|
|
*
|
2013-01-05 04:13:26 -06:00
|
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
|
|
* copyright notice and this permission notice appear in all copies.
|
2015-07-02 04:14:30 -05:00
|
|
|
*
|
2013-01-05 04:13:26 -06:00
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "kernel/register.h"
|
|
|
|
#include "kernel/log.h"
|
2020-10-17 15:20:32 -05:00
|
|
|
#include "kernel/mem.h"
|
2013-01-05 04:13:26 -06:00
|
|
|
#include <sstream>
|
|
|
|
#include <set>
|
|
|
|
#include <stdlib.h>
|
|
|
|
|
2014-09-27 09:17:53 -05:00
|
|
|
USING_YOSYS_NAMESPACE
|
|
|
|
PRIVATE_NAMESPACE_BEGIN
|
|
|
|
|
2014-08-30 10:39:08 -05:00
|
|
|
struct MemoryMapWorker
|
2013-01-05 04:13:26 -06:00
|
|
|
{
|
memory_map: add -attr option, to respect inference attributes.
Before this commit, memory_map (which is always a part of a synth
script) would always pick up any $mem cell that was not processed
by a preceding pass and lower it down to $dff/$mux cells.
This is undesirable for two reasons:
* If there is an explicit inference attribute set on a $mem cell,
e.g. (* ram_block *), then it is arguably incorrect to map such
a memory to $dff/$mux cells.
* If memory_map tries to lower a memory that was intended to
be mapped to a large BRAM, it often takes extraordinarily long
time to finish, produces an extremely large log file, and outputs
an unusable design.
After this commit, properly invoked memory_map will not map any
memory that has an explicit inference attribute specified, solving
the first issue, and alleviating the second. The default behavior
is not changed.
2020-01-01 03:42:33 -06:00
|
|
|
bool attr_icase = false;
|
2022-06-17 08:29:37 -05:00
|
|
|
bool rom_only = false;
|
2022-06-27 08:47:55 -05:00
|
|
|
bool keepdc = false;
|
2022-08-02 09:07:28 -05:00
|
|
|
bool formal = false;
|
memory_map: add -attr option, to respect inference attributes.
Before this commit, memory_map (which is always a part of a synth
script) would always pick up any $mem cell that was not processed
by a preceding pass and lower it down to $dff/$mux cells.
This is undesirable for two reasons:
* If there is an explicit inference attribute set on a $mem cell,
e.g. (* ram_block *), then it is arguably incorrect to map such
a memory to $dff/$mux cells.
* If memory_map tries to lower a memory that was intended to
be mapped to a large BRAM, it often takes extraordinarily long
time to finish, produces an extremely large log file, and outputs
an unusable design.
After this commit, properly invoked memory_map will not map any
memory that has an explicit inference attribute specified, solving
the first issue, and alleviating the second. The default behavior
is not changed.
2020-01-01 03:42:33 -06:00
|
|
|
dict<RTLIL::IdString, std::vector<RTLIL::Const>> attributes;
|
|
|
|
|
2014-08-30 10:39:08 -05:00
|
|
|
RTLIL::Design *design;
|
|
|
|
RTLIL::Module *module;
|
2021-05-23 11:29:44 -05:00
|
|
|
SigMap sigmap;
|
|
|
|
FfInitVals initvals;
|
2013-01-05 04:13:26 -06:00
|
|
|
|
2014-08-30 11:18:15 -05:00
|
|
|
std::map<std::pair<RTLIL::SigSpec, RTLIL::SigSpec>, RTLIL::SigBit> decoder_cache;
|
|
|
|
|
2021-05-23 11:29:44 -05:00
|
|
|
MemoryMapWorker(RTLIL::Design *design, RTLIL::Module *module) : design(design), module(module), sigmap(module), initvals(&sigmap, module) {}
|
memory_map: add -attr option, to respect inference attributes.
Before this commit, memory_map (which is always a part of a synth
script) would always pick up any $mem cell that was not processed
by a preceding pass and lower it down to $dff/$mux cells.
This is undesirable for two reasons:
* If there is an explicit inference attribute set on a $mem cell,
e.g. (* ram_block *), then it is arguably incorrect to map such
a memory to $dff/$mux cells.
* If memory_map tries to lower a memory that was intended to
be mapped to a large BRAM, it often takes extraordinarily long
time to finish, produces an extremely large log file, and outputs
an unusable design.
After this commit, properly invoked memory_map will not map any
memory that has an explicit inference attribute specified, solving
the first issue, and alleviating the second. The default behavior
is not changed.
2020-01-01 03:42:33 -06:00
|
|
|
|
|
|
|
std::string map_case(std::string value) const
|
|
|
|
{
|
|
|
|
if (attr_icase) {
|
|
|
|
for (char &c : value)
|
|
|
|
c = tolower(c);
|
|
|
|
}
|
|
|
|
return value;
|
|
|
|
}
|
|
|
|
|
|
|
|
RTLIL::Const map_case(RTLIL::Const value) const
|
|
|
|
{
|
|
|
|
if (value.flags & RTLIL::CONST_FLAG_STRING)
|
|
|
|
return map_case(value.decode_string());
|
|
|
|
return value;
|
|
|
|
}
|
|
|
|
|
2014-08-30 10:39:08 -05:00
|
|
|
std::string genid(RTLIL::IdString name, std::string token1 = "", int i = -1, std::string token2 = "", int j = -1, std::string token3 = "", int k = -1, std::string token4 = "")
|
|
|
|
{
|
|
|
|
std::stringstream sstr;
|
|
|
|
sstr << "$memory" << name.str() << token1;
|
2015-07-02 04:14:30 -05:00
|
|
|
|
2014-08-30 10:39:08 -05:00
|
|
|
if (i >= 0)
|
|
|
|
sstr << "[" << i << "]";
|
2013-01-05 04:13:26 -06:00
|
|
|
|
2014-08-30 10:39:08 -05:00
|
|
|
sstr << token2;
|
2013-01-05 04:13:26 -06:00
|
|
|
|
2014-08-30 10:39:08 -05:00
|
|
|
if (j >= 0)
|
|
|
|
sstr << "[" << j << "]";
|
2013-01-05 04:13:26 -06:00
|
|
|
|
2014-08-30 10:39:08 -05:00
|
|
|
sstr << token3;
|
2013-01-05 04:13:26 -06:00
|
|
|
|
2014-08-30 10:39:08 -05:00
|
|
|
if (k >= 0)
|
|
|
|
sstr << "[" << k << "]";
|
2013-01-05 04:13:26 -06:00
|
|
|
|
2014-08-30 10:39:08 -05:00
|
|
|
sstr << token4 << "$" << (autoidx++);
|
|
|
|
return sstr.str();
|
2013-01-05 04:13:26 -06:00
|
|
|
}
|
|
|
|
|
2014-08-30 11:18:15 -05:00
|
|
|
RTLIL::Wire *addr_decode(RTLIL::SigSpec addr_sig, RTLIL::SigSpec addr_val)
|
|
|
|
{
|
|
|
|
std::pair<RTLIL::SigSpec, RTLIL::SigSpec> key(addr_sig, addr_val);
|
2014-10-10 09:59:44 -05:00
|
|
|
log_assert(GetSize(addr_sig) == GetSize(addr_val));
|
2014-08-30 11:18:15 -05:00
|
|
|
|
|
|
|
if (decoder_cache.count(key) == 0) {
|
2014-10-10 09:59:44 -05:00
|
|
|
if (GetSize(addr_sig) < 2) {
|
2014-08-30 11:18:15 -05:00
|
|
|
decoder_cache[key] = module->Eq(NEW_ID, addr_sig, addr_val);
|
|
|
|
} else {
|
2014-10-10 09:59:44 -05:00
|
|
|
int split_at = GetSize(addr_sig) / 2;
|
2014-08-30 11:18:15 -05:00
|
|
|
RTLIL::SigBit left_eq = addr_decode(addr_sig.extract(0, split_at), addr_val.extract(0, split_at));
|
2014-10-10 09:59:44 -05:00
|
|
|
RTLIL::SigBit right_eq = addr_decode(addr_sig.extract(split_at, GetSize(addr_sig) - split_at), addr_val.extract(split_at, GetSize(addr_val) - split_at));
|
2014-08-30 11:18:15 -05:00
|
|
|
decoder_cache[key] = module->And(NEW_ID, left_eq, right_eq);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
RTLIL::SigBit bit = decoder_cache.at(key);
|
2014-10-10 09:59:44 -05:00
|
|
|
log_assert(bit.wire != nullptr && GetSize(bit.wire) == 1);
|
2014-08-30 11:18:15 -05:00
|
|
|
return bit.wire;
|
|
|
|
}
|
|
|
|
|
2020-10-17 15:20:32 -05:00
|
|
|
void handle_memory(Mem &mem)
|
2014-08-30 10:39:08 -05:00
|
|
|
{
|
|
|
|
std::set<int> static_ports;
|
|
|
|
std::map<int, RTLIL::SigSpec> static_cells_map;
|
2015-02-14 05:55:03 -06:00
|
|
|
|
2020-10-17 15:20:32 -05:00
|
|
|
SigSpec init_data = mem.get_init_data();
|
2015-02-14 05:55:03 -06:00
|
|
|
|
2022-06-17 08:29:37 -05:00
|
|
|
if (!mem.wr_ports.empty() && rom_only)
|
2014-08-30 10:39:08 -05:00
|
|
|
return;
|
|
|
|
|
2020-10-17 15:20:32 -05:00
|
|
|
// check if attributes allow us to infer FFRAM for this memory
|
memory_map: add -attr option, to respect inference attributes.
Before this commit, memory_map (which is always a part of a synth
script) would always pick up any $mem cell that was not processed
by a preceding pass and lower it down to $dff/$mux cells.
This is undesirable for two reasons:
* If there is an explicit inference attribute set on a $mem cell,
e.g. (* ram_block *), then it is arguably incorrect to map such
a memory to $dff/$mux cells.
* If memory_map tries to lower a memory that was intended to
be mapped to a large BRAM, it often takes extraordinarily long
time to finish, produces an extremely large log file, and outputs
an unusable design.
After this commit, properly invoked memory_map will not map any
memory that has an explicit inference attribute specified, solving
the first issue, and alleviating the second. The default behavior
is not changed.
2020-01-01 03:42:33 -06:00
|
|
|
for (const auto &attr : attributes) {
|
2020-10-17 15:20:32 -05:00
|
|
|
if (mem.attributes.count(attr.first)) {
|
|
|
|
const auto &cell_attr = mem.attributes[attr.first];
|
memory_map: add -attr option, to respect inference attributes.
Before this commit, memory_map (which is always a part of a synth
script) would always pick up any $mem cell that was not processed
by a preceding pass and lower it down to $dff/$mux cells.
This is undesirable for two reasons:
* If there is an explicit inference attribute set on a $mem cell,
e.g. (* ram_block *), then it is arguably incorrect to map such
a memory to $dff/$mux cells.
* If memory_map tries to lower a memory that was intended to
be mapped to a large BRAM, it often takes extraordinarily long
time to finish, produces an extremely large log file, and outputs
an unusable design.
After this commit, properly invoked memory_map will not map any
memory that has an explicit inference attribute specified, solving
the first issue, and alleviating the second. The default behavior
is not changed.
2020-01-01 03:42:33 -06:00
|
|
|
if (attr.second.empty()) {
|
2020-10-17 15:20:32 -05:00
|
|
|
log("Not mapping memory %s in module %s (attribute %s is set).\n",
|
|
|
|
mem.memid.c_str(), module->name.c_str(), attr.first.c_str());
|
memory_map: add -attr option, to respect inference attributes.
Before this commit, memory_map (which is always a part of a synth
script) would always pick up any $mem cell that was not processed
by a preceding pass and lower it down to $dff/$mux cells.
This is undesirable for two reasons:
* If there is an explicit inference attribute set on a $mem cell,
e.g. (* ram_block *), then it is arguably incorrect to map such
a memory to $dff/$mux cells.
* If memory_map tries to lower a memory that was intended to
be mapped to a large BRAM, it often takes extraordinarily long
time to finish, produces an extremely large log file, and outputs
an unusable design.
After this commit, properly invoked memory_map will not map any
memory that has an explicit inference attribute specified, solving
the first issue, and alleviating the second. The default behavior
is not changed.
2020-01-01 03:42:33 -06:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool found = false;
|
|
|
|
for (auto &value : attr.second) {
|
|
|
|
if (map_case(cell_attr) == map_case(value)) {
|
|
|
|
found = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (!found) {
|
|
|
|
if (cell_attr.flags & RTLIL::CONST_FLAG_STRING) {
|
2020-10-17 15:20:32 -05:00
|
|
|
log("Not mapping memory %s in module %s (attribute %s is set to \"%s\").\n",
|
|
|
|
mem.memid.c_str(), module->name.c_str(), attr.first.c_str(), cell_attr.decode_string().c_str());
|
memory_map: add -attr option, to respect inference attributes.
Before this commit, memory_map (which is always a part of a synth
script) would always pick up any $mem cell that was not processed
by a preceding pass and lower it down to $dff/$mux cells.
This is undesirable for two reasons:
* If there is an explicit inference attribute set on a $mem cell,
e.g. (* ram_block *), then it is arguably incorrect to map such
a memory to $dff/$mux cells.
* If memory_map tries to lower a memory that was intended to
be mapped to a large BRAM, it often takes extraordinarily long
time to finish, produces an extremely large log file, and outputs
an unusable design.
After this commit, properly invoked memory_map will not map any
memory that has an explicit inference attribute specified, solving
the first issue, and alleviating the second. The default behavior
is not changed.
2020-01-01 03:42:33 -06:00
|
|
|
} else {
|
2020-10-17 15:20:32 -05:00
|
|
|
log("Not mapping memory %s in module %s (attribute %s is set to %d).\n",
|
|
|
|
mem.memid.c_str(), module->name.c_str(), attr.first.c_str(), cell_attr.as_int());
|
memory_map: add -attr option, to respect inference attributes.
Before this commit, memory_map (which is always a part of a synth
script) would always pick up any $mem cell that was not processed
by a preceding pass and lower it down to $dff/$mux cells.
This is undesirable for two reasons:
* If there is an explicit inference attribute set on a $mem cell,
e.g. (* ram_block *), then it is arguably incorrect to map such
a memory to $dff/$mux cells.
* If memory_map tries to lower a memory that was intended to
be mapped to a large BRAM, it often takes extraordinarily long
time to finish, produces an extremely large log file, and outputs
an unusable design.
After this commit, properly invoked memory_map will not map any
memory that has an explicit inference attribute specified, solving
the first issue, and alleviating the second. The default behavior
is not changed.
2020-01-01 03:42:33 -06:00
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2022-06-17 08:29:37 -05:00
|
|
|
// delete unused memory cell
|
|
|
|
if (mem.rd_ports.empty()) {
|
|
|
|
mem.remove();
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2014-08-30 10:39:08 -05:00
|
|
|
// all write ports must share the same clock
|
|
|
|
RTLIL::SigSpec refclock;
|
2020-10-17 15:20:32 -05:00
|
|
|
bool refclock_pol = false;
|
2022-08-02 09:07:28 -05:00
|
|
|
bool async_wr = false;
|
|
|
|
bool static_only = true;
|
2020-10-17 15:20:32 -05:00
|
|
|
for (int i = 0; i < GetSize(mem.wr_ports); i++) {
|
|
|
|
auto &port = mem.wr_ports[i];
|
|
|
|
if (port.en.is_fully_const() && !port.en.as_bool()) {
|
2013-01-05 04:13:26 -06:00
|
|
|
static_ports.insert(i);
|
|
|
|
continue;
|
|
|
|
}
|
2020-10-17 15:20:32 -05:00
|
|
|
if (!port.clk_enable) {
|
2021-05-24 09:35:25 -05:00
|
|
|
if (port.addr.is_fully_const() && port.en.is_fully_ones()) {
|
|
|
|
for (int sub = 0; sub < (1 << port.wide_log2); sub++)
|
2021-05-31 08:53:18 -05:00
|
|
|
static_cells_map[port.addr.as_int() + sub] = port.data.extract(sub * mem.width, mem.width);
|
2014-08-30 10:39:08 -05:00
|
|
|
static_ports.insert(i);
|
|
|
|
continue;
|
|
|
|
}
|
2022-08-02 09:07:28 -05:00
|
|
|
static_only = false;
|
|
|
|
if (GetSize(refclock) != 0)
|
|
|
|
log("Not mapping memory %s in module %s (mixed clocked and async write ports).\n",
|
|
|
|
mem.memid.c_str(), module->name.c_str());
|
|
|
|
if (!formal)
|
|
|
|
log("Not mapping memory %s in module %s (write port %d has no clock).\n",
|
|
|
|
mem.memid.c_str(), module->name.c_str(), i);
|
|
|
|
async_wr = true;
|
|
|
|
continue;
|
2014-08-30 10:39:08 -05:00
|
|
|
}
|
2022-08-02 09:07:28 -05:00
|
|
|
static_only = false;
|
|
|
|
if (async_wr)
|
|
|
|
log("Not mapping memory %s in module %s (mixed clocked and async write ports).\n",
|
|
|
|
mem.memid.c_str(), module->name.c_str());
|
2014-08-30 10:39:08 -05:00
|
|
|
if (refclock.size() == 0) {
|
2020-10-17 15:20:32 -05:00
|
|
|
refclock = port.clk;
|
|
|
|
refclock_pol = port.clk_polarity;
|
2014-08-30 10:39:08 -05:00
|
|
|
}
|
2020-10-17 15:20:32 -05:00
|
|
|
if (port.clk != refclock || port.clk_polarity != refclock_pol) {
|
|
|
|
log("Not mapping memory %s in module %s (write clock %d is incompatible with other clocks).\n",
|
|
|
|
mem.memid.c_str(), module->name.c_str(), i);
|
2014-08-30 10:39:08 -05:00
|
|
|
return;
|
|
|
|
}
|
2013-01-05 04:13:26 -06:00
|
|
|
}
|
|
|
|
|
2020-10-17 15:20:32 -05:00
|
|
|
log("Mapping memory %s in module %s:\n", mem.memid.c_str(), module->name.c_str());
|
2013-01-05 04:13:26 -06:00
|
|
|
|
2021-05-31 08:53:18 -05:00
|
|
|
int abits = ceil_log2(mem.size);
|
|
|
|
std::vector<RTLIL::SigSpec> data_reg_in(1 << abits);
|
|
|
|
std::vector<RTLIL::SigSpec> data_reg_out(1 << abits);
|
2013-01-05 04:13:26 -06:00
|
|
|
|
2022-08-02 09:07:28 -05:00
|
|
|
std::vector<RTLIL::SigSpec> &data_read = async_wr ? data_reg_in : data_reg_out;
|
|
|
|
|
2014-08-30 10:39:08 -05:00
|
|
|
int count_static = 0;
|
2013-01-05 04:13:26 -06:00
|
|
|
|
2020-10-17 15:20:32 -05:00
|
|
|
for (int i = 0; i < mem.size; i++)
|
2013-01-05 04:13:26 -06:00
|
|
|
{
|
2021-05-31 08:53:18 -05:00
|
|
|
int addr = i + mem.start_offset;
|
|
|
|
int idx = addr & ((1 << abits) - 1);
|
2022-06-27 08:47:55 -05:00
|
|
|
SigSpec w_init = init_data.extract(i*mem.width, mem.width);
|
2021-05-31 08:53:18 -05:00
|
|
|
if (static_cells_map.count(addr) > 0)
|
2014-08-30 10:39:08 -05:00
|
|
|
{
|
2022-08-02 09:07:28 -05:00
|
|
|
data_read[idx] = static_cells_map[addr];
|
2014-08-30 10:39:08 -05:00
|
|
|
count_static++;
|
2013-10-17 14:00:37 -05:00
|
|
|
}
|
2022-08-02 09:07:28 -05:00
|
|
|
else if (static_only && (!keepdc || w_init.is_fully_def()))
|
2022-06-17 07:11:04 -05:00
|
|
|
{
|
2022-08-02 09:07:28 -05:00
|
|
|
data_read[idx] = w_init;
|
2022-06-17 07:11:04 -05:00
|
|
|
}
|
2014-08-30 10:39:08 -05:00
|
|
|
else
|
|
|
|
{
|
2022-08-02 09:07:28 -05:00
|
|
|
RTLIL::Cell *c;
|
|
|
|
auto ff_id = genid(mem.memid, "", addr);
|
|
|
|
|
|
|
|
if (static_only) {
|
|
|
|
// non-static part is a ROM, we only reach this with keepdc
|
|
|
|
if (formal) {
|
|
|
|
c = module->addCell(ff_id, ID($ff));
|
|
|
|
} else {
|
|
|
|
c = module->addCell(ff_id, ID($dff));
|
|
|
|
c->parameters[ID::CLK_POLARITY] = RTLIL::Const(RTLIL::State::S1);
|
|
|
|
c->setPort(ID::CLK, RTLIL::SigSpec(RTLIL::State::S0));
|
|
|
|
}
|
|
|
|
} else if (async_wr) {
|
|
|
|
log_assert(formal); // General async write not implemented yet, checked against above
|
|
|
|
c = module->addCell(ff_id, ID($ff));
|
|
|
|
} else {
|
|
|
|
c = module->addCell(ff_id, ID($dff));
|
2020-10-17 15:20:32 -05:00
|
|
|
c->parameters[ID::CLK_POLARITY] = RTLIL::Const(refclock_pol);
|
|
|
|
c->setPort(ID::CLK, refclock);
|
2014-08-30 10:39:08 -05:00
|
|
|
}
|
2022-08-02 09:07:28 -05:00
|
|
|
c->parameters[ID::WIDTH] = mem.width;
|
2013-01-05 04:13:26 -06:00
|
|
|
|
2021-05-31 08:53:18 -05:00
|
|
|
RTLIL::Wire *w_in = module->addWire(genid(mem.memid, "", addr, "$d"), mem.width);
|
|
|
|
data_reg_in[idx] = w_in;
|
|
|
|
c->setPort(ID::D, w_in);
|
2013-01-05 04:13:26 -06:00
|
|
|
|
2021-05-31 08:53:18 -05:00
|
|
|
std::string w_out_name = stringf("%s[%d]", mem.memid.c_str(), addr);
|
2014-08-30 10:39:08 -05:00
|
|
|
if (module->wires_.count(w_out_name) > 0)
|
2021-05-31 08:53:18 -05:00
|
|
|
w_out_name = genid(mem.memid, "", addr, "$q");
|
2014-07-26 13:12:50 -05:00
|
|
|
|
2020-10-17 15:20:32 -05:00
|
|
|
RTLIL::Wire *w_out = module->addWire(w_out_name, mem.width);
|
2015-02-14 05:55:03 -06:00
|
|
|
|
2022-08-02 09:07:28 -05:00
|
|
|
if (formal && mem.packed && mem.cell->name.c_str()[0] == '\\') {
|
|
|
|
auto hdlname = mem.cell->get_hdlname_attribute();
|
|
|
|
if (hdlname.empty())
|
|
|
|
hdlname.push_back(mem.cell->name.c_str() + 1);
|
|
|
|
hdlname.push_back(stringf("[%d]", addr));
|
|
|
|
w_out->set_hdlname_attribute(hdlname);
|
|
|
|
}
|
|
|
|
|
2015-02-14 05:55:03 -06:00
|
|
|
if (!w_init.is_fully_undef())
|
2020-04-02 11:51:32 -05:00
|
|
|
w_out->attributes[ID::init] = w_init.as_const();
|
2014-07-26 13:12:50 -05:00
|
|
|
|
2021-05-31 08:53:18 -05:00
|
|
|
data_reg_out[idx] = w_out;
|
|
|
|
c->setPort(ID::Q, w_out);
|
2022-06-28 12:05:35 -05:00
|
|
|
|
2022-08-02 09:07:28 -05:00
|
|
|
if (static_only)
|
2022-06-28 12:05:35 -05:00
|
|
|
module->connect(RTLIL::SigSig(w_in, w_out));
|
2014-08-30 10:39:08 -05:00
|
|
|
}
|
2013-01-05 04:13:26 -06:00
|
|
|
}
|
|
|
|
|
2022-08-02 09:07:28 -05:00
|
|
|
log(" created %d %s cells and %d static cells of width %d.\n",
|
|
|
|
mem.size-count_static, formal && (static_only || async_wr) ? "$ff" : "$dff", count_static, mem.width);
|
2013-01-05 04:13:26 -06:00
|
|
|
|
2014-08-30 10:39:08 -05:00
|
|
|
int count_dff = 0, count_mux = 0, count_wrmux = 0;
|
2013-01-05 04:13:26 -06:00
|
|
|
|
2020-10-17 15:20:32 -05:00
|
|
|
for (int i = 0; i < GetSize(mem.rd_ports); i++)
|
2013-01-05 04:13:26 -06:00
|
|
|
{
|
2020-10-17 15:20:32 -05:00
|
|
|
auto &port = mem.rd_ports[i];
|
2021-05-23 11:29:44 -05:00
|
|
|
if (mem.extract_rdff(i, &initvals))
|
2020-10-17 15:20:32 -05:00
|
|
|
count_dff++;
|
|
|
|
RTLIL::SigSpec rd_addr = port.addr;
|
|
|
|
rd_addr.extend_u0(abits, false);
|
2013-01-05 04:13:26 -06:00
|
|
|
|
2014-08-30 10:39:08 -05:00
|
|
|
std::vector<RTLIL::SigSpec> rd_signals;
|
2020-10-17 15:20:32 -05:00
|
|
|
rd_signals.push_back(port.data);
|
2013-01-05 04:13:26 -06:00
|
|
|
|
2021-05-24 09:35:25 -05:00
|
|
|
for (int j = 0; j < abits - port.wide_log2; j++)
|
2013-01-05 04:13:26 -06:00
|
|
|
{
|
2014-08-30 10:39:08 -05:00
|
|
|
std::vector<RTLIL::SigSpec> next_rd_signals;
|
2013-01-05 04:13:26 -06:00
|
|
|
|
2014-08-30 10:39:08 -05:00
|
|
|
for (size_t k = 0; k < rd_signals.size(); k++)
|
|
|
|
{
|
2020-10-17 15:20:32 -05:00
|
|
|
RTLIL::Cell *c = module->addCell(genid(mem.memid, "$rdmux", i, "", j, "", k), ID($mux));
|
2021-05-24 09:35:25 -05:00
|
|
|
c->parameters[ID::WIDTH] = GetSize(port.data);
|
2020-03-12 14:57:01 -05:00
|
|
|
c->setPort(ID::Y, rd_signals[k]);
|
2020-10-17 15:20:32 -05:00
|
|
|
c->setPort(ID::S, rd_addr.extract(abits-j-1, 1));
|
2014-08-30 10:39:08 -05:00
|
|
|
count_mux++;
|
2013-01-05 04:13:26 -06:00
|
|
|
|
2021-05-24 09:35:25 -05:00
|
|
|
c->setPort(ID::A, module->addWire(genid(mem.memid, "$rdmux", i, "", j, "", k, "$a"), GetSize(port.data)));
|
|
|
|
c->setPort(ID::B, module->addWire(genid(mem.memid, "$rdmux", i, "", j, "", k, "$b"), GetSize(port.data)));
|
2013-01-05 04:13:26 -06:00
|
|
|
|
2020-03-12 14:57:01 -05:00
|
|
|
next_rd_signals.push_back(c->getPort(ID::A));
|
|
|
|
next_rd_signals.push_back(c->getPort(ID::B));
|
2014-08-30 10:39:08 -05:00
|
|
|
}
|
2013-01-05 04:13:26 -06:00
|
|
|
|
2014-08-30 10:39:08 -05:00
|
|
|
next_rd_signals.swap(rd_signals);
|
|
|
|
}
|
2013-01-05 04:13:26 -06:00
|
|
|
|
2021-05-31 08:53:18 -05:00
|
|
|
for (int j = 0; j < (1 << abits); j++)
|
2022-08-02 09:07:28 -05:00
|
|
|
if (data_read[j] != SigSpec())
|
|
|
|
module->connect(RTLIL::SigSig(rd_signals[j >> port.wide_log2].extract((j & ((1 << port.wide_log2) - 1)) * mem.width, mem.width), data_read[j]));
|
2014-08-30 10:39:08 -05:00
|
|
|
}
|
2013-01-05 04:13:26 -06:00
|
|
|
|
2014-08-30 10:39:08 -05:00
|
|
|
log(" read interface: %d $dff and %d $mux cells.\n", count_dff, count_mux);
|
2013-01-05 04:13:26 -06:00
|
|
|
|
2022-08-02 09:07:28 -05:00
|
|
|
if (!static_only)
|
2013-01-05 04:13:26 -06:00
|
|
|
{
|
2022-06-17 07:11:04 -05:00
|
|
|
for (int i = 0; i < mem.size; i++)
|
2014-08-30 10:39:08 -05:00
|
|
|
{
|
2022-06-17 07:11:04 -05:00
|
|
|
int addr = i + mem.start_offset;
|
|
|
|
int idx = addr & ((1 << abits) - 1);
|
|
|
|
if (static_cells_map.count(addr) > 0)
|
|
|
|
continue;
|
2021-05-24 09:35:25 -05:00
|
|
|
|
2022-06-17 07:11:04 -05:00
|
|
|
RTLIL::SigSpec sig = data_reg_out[idx];
|
2014-08-30 10:39:08 -05:00
|
|
|
|
2022-06-17 07:11:04 -05:00
|
|
|
for (int j = 0; j < GetSize(mem.wr_ports); j++)
|
2014-07-16 05:13:13 -05:00
|
|
|
{
|
2022-06-17 07:11:04 -05:00
|
|
|
auto &port = mem.wr_ports[j];
|
|
|
|
RTLIL::SigSpec wr_addr = port.addr.extract_end(port.wide_log2);
|
|
|
|
RTLIL::Wire *w_seladdr = addr_decode(wr_addr, RTLIL::SigSpec(addr >> port.wide_log2, GetSize(wr_addr)));
|
2014-08-30 10:39:08 -05:00
|
|
|
|
2022-06-17 07:11:04 -05:00
|
|
|
int sub = addr & ((1 << port.wide_log2) - 1);
|
2014-08-30 10:39:08 -05:00
|
|
|
|
2022-06-17 07:11:04 -05:00
|
|
|
int wr_offset = 0;
|
|
|
|
while (wr_offset < mem.width)
|
2014-08-30 10:39:08 -05:00
|
|
|
{
|
2022-06-17 07:11:04 -05:00
|
|
|
int wr_width = 1;
|
|
|
|
RTLIL::SigSpec wr_bit = port.en.extract(wr_offset + sub * mem.width, 1);
|
|
|
|
|
|
|
|
while (wr_offset + wr_width < mem.width) {
|
|
|
|
RTLIL::SigSpec next_wr_bit = port.en.extract(wr_offset + wr_width + sub * mem.width, 1);
|
|
|
|
if (next_wr_bit != wr_bit)
|
|
|
|
break;
|
|
|
|
wr_width++;
|
|
|
|
}
|
|
|
|
|
|
|
|
RTLIL::Wire *w = w_seladdr;
|
|
|
|
|
|
|
|
if (wr_bit != State::S1)
|
|
|
|
{
|
|
|
|
RTLIL::Cell *c = module->addCell(genid(mem.memid, "$wren", addr, "", j, "", wr_offset), ID($and));
|
|
|
|
c->parameters[ID::A_SIGNED] = RTLIL::Const(0);
|
|
|
|
c->parameters[ID::B_SIGNED] = RTLIL::Const(0);
|
|
|
|
c->parameters[ID::A_WIDTH] = RTLIL::Const(1);
|
|
|
|
c->parameters[ID::B_WIDTH] = RTLIL::Const(1);
|
|
|
|
c->parameters[ID::Y_WIDTH] = RTLIL::Const(1);
|
|
|
|
c->setPort(ID::A, w);
|
|
|
|
c->setPort(ID::B, wr_bit);
|
|
|
|
|
|
|
|
w = module->addWire(genid(mem.memid, "$wren", addr, "", j, "", wr_offset, "$y"));
|
|
|
|
c->setPort(ID::Y, RTLIL::SigSpec(w));
|
|
|
|
}
|
|
|
|
|
|
|
|
RTLIL::Cell *c = module->addCell(genid(mem.memid, "$wrmux", addr, "", j, "", wr_offset), ID($mux));
|
|
|
|
c->parameters[ID::WIDTH] = wr_width;
|
|
|
|
c->setPort(ID::A, sig.extract(wr_offset, wr_width));
|
|
|
|
c->setPort(ID::B, port.data.extract(wr_offset + sub * mem.width, wr_width));
|
|
|
|
c->setPort(ID::S, RTLIL::SigSpec(w));
|
|
|
|
|
|
|
|
w = module->addWire(genid(mem.memid, "$wrmux", addr, "", j, "", wr_offset, "$y"), wr_width);
|
|
|
|
c->setPort(ID::Y, w);
|
|
|
|
|
|
|
|
sig.replace(wr_offset, w);
|
|
|
|
wr_offset += wr_width;
|
|
|
|
count_wrmux++;
|
2014-08-30 10:39:08 -05:00
|
|
|
}
|
2014-07-16 05:13:13 -05:00
|
|
|
}
|
2013-01-05 04:13:26 -06:00
|
|
|
|
2022-06-17 07:11:04 -05:00
|
|
|
module->connect(RTLIL::SigSig(data_reg_in[idx], sig));
|
|
|
|
}
|
2014-08-30 10:39:08 -05:00
|
|
|
}
|
2013-01-05 04:13:26 -06:00
|
|
|
|
2014-08-30 11:18:15 -05:00
|
|
|
log(" write interface: %d write mux blocks.\n", count_wrmux);
|
2013-01-05 04:13:26 -06:00
|
|
|
|
2020-10-17 15:20:32 -05:00
|
|
|
mem.remove();
|
2014-08-30 10:39:08 -05:00
|
|
|
}
|
2013-01-05 04:13:26 -06:00
|
|
|
|
memory_map: add -attr option, to respect inference attributes.
Before this commit, memory_map (which is always a part of a synth
script) would always pick up any $mem cell that was not processed
by a preceding pass and lower it down to $dff/$mux cells.
This is undesirable for two reasons:
* If there is an explicit inference attribute set on a $mem cell,
e.g. (* ram_block *), then it is arguably incorrect to map such
a memory to $dff/$mux cells.
* If memory_map tries to lower a memory that was intended to
be mapped to a large BRAM, it often takes extraordinarily long
time to finish, produces an extremely large log file, and outputs
an unusable design.
After this commit, properly invoked memory_map will not map any
memory that has an explicit inference attribute specified, solving
the first issue, and alleviating the second. The default behavior
is not changed.
2020-01-01 03:42:33 -06:00
|
|
|
void run()
|
2014-08-30 10:39:08 -05:00
|
|
|
{
|
2020-10-17 15:20:32 -05:00
|
|
|
for (auto &mem : Mem::get_selected_memories(module))
|
|
|
|
handle_memory(mem);
|
2014-08-30 10:39:08 -05:00
|
|
|
}
|
|
|
|
};
|
2013-01-05 04:13:26 -06:00
|
|
|
|
|
|
|
struct MemoryMapPass : public Pass {
|
2013-03-01 03:17:35 -06:00
|
|
|
MemoryMapPass() : Pass("memory_map", "translate multiport memories to basic cells") { }
|
2020-06-18 18:34:52 -05:00
|
|
|
void help() override
|
2013-03-01 03:17:35 -06:00
|
|
|
{
|
|
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
|
|
log("\n");
|
memory_map: add -attr option, to respect inference attributes.
Before this commit, memory_map (which is always a part of a synth
script) would always pick up any $mem cell that was not processed
by a preceding pass and lower it down to $dff/$mux cells.
This is undesirable for two reasons:
* If there is an explicit inference attribute set on a $mem cell,
e.g. (* ram_block *), then it is arguably incorrect to map such
a memory to $dff/$mux cells.
* If memory_map tries to lower a memory that was intended to
be mapped to a large BRAM, it often takes extraordinarily long
time to finish, produces an extremely large log file, and outputs
an unusable design.
After this commit, properly invoked memory_map will not map any
memory that has an explicit inference attribute specified, solving
the first issue, and alleviating the second. The default behavior
is not changed.
2020-01-01 03:42:33 -06:00
|
|
|
log(" memory_map [options] [selection]\n");
|
2013-03-01 03:17:35 -06:00
|
|
|
log("\n");
|
|
|
|
log("This pass converts multiport memory cells as generated by the memory_collect\n");
|
|
|
|
log("pass to word-wide DFFs and address decoders.\n");
|
|
|
|
log("\n");
|
memory_map: add -attr option, to respect inference attributes.
Before this commit, memory_map (which is always a part of a synth
script) would always pick up any $mem cell that was not processed
by a preceding pass and lower it down to $dff/$mux cells.
This is undesirable for two reasons:
* If there is an explicit inference attribute set on a $mem cell,
e.g. (* ram_block *), then it is arguably incorrect to map such
a memory to $dff/$mux cells.
* If memory_map tries to lower a memory that was intended to
be mapped to a large BRAM, it often takes extraordinarily long
time to finish, produces an extremely large log file, and outputs
an unusable design.
After this commit, properly invoked memory_map will not map any
memory that has an explicit inference attribute specified, solving
the first issue, and alleviating the second. The default behavior
is not changed.
2020-01-01 03:42:33 -06:00
|
|
|
log(" -attr !<name>\n");
|
|
|
|
log(" do not map memories that have attribute <name> set.\n");
|
|
|
|
log("\n");
|
|
|
|
log(" -attr <name>[=<value>]\n");
|
|
|
|
log(" for memories that have attribute <name> set, only map them if its value\n");
|
|
|
|
log(" is a string <value> (if specified), or an integer 1 (otherwise). if this\n");
|
|
|
|
log(" option is specified multiple times, map the memory if the attribute is\n");
|
|
|
|
log(" to any of the values.\n");
|
|
|
|
log("\n");
|
|
|
|
log(" -iattr\n");
|
2024-03-06 08:15:37 -06:00
|
|
|
log(" for -attr, suppress case sensitivity in matching of <value>.\n");
|
memory_map: add -attr option, to respect inference attributes.
Before this commit, memory_map (which is always a part of a synth
script) would always pick up any $mem cell that was not processed
by a preceding pass and lower it down to $dff/$mux cells.
This is undesirable for two reasons:
* If there is an explicit inference attribute set on a $mem cell,
e.g. (* ram_block *), then it is arguably incorrect to map such
a memory to $dff/$mux cells.
* If memory_map tries to lower a memory that was intended to
be mapped to a large BRAM, it often takes extraordinarily long
time to finish, produces an extremely large log file, and outputs
an unusable design.
After this commit, properly invoked memory_map will not map any
memory that has an explicit inference attribute specified, solving
the first issue, and alleviating the second. The default behavior
is not changed.
2020-01-01 03:42:33 -06:00
|
|
|
log("\n");
|
2022-06-17 08:29:37 -05:00
|
|
|
log(" -rom-only\n");
|
|
|
|
log(" only perform conversion for ROMs (memories with no write ports).\n");
|
|
|
|
log("\n");
|
2022-06-27 08:47:55 -05:00
|
|
|
log(" -keepdc\n");
|
|
|
|
log(" when mapping ROMs, keep x-bits shared across read ports.\n");
|
|
|
|
log("\n");
|
2022-08-02 09:07:28 -05:00
|
|
|
log(" -formal\n");
|
|
|
|
log(" map memories for a global clock based formal verification flow.\n");
|
|
|
|
log(" This implies -keepdc, uses $ff cells for ROMs and sets hdlname\n");
|
|
|
|
log(" attributes. It also has limited support for async write ports\n");
|
|
|
|
log(" as generated by clk2fflogic.\n");
|
|
|
|
log("\n");
|
2013-03-01 03:17:35 -06:00
|
|
|
}
|
2020-06-18 18:34:52 -05:00
|
|
|
void execute(std::vector<std::string> args, RTLIL::Design *design) override
|
memory_map: add -attr option, to respect inference attributes.
Before this commit, memory_map (which is always a part of a synth
script) would always pick up any $mem cell that was not processed
by a preceding pass and lower it down to $dff/$mux cells.
This is undesirable for two reasons:
* If there is an explicit inference attribute set on a $mem cell,
e.g. (* ram_block *), then it is arguably incorrect to map such
a memory to $dff/$mux cells.
* If memory_map tries to lower a memory that was intended to
be mapped to a large BRAM, it often takes extraordinarily long
time to finish, produces an extremely large log file, and outputs
an unusable design.
After this commit, properly invoked memory_map will not map any
memory that has an explicit inference attribute specified, solving
the first issue, and alleviating the second. The default behavior
is not changed.
2020-01-01 03:42:33 -06:00
|
|
|
{
|
|
|
|
bool attr_icase = false;
|
2022-06-17 08:29:37 -05:00
|
|
|
bool rom_only = false;
|
2022-06-27 08:47:55 -05:00
|
|
|
bool keepdc = false;
|
2022-08-02 09:07:28 -05:00
|
|
|
bool formal = false;
|
memory_map: add -attr option, to respect inference attributes.
Before this commit, memory_map (which is always a part of a synth
script) would always pick up any $mem cell that was not processed
by a preceding pass and lower it down to $dff/$mux cells.
This is undesirable for two reasons:
* If there is an explicit inference attribute set on a $mem cell,
e.g. (* ram_block *), then it is arguably incorrect to map such
a memory to $dff/$mux cells.
* If memory_map tries to lower a memory that was intended to
be mapped to a large BRAM, it often takes extraordinarily long
time to finish, produces an extremely large log file, and outputs
an unusable design.
After this commit, properly invoked memory_map will not map any
memory that has an explicit inference attribute specified, solving
the first issue, and alleviating the second. The default behavior
is not changed.
2020-01-01 03:42:33 -06:00
|
|
|
dict<RTLIL::IdString, std::vector<RTLIL::Const>> attributes;
|
|
|
|
|
2020-10-17 15:20:32 -05:00
|
|
|
log_header(design, "Executing MEMORY_MAP pass (converting memories to logic and flip-flops).\n");
|
memory_map: add -attr option, to respect inference attributes.
Before this commit, memory_map (which is always a part of a synth
script) would always pick up any $mem cell that was not processed
by a preceding pass and lower it down to $dff/$mux cells.
This is undesirable for two reasons:
* If there is an explicit inference attribute set on a $mem cell,
e.g. (* ram_block *), then it is arguably incorrect to map such
a memory to $dff/$mux cells.
* If memory_map tries to lower a memory that was intended to
be mapped to a large BRAM, it often takes extraordinarily long
time to finish, produces an extremely large log file, and outputs
an unusable design.
After this commit, properly invoked memory_map will not map any
memory that has an explicit inference attribute specified, solving
the first issue, and alleviating the second. The default behavior
is not changed.
2020-01-01 03:42:33 -06:00
|
|
|
|
|
|
|
size_t argidx;
|
|
|
|
for (argidx = 1; argidx < args.size(); argidx++)
|
|
|
|
{
|
|
|
|
if (args[argidx] == "-attr" && argidx + 1 < args.size())
|
|
|
|
{
|
|
|
|
std::string attr_arg = args[++argidx];
|
|
|
|
std::string name;
|
|
|
|
RTLIL::Const value;
|
|
|
|
size_t eq_at = attr_arg.find('=');
|
|
|
|
if (eq_at != std::string::npos) {
|
|
|
|
name = attr_arg.substr(0, eq_at);
|
|
|
|
value = attr_arg.substr(eq_at + 1);
|
|
|
|
} else {
|
|
|
|
name = attr_arg;
|
|
|
|
value = RTLIL::Const(1);
|
|
|
|
}
|
|
|
|
if (attr_arg.size() > 1 && attr_arg[0] == '!') {
|
|
|
|
if (value != RTLIL::Const(1)) {
|
|
|
|
--argidx;
|
|
|
|
break; // we don't support -attr !<name>=<value>
|
|
|
|
}
|
|
|
|
attributes[RTLIL::escape_id(name.substr(1))].clear();
|
|
|
|
} else {
|
|
|
|
attributes[RTLIL::escape_id(name)].push_back(value);
|
|
|
|
}
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if (args[argidx] == "-iattr")
|
|
|
|
{
|
|
|
|
attr_icase = true;
|
|
|
|
continue;
|
|
|
|
}
|
2022-06-17 08:29:37 -05:00
|
|
|
if (args[argidx] == "-rom-only")
|
|
|
|
{
|
|
|
|
rom_only = true;
|
|
|
|
continue;
|
|
|
|
}
|
2022-06-27 08:47:55 -05:00
|
|
|
if (args[argidx] == "-keepdc")
|
|
|
|
{
|
|
|
|
keepdc = true;
|
|
|
|
continue;
|
|
|
|
}
|
2022-08-02 09:07:28 -05:00
|
|
|
if (args[argidx] == "-formal")
|
|
|
|
{
|
|
|
|
formal = true;
|
|
|
|
keepdc = true;
|
|
|
|
continue;
|
|
|
|
}
|
memory_map: add -attr option, to respect inference attributes.
Before this commit, memory_map (which is always a part of a synth
script) would always pick up any $mem cell that was not processed
by a preceding pass and lower it down to $dff/$mux cells.
This is undesirable for two reasons:
* If there is an explicit inference attribute set on a $mem cell,
e.g. (* ram_block *), then it is arguably incorrect to map such
a memory to $dff/$mux cells.
* If memory_map tries to lower a memory that was intended to
be mapped to a large BRAM, it often takes extraordinarily long
time to finish, produces an extremely large log file, and outputs
an unusable design.
After this commit, properly invoked memory_map will not map any
memory that has an explicit inference attribute specified, solving
the first issue, and alleviating the second. The default behavior
is not changed.
2020-01-01 03:42:33 -06:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
extra_args(args, argidx, design);
|
|
|
|
|
|
|
|
for (auto mod : design->selected_modules()) {
|
2024-02-23 05:26:47 -06:00
|
|
|
if (mod->has_processes_warn())
|
|
|
|
continue;
|
|
|
|
|
memory_map: add -attr option, to respect inference attributes.
Before this commit, memory_map (which is always a part of a synth
script) would always pick up any $mem cell that was not processed
by a preceding pass and lower it down to $dff/$mux cells.
This is undesirable for two reasons:
* If there is an explicit inference attribute set on a $mem cell,
e.g. (* ram_block *), then it is arguably incorrect to map such
a memory to $dff/$mux cells.
* If memory_map tries to lower a memory that was intended to
be mapped to a large BRAM, it often takes extraordinarily long
time to finish, produces an extremely large log file, and outputs
an unusable design.
After this commit, properly invoked memory_map will not map any
memory that has an explicit inference attribute specified, solving
the first issue, and alleviating the second. The default behavior
is not changed.
2020-01-01 03:42:33 -06:00
|
|
|
MemoryMapWorker worker(design, mod);
|
|
|
|
worker.attr_icase = attr_icase;
|
|
|
|
worker.attributes = attributes;
|
2022-06-17 08:29:37 -05:00
|
|
|
worker.rom_only = rom_only;
|
2022-06-27 08:47:55 -05:00
|
|
|
worker.keepdc = keepdc;
|
2022-08-02 09:07:28 -05:00
|
|
|
worker.formal = formal;
|
memory_map: add -attr option, to respect inference attributes.
Before this commit, memory_map (which is always a part of a synth
script) would always pick up any $mem cell that was not processed
by a preceding pass and lower it down to $dff/$mux cells.
This is undesirable for two reasons:
* If there is an explicit inference attribute set on a $mem cell,
e.g. (* ram_block *), then it is arguably incorrect to map such
a memory to $dff/$mux cells.
* If memory_map tries to lower a memory that was intended to
be mapped to a large BRAM, it often takes extraordinarily long
time to finish, produces an extremely large log file, and outputs
an unusable design.
After this commit, properly invoked memory_map will not map any
memory that has an explicit inference attribute specified, solving
the first issue, and alleviating the second. The default behavior
is not changed.
2020-01-01 03:42:33 -06:00
|
|
|
worker.run();
|
|
|
|
}
|
2013-01-05 04:13:26 -06:00
|
|
|
}
|
|
|
|
} MemoryMapPass;
|
2015-07-02 04:14:30 -05:00
|
|
|
|
2014-09-27 09:17:53 -05:00
|
|
|
PRIVATE_NAMESPACE_END
|