mirror of https://github.com/YosysHQ/yosys.git
71 lines
1.8 KiB
C++
71 lines
1.8 KiB
C++
|
#include "BigIntegerAlgorithms.hh"
|
||
|
|
||
|
BigUnsigned gcd(BigUnsigned a, BigUnsigned b) {
|
||
|
BigUnsigned trash;
|
||
|
// Neat in-place alternating technique.
|
||
|
for (;;) {
|
||
|
if (b.isZero())
|
||
|
return a;
|
||
|
a.divideWithRemainder(b, trash);
|
||
|
if (a.isZero())
|
||
|
return b;
|
||
|
b.divideWithRemainder(a, trash);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void extendedEuclidean(BigInteger m, BigInteger n,
|
||
|
BigInteger &g, BigInteger &r, BigInteger &s) {
|
||
|
if (&g == &r || &g == &s || &r == &s)
|
||
|
throw "BigInteger extendedEuclidean: Outputs are aliased";
|
||
|
BigInteger r1(1), s1(0), r2(0), s2(1), q;
|
||
|
/* Invariants:
|
||
|
* r1*m(orig) + s1*n(orig) == m(current)
|
||
|
* r2*m(orig) + s2*n(orig) == n(current) */
|
||
|
for (;;) {
|
||
|
if (n.isZero()) {
|
||
|
r = r1; s = s1; g = m;
|
||
|
return;
|
||
|
}
|
||
|
// Subtract q times the second invariant from the first invariant.
|
||
|
m.divideWithRemainder(n, q);
|
||
|
r1 -= q*r2; s1 -= q*s2;
|
||
|
|
||
|
if (m.isZero()) {
|
||
|
r = r2; s = s2; g = n;
|
||
|
return;
|
||
|
}
|
||
|
// Subtract q times the first invariant from the second invariant.
|
||
|
n.divideWithRemainder(m, q);
|
||
|
r2 -= q*r1; s2 -= q*s1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
BigUnsigned modinv(const BigInteger &x, const BigUnsigned &n) {
|
||
|
BigInteger g, r, s;
|
||
|
extendedEuclidean(x, n, g, r, s);
|
||
|
if (g == 1)
|
||
|
// r*x + s*n == 1, so r*x === 1 (mod n), so r is the answer.
|
||
|
return (r % n).getMagnitude(); // (r % n) will be nonnegative
|
||
|
else
|
||
|
throw "BigInteger modinv: x and n have a common factor";
|
||
|
}
|
||
|
|
||
|
BigUnsigned modexp(const BigInteger &base, const BigUnsigned &exponent,
|
||
|
const BigUnsigned &modulus) {
|
||
|
BigUnsigned ans = 1, base2 = (base % modulus).getMagnitude();
|
||
|
BigUnsigned::Index i = exponent.bitLength();
|
||
|
// For each bit of the exponent, most to least significant...
|
||
|
while (i > 0) {
|
||
|
i--;
|
||
|
// Square.
|
||
|
ans *= ans;
|
||
|
ans %= modulus;
|
||
|
// And multiply if the bit is a 1.
|
||
|
if (exponent.getBit(i)) {
|
||
|
ans *= base2;
|
||
|
ans %= modulus;
|
||
|
}
|
||
|
}
|
||
|
return ans;
|
||
|
}
|