coriolis/katabatic/src/LoadGrByNet.cpp

1918 lines
77 KiB
C++

// -*- C++ -*-
//
// This file is part of the Coriolis Software.
// Copyright (c) UPMC 2008-2013, All Rights Reserved
//
// +-----------------------------------------------------------------+
// | C O R I O L I S |
// | K a t a b a t i c - Routing Toolbox |
// | |
// | Author : Jean-Paul CHAPUT |
// | E-mail : Jean-Paul.Chaput@lip6.fr |
// | =============================================================== |
// | C++ Module : "./LoadGrByNet.cpp" |
// +-----------------------------------------------------------------+
#include <cstdlib>
#include <sstream>
#include "hurricane/Bug.h"
#include "hurricane/Error.h"
#include "hurricane/Warning.h"
#include "hurricane/DebugSession.h"
#include "hurricane/Layer.h"
#include "hurricane/Technology.h"
#include "hurricane/DataBase.h"
#include "hurricane/Net.h"
#include "hurricane/NetExternalComponents.h"
#include "hurricane/RoutingPad.h"
#include "hurricane/RoutingPads.h"
#include "hurricane/Pad.h"
#include "hurricane/Plug.h"
#include "hurricane/Cell.h"
#include "hurricane/Instance.h"
#include "hurricane/Vertical.h"
#include "hurricane/Horizontal.h"
#include "crlcore/AllianceFramework.h"
#include "crlcore/RoutingGauge.h"
#include "crlcore/Measures.h"
#include "katabatic/AutoContactTerminal.h"
#include "katabatic/AutoContactTurn.h"
#include "katabatic/AutoContactHTee.h"
#include "katabatic/AutoContactVTee.h"
#include "katabatic/AutoSegment.h"
#include "katabatic/GCellGrid.h"
#include "katabatic/KatabaticEngine.h"
namespace {
/*! \defgroup LoadGlobalRouting Global Routing Loading (internal)
*
* This module documents how the global routing built by \c Knik is
* loaded into the \c Katabatic data-base. It is intented for developpers
* only.
*/
//! \addtogroup LoadGlobalRouting
//! \{
//! \enum LocalFunctionFlag
//! A set of flags for all functions of the LoadGrByNet module.
//! They can be combined to form the \e flags argument of functions.
//! the functions will ignore flags that are not intended to them.
//!
//! For \c HSmall, \c VSmall & \c Punctual see checkRoutingPadSize().
//! \var LocalFunctionFlag::NoFlags
//! A simple alias over zero to explicitly tell that no flag at all is
//! passed to the function.
//! \var LocalFunctionFlag::HAccess
//! The constructed topology will be accessed through an horizontal
//! segment. The absence of this flag tell that the access will be done
//! trough a vertical.
//! \var LocalFunctionFlag::VSmall
//! The RoutingPad vertically covers a very small number of access points,
//! so it is likely overconstrained for direct horizontal connexion.
//! \var LocalFunctionFlag::HSmall
//! The RoutingPad horizontally covers a very small number of access points,
//! so it is likely overconstrained for direct vertical connexion.
//! \var LocalFunctionFlag::Punctual
//! The RoutingPad covers only an access point in either direction.
//! \var LocalFunctionFlag::DoSourceContact
//! When creating Katabatic::AutoContactTerminal on non-punctual RoutingPad, this flag
//! request the creation of a contact <em>on the source point</em>.
//! \var LocalFunctionFlag::DoTargetContact
//! When creating Katabatic::AutoContactTerminal on non-punctual RoutingPad, this flag
//! request the creation of a contact <em>on the target point</em>.
//! \function unsigned int checkRoutingPadSize ( Component* rp );
//!
//! Look at the geometrical size of the Component and assess if
//! it's span is too narrow either horizontally or vertically.
//! Return a combination of flags indicating it's state:
//! - HSmall : less than 3 pitches in horizontal direction.
//! - VSmall : less than 3 pitches in vertical direction.
//! - Punctual : one pitch in either directions.
//!
//! The component can be a RoutingPad, a Vertical or an Horizontal.
//!
//! \image html checkRoutingPadSize.png "checkRoutingPadSize()"
/*! \class GCellTopology
*
* \brief Build the wiring for a Net inside a GCell (\b internal).
*
*/
//! \function void GCellTopology::doRp_AutoContacts ( GCell* gcell, Component* rp, AutoContact*& source, AutoContact*& target, unsigned int flags );
//! \param gcell The GCell into which create the AutoContact.
//! \param rp The Component we want to access.
//! \param source The AutoContact created on the \c source (\e returned).
//! \param target The AutoContact created on the \c target (\e returned).
//! \param flags Managed by this function:
//! - LocalFunctionFlag::DoSourceContact
//! - LocalFunctionFlag::DoTargetContact
//!
//! Create the AutoContact directly anchored on the Component (terminal).
//! Three cases are manageds:
//! -# <b>Ordinary (non-punctual) \c METAL1 terminal</b>: an AutoContactTerminal
//! is anchored on the RoutingPad.
//! -# <b>Punctual \c METAL1 terminal</b>, the access must never be blocked
//! by other routing. To ensure it, we create a fixed AutoSegment (anchored
//! on two AutoContactTerminal) to cover it. The \e normal AutoContactTerminal
//! is also created.
//! -# <b>non \c METAL1 terminal</b>, as for the punctual \c METAL1, a
//! fixed protection is added over the RoutingPad. If we access
//! horizontally a vertical RoutingPad or vertically an horizontal
//! one, an extra AutoContactTerminal is added (to allow is displacement
//! along the RoutingPad).
//!
//! To avoid creating a fixed protection over a RoutingPad multiple times,
//! the RoutingPad and it's associated protection is stored in a static
//! \c map : \c __routingPadAutoSegments.
//!
//! Conversely, because an AutoContactTerminal can only be connected to one
//! segment, each time this function is called a new terminal will be created
//! (or maybe two in case of non-punctual terminals). If only one AutoContact
//! is requested, it is created centered on the RoutingPad. The initial
//! position of AutoContact <em>do not prevent them to move afterwards</em>,
//! even those created on source/target on a non-punctual RoutingPad.
//!
//! \remark For clarity we describe the layer management of this function in term
//! of \c METAL, but it is the RoutingGauge depth which is actually used.
//!
//! \image html doRp_AutoContacts.png "doRp_AutoContacts()"
//! \function AutoContact* GCellTopology::doRp_Access ( GCell* gcell, Component* rp, unsigned int flags );
//! \param gcell The GCell into which create the AutoContact.
//! \param rp The Component onto which anchor the access contact.
//! \param flags Relevant flags are:
//! - HAccess, the terminal is to be accessed through an horizontal
//! segment.
//! - VSmall, force the terminal to be considered as small in the
//! vertical direction.
//!
//! If \c HAccess is set, the Component is to be accessed trough an horizontal
//! segment. If unset, the access is done vertically.
//!
//! Create an AutoContact to access a Component (terminal). If the Component
//! is not to be accessed through an horizontal segment, and do not cover a
//! large span in the horizontal direction (flag \c VSmall), a local horizontal
//! AutoSegment is added to slacken the vertical constraints.
//!
//! \image html doRp_Access.png "doRp_Access()"
//! \function void GCellTopology::doRp_StairCaseH ( GCell* gcell, Component* rp1, Component* rp2 );
//!
//! Build the wiring to connect to horizontal Component. Two cases:
//! - The Component are aligneds, then only a straight wire is created.
//! - They are \e not aligned, then a complete dogleg is created.
//!
//! \image html doRp_StairCaseH.png "doRp_StairCaseH()"
//! \function void GCellTopology::doRp_StairCaseV ( GCell* gcell, Component* rp1, Component* rp2 );
//!
//! Build the wiring to connect to vertical Components. Two cases:
//! - The Components are aligneds, then only a straight wire is created.
//! - They are \e not aligned, then a complete dogleg is created.
//!
//! \image html doRp_StairCaseV.png "doRp_StairCaseV()"
//! \function GCellTopology::_do_xG ();
//!
//! Construct the topology, when there is only global wires (no local terminals).
//!
//! Some topology are not handled because they must not be managed by this
//! function:
//! <ul>
//! <li>One global: nonsensical because there also must be a terminal.
//! <li>Two aligned globals: in that case we do a straight wire whithout
//! any AutoContact (handled by the source/target of the wire).
//! </ul>
//!
//! \image html _do_xG.png "_do_xG()"
//! \function void GCellTopology::_do_1G_1M1 ();
//!
//! Construct a topology where there is \e one global and one RoutingPad
//! in \c METAL1. The \c METAL1 is assumed to be vertical.
//!
//! \remark When accessing the RoutingPad through an horizontal global segment
//! and the vertical extension of the segment is small, the global is
//! still directly attached to the terminal, inducing a high constraint
//! on it. We left to job of slackening it to the router.
//!
//! \image html _do_1G_1M1.png "_do_1G_1M1()"
//! \function void GCellTopology::_do_1G_xM1 ();
//!
//! Construct a topology where there is \e one global and any number of
//! RoutingPad in \c METAL1. The \c METAL1 is assumed to be vertical.
//!
//! The RoutingPads are linked together two by two. If the horizontal
//! segments are not aligned by the router, part of the routage will be
//! done through the RoutingPad itself. The global incoming segment will
//! connected to the leftmost, rightmost or centermost RoutingPad according
//! from wich side it comes from.
//!
//! \image html _do_1G_xM1.png "_do_1G_xM1()"
//! \function void GCellTopology::_do_xG_1M1_1M2 ();
//!
//! Construct a topology where there is at least one global (and up to 4),
//! one \c METAL1 RoutingPad (assumed V) and one \c METAL2 RoutingPad (assumed H).
//!
//! In this topology, we want to try to reuse the \c METAL2 RoutingPad as a
//! feedtrough in the horizontal routage. Thus:
//! - The \c METAL1 and \c METAL2 RoutingPad are connected through a separate wiring.
//! - The south & west global wiring is attached to the leftmost contact of
//! the \c METAL2.
//! - The north & east global wiring is attached to the rightmost contact of
//! the \c METAL2.
//!
//! South/west and north/south can be build independantly. Depending on the number
//! of globals, they can consist of:
//! - Nothing (no south nor west).
//! - An AutoContact (west present).
//! - An horizontal plus a turn (south present).
//! - An horizontal plus a HTee (south & west present).
//!
//! \remark Not all configurations are represented below.
//!
//! \image html _do_xG_1M1_1M2.png "_do_xG_1M1_1M2()"
//! \function void GCellTopology::_do_xG_xM1_xM3 ();
//!
//! Construct a topology where there is at least one global (and up to 4),
//! at least one \c METAL1 RoutingPad (assumed V) and at least one \c METAL3
//! RoutingPad (assumed V).
//!
//! In this topology, we want to try to reuse the \c METAL3 RoutingPad as a
//! feedtrough in the vertical routage. Thus:
//! - The \c METAL1 and \c METAL3 RoutingPad are connected through a separate
//! wiring made of separate horizontals.
//! - The south-west global wiring is attached to the leftmost RoutingPad
//! if there isn't south or to the first \c METAL3 otherwise.
//! - The north-east global wiring is attached to the rightmost RoutingPad
//! if there isn't north or to the first \c METAL3 otherwise.
//!
//! South/west and north/south can be build independantly. Depending on the number
//! of globals, they can consist of:
//! - Nothing (no south nor west).
//! - An AutoContact on the leftmost RoutingPad (west present).
//! - An AutoContact on the first \c METAL3 (only south present).
//! - An AutoContact plus a vertical plus a VTee (south & west present).
//!
//! \image html _do_xG_xM1_xM3.png "_do_xG_xM1_xM3()"
//! \function void GCellTopology::_do_xG_xM2 ();
//!
//! Construct a topology where there is at least one global (and up to 4),
//! and any number of \c METAL2 RoutingPads (assumeds H).
//!
//! In this topology, we want to try to reuse the \c METAL2 RoutingPad as a
//! feedtrough in the horizontal routage. Thus:
//! - The RoutingPad are connecteds trough a separate staircase (or
//! straight wire if aligneds).
//! - The south-west global wiring is attached to the leftmost RoutingPad
//! if there isn't south or to the biggest horizontal RoutingPad otherwise.
//! - The north-east global wiring is attached to the rightmost RoutingPad
//! if there isn't south or to the biggest horizontal RoutingPad otherwise.
//!
//! \image html _do_xG_xM2.png "_do_xG_xM2()"
//! \function void GCellTopology::_do_1G_1M3 ();
//!
//! Construct a topology where there is one global and one \c METAL3 RoutingPad
//! (assumeds V).
//!
//! In this topology, we reuse the \c METAL3 RoutingPad as a feedtrough in the
//! vertical routage. Thus:
//! - If the global is either north or south, we directly connect to the
//! north end or south end of the RoutingPad. \red{The vertical global will}
//! \red{have no slack at all we assume that METAL3 terminals are only from}
//! \red{blocks and are aligneds vertically.}
//! - If the global is east or west \e and the RoutingPad is sufficiently
//! extended in the vertical direction, we connect an horizontal in the
//! normal way.
//! - If the global is not sufficiently extended, we add a turn to give some
//! slack to the global.
//!
//!
//! \image html _do_1G_1M3.png "_do_1G_1M3()"
//! \function void GCellTopology::_do_xG_xM3 ();
//!
//! Construct a topology where there at least one global and two \c METAL3 RoutingPad
//! (assumed V).
//!
//! In this topology, we reuse the \c METAL3 RoutingPad as a feedtrough in the
//! vertical routage. \red{We assume that the most likely relative position}
//! \red{of the RoutingPads is to be aligned vertically}.
//! Thus:
//! - All RoutingPads are linked two by two trough vertical staircases.
//! - The south-west global wiring is attached to the bottommost RoutingPad
//! (without vertical slack). If a misalignment is detected, then a
//! dogleg is added.
//! - The north-east global wiring is attached to the topmost RoutingPad
//! (without vertical slack).
//!
//! South/west and north/south can be build independantly. Depending on the number
//! of globals, they can consist of:
//! - Nothing (no south nor west).
//! - An sliding AutoContact on the bottommost RoutingPad (west present).
//! - An fixed AutoContact on the bottommost RoutingPad (only south present).
//! - An fixed AutoContact plus a vertical plus a VTee (south & west present).
//!
//! \image html _do_xG_xM3.png "_do_xG_xM3()"
//! \function void singleGCell ( KatabaticEngine* ktbt, Net* net );
//!
//! All the RoutingPads of the net are concentrated under a single
//! GCell. This function assumes that all the terminals are in
//! \c METAL1 (vertical), and link them two by two by horizontal
//! wires.
//! \}
using namespace std;
using namespace CRL;
using namespace Hurricane;
using namespace Katabatic;
// ---------------------------------------------------------------
// Local Enum/Types.
enum LocalFunctionFlag { NoFlags = 0x00000000
, SortDecreasing = 0x00000001
, HAccess = 0x00000002
, VSmall = 0x00000004
, HSmall = 0x00000008
, Punctual = 0x00000010
, HCollapse = 0x00000020
, VCollapse = 0x00000040
, Terminal = 0x00000080
, DoSourceContact = 0x00000100
, DoTargetContact = 0x00000200
, SouthBound = 0x00010000
, NorthBound = 0x00020000
, WestBound = 0x00040000
, EastBound = 0x00080000
};
// ---------------------------------------------------------------
// Local Variables.
const char* invalidGCell =
"Katabatic::GCellTopology () :\n\n"
" No GCell under point.\n";
const char* mismatchGCell =
"Katabatic::GCellTopology () :\n\n"
" Contacts under two different GCells.\n";
const char* missingGCell =
"Katabatic::GCellTopology () :\n\n"
" No Contact in GCell.\n";
map<Component*,AutoSegment*> __routingPadAutoSegments;
// ---------------------------------------------------------------
// LoadGrByNet Local Classes.
struct NetCompareByName {
inline bool operator() ( const Net* lhs, const Net* rhs ) const;
};
inline bool NetCompareByName::operator() ( const Net* lhs, const Net* rhs ) const
{ return lhs->getName() < rhs->getName(); }
// ---------------------------------------------------------------
// LoadGrByNet Local Functions.
void lookupClear ()
{ __routingPadAutoSegments.clear (); }
void getPositions ( Component* anchor, Point& source, Point& target )
{
Segment* segment = dynamic_cast<Segment*>( anchor );
if (segment) {
source = segment->getSourcePosition();
target = segment->getTargetPosition();
return;
}
RoutingPad* rp = dynamic_cast<RoutingPad*>( anchor );
if (rp) {
source = rp->getSourcePosition();
target = rp->getTargetPosition();
return;
}
source = anchor->getPosition();
target = anchor->getPosition();
}
unsigned int checkRoutingPadSize ( Component* anchor )
{
Point source;
Point target;
getPositions( anchor, source, target );
DbU::Unit width = abs( target.getX() - source.getX() );
DbU::Unit height = abs( target.getY() - source.getY() );
unsigned int flags = 0;
// HARDCODED VALUE.
flags |= (width < DbU::lambda(15.0)) ? HSmall : 0;
flags |= (height < DbU::lambda(15.0)) ? VSmall : 0;
flags |= ((width == 0) && (height == 0)) ? Punctual : 0;
return flags;
}
Hook* getSegmentOppositeHook ( Hook* hook )
{
Segment* segment = static_cast<Segment*>( hook->getComponent() );
return segment->getOppositeHook( hook );
}
unsigned int getSegmentHookType ( Hook* hook )
{
Horizontal* horizontal = dynamic_cast<Horizontal*>( hook->getComponent() );
if (horizontal) {
if (horizontal->getSourceX() > horizontal->getTargetX())
cerr << Warning("Bad orientation of %s",getString(horizontal).c_str()) << endl;
if (dynamic_cast<Segment::SourceHook*>(hook))
return EastBound;
return WestBound;
} else {
Vertical* vertical = dynamic_cast<Vertical*>( hook->getComponent() );
if (vertical) {
if (vertical->getSourceY() > vertical->getTargetY())
cerr << Warning("Bad orientation of %s",getString(vertical).c_str()) << endl;
if (dynamic_cast<Segment::SourceHook*>(hook))
return NorthBound;
} else {
cerr << Warning("Unmanaged Hook %s",getString(hook).c_str()) << endl;
}
}
return SouthBound;
}
// ---------------------------------------------------------------
// Class : "SortRpByX".
class SortRpByX {
public:
inline SortRpByX ( unsigned int flags );
inline bool operator() ( Component* rp1, Component* rp2 );
protected:
unsigned int _flags;
};
inline SortRpByX::SortRpByX ( unsigned int flags )
: _flags(flags)
{ }
inline bool SortRpByX::operator() ( Component* rp1, Component* rp2 )
{
DbU::Unit x1 = rp1->getCenter().getX();
DbU::Unit x2 = rp2->getCenter().getX();
if (x1 == x2) return false;
return (_flags & SortDecreasing) xor (x1 < x2);
}
// ---------------------------------------------------------------
// Class : "SortRpByY".
class SortRpByY {
public:
inline SortRpByY ( unsigned int flags );
inline bool operator() ( Component* rp1, Component* rp2 );
protected:
unsigned int _flags;
};
inline SortRpByY::SortRpByY ( unsigned int flags )
: _flags(flags)
{ }
inline bool SortRpByY::operator() ( Component* rp1, Component* rp2 )
{
DbU::Unit y1 = rp1->getCenter().getY();
DbU::Unit y2 = rp2->getCenter().getY();
if (y1 == y2) return false;
return (_flags & SortDecreasing) xor (y1 < y2);
}
// ---------------------------------------------------------------
// Class : "ForkStack".
class ForkStack {
public:
inline void push ( Hook* from, AutoContact* contact );
inline void pop ();
inline Hook* getFrom () const;
inline AutoContact* getContact () const;
private:
struct Element {
Hook* _from;
AutoContact* _contact;
inline Element ( Hook* from, AutoContact* contact );
};
private:
list<Element> _stack;
};
inline ForkStack::Element::Element ( Hook* from, AutoContact* contact ) : _from(from), _contact(contact) {}
inline void ForkStack::pop () { if (not _stack.empty()) _stack.pop_back(); }
inline Hook* ForkStack::getFrom () const { return _stack.empty() ? NULL : _stack.back()._from; }
inline AutoContact* ForkStack::getContact () const { return _stack.empty() ? NULL : _stack.back()._contact; }
inline void ForkStack::push ( Hook* from, AutoContact* contact )
{
ltrace(80) << " Stacking " << from << " + " << contact << endl;
_stack.push_back( Element(from,contact) );
}
// ---------------------------------------------------------------
// Class : "GGellTopology".
class GCellTopology {
public:
static void init ( unsigned int degree );
static void fixSegments ();
GCellTopology ( GCellGrid*, Hook* fromHook, AutoContact* sourceContact=NULL );
void construct ( ForkStack& forks );
inline unsigned int getStateG () const;
inline GCell* getGCell () const;
static void doRp_AutoContacts ( GCell*, Component*, AutoContact*& source, AutoContact*& target, unsigned int flags );
static AutoContact* doRp_Access ( GCell*, Component*, unsigned int flags );
static void doRp_StairCaseH ( GCell*, Component* rp1, Component* rp2 );
static void doRp_StairCaseV ( GCell*, Component* rp1, Component* rp2 );
private:
void _do_xG ();
void _do_xG_1Pad ();
void _do_1G_1PinM2 ();
void _do_1G_1M1 ();
void _do_1G_xM1 ();
void _do_xG_xM1_xM3 ();
void _do_xG_1M1_1M2 ();
void _do_xG_xM2 ();
void _do_1G_1M3 ();
void _do_xG_xM3 ();
private:
enum ConnexityBits { GlobalBSize = 3
, Metal1BSize = 3
, Metal2BSize = 3
, Metal3BSize = 3
, PadsBSize = 3
, PinsBSize = 3
};
#define CONNEXITY_VALUE( Gs, M1s, M2s, M3s, pads, pins ) \
Gs + ((M1s ) << GlobalBSize) \
+ ((M2s ) << (GlobalBSize+Metal1BSize)) \
+ ((M3s ) << (GlobalBSize+Metal1BSize+Metal2BSize)) \
+ ((pads) << (GlobalBSize+Metal1BSize+Metal2BSize+Metal3BSize)) \
+ ((pins) << (GlobalBSize+Metal1BSize+Metal2BSize+Metal3BSize+PadsBSize))
// Connexity Name | G|M1|M2|M2|Pad|Pin|
enum ConnexityFlag { Conn_0G = CONNEXITY_VALUE( 0, 0, 0, 0, 0 , 0 )
, Conn_2G = CONNEXITY_VALUE( 2, 0, 0, 0, 0 , 0 )
, Conn_3G = CONNEXITY_VALUE( 3, 0, 0, 0, 0 , 0 )
, Conn_4G = CONNEXITY_VALUE( 4, 0, 0, 0, 0 , 0 )
, Conn_0G_2M1 = CONNEXITY_VALUE( 0, 2, 0, 0, 0 , 0 )
, Conn_1G_1M1 = CONNEXITY_VALUE( 1, 1, 0, 0, 0 , 0 )
, Conn_1G_2M1 = CONNEXITY_VALUE( 1, 2, 0, 0, 0 , 0 )
, Conn_1G_3M1 = CONNEXITY_VALUE( 1, 3, 0, 0, 0 , 0 )
, Conn_1G_4M1 = CONNEXITY_VALUE( 1, 4, 0, 0, 0 , 0 )
, Conn_1G_1M2 = CONNEXITY_VALUE( 1, 0, 1, 0, 0 , 0 )
, Conn_1G_2M2 = CONNEXITY_VALUE( 1, 0, 2, 0, 0 , 0 )
, Conn_1G_3M2 = CONNEXITY_VALUE( 1, 0, 3, 0, 0 , 0 )
, Conn_1G_4M2 = CONNEXITY_VALUE( 1, 0, 4, 0, 0 , 0 )
, Conn_1G_1M3 = CONNEXITY_VALUE( 1, 0, 0, 1, 0 , 0 )
, Conn_1G_2M3 = CONNEXITY_VALUE( 1, 0, 0, 2, 0 , 0 )
, Conn_1G_3M3 = CONNEXITY_VALUE( 1, 0, 0, 3, 0 , 0 )
, Conn_1G_4M3 = CONNEXITY_VALUE( 1, 0, 0, 4, 0 , 0 )
, Conn_1G_1M1_1M2 = CONNEXITY_VALUE( 1, 1, 1, 0, 0 , 0 )
, Conn_1G_1M1_1M3 = CONNEXITY_VALUE( 1, 1, 0, 1, 0 , 0 )
// Connexity Name | G|M1|M2|M2|Pad|Pin|
, Conn_2G_1M1 = CONNEXITY_VALUE( 2, 1, 0, 0, 0 , 0 )
, Conn_2G_2M1 = CONNEXITY_VALUE( 2, 2, 0, 0, 0 , 0 )
, Conn_2G_3M1 = CONNEXITY_VALUE( 2, 3, 0, 0, 0 , 0 )
, Conn_2G_4M1 = CONNEXITY_VALUE( 2, 4, 0, 0, 0 , 0 )
, Conn_2G_1M2 = CONNEXITY_VALUE( 2, 0, 1, 0, 0 , 0 )
, Conn_2G_2M2 = CONNEXITY_VALUE( 2, 0, 2, 0, 0 , 0 )
, Conn_2G_3M2 = CONNEXITY_VALUE( 2, 0, 3, 0, 0 , 0 )
, Conn_2G_4M2 = CONNEXITY_VALUE( 2, 0, 4, 0, 0 , 0 )
, Conn_2G_1M3 = CONNEXITY_VALUE( 2, 0, 0, 1, 0 , 0 )
, Conn_2G_2M3 = CONNEXITY_VALUE( 2, 0, 0, 2, 0 , 0 )
, Conn_2G_3M3 = CONNEXITY_VALUE( 2, 0, 0, 3, 0 , 0 )
, Conn_2G_4M3 = CONNEXITY_VALUE( 2, 0, 0, 4, 0 , 0 )
, Conn_2G_1M1_1M2 = CONNEXITY_VALUE( 2, 1, 1, 0, 0 , 0 )
// Connexity Name | G|M1|M2|M2|Pad|Pin|
, Conn_3G_1M1 = CONNEXITY_VALUE( 3, 1, 0, 0, 0 , 0 )
, Conn_3G_2M1 = CONNEXITY_VALUE( 3, 2, 0, 0, 0 , 0 )
, Conn_3G_3M1 = CONNEXITY_VALUE( 3, 3, 0, 0, 0 , 0 )
, Conn_3G_4M1 = CONNEXITY_VALUE( 3, 4, 0, 0, 0 , 0 )
, Conn_3G_1M2 = CONNEXITY_VALUE( 3, 0, 1, 0, 0 , 0 )
, Conn_3G_1M3 = CONNEXITY_VALUE( 3, 0, 0, 1, 0 , 0 )
, Conn_3G_2M3 = CONNEXITY_VALUE( 3, 0, 0, 2, 0 , 0 )
, Conn_3G_3M3 = CONNEXITY_VALUE( 3, 0, 0, 3, 0 , 0 )
, Conn_3G_4M3 = CONNEXITY_VALUE( 3, 0, 0, 4, 0 , 0 )
// Connexity Name | G|M1|M2|M2|Pad|Pin|
, Conn_4G_1M1 = CONNEXITY_VALUE( 4, 1, 0, 0, 0 , 0 )
, Conn_4G_2M1 = CONNEXITY_VALUE( 4, 2, 0, 0, 0 , 0 )
, Conn_4G_3M1 = CONNEXITY_VALUE( 4, 3, 0, 0, 0 , 0 )
, Conn_4G_4M1 = CONNEXITY_VALUE( 4, 4, 0, 0, 0 , 0 )
, Conn_4G_1M3 = CONNEXITY_VALUE( 4, 0, 0, 1, 0 , 0 )
, Conn_1G_1Pad = CONNEXITY_VALUE( 1, 0, 0, 0, 1 , 0 )
, Conn_2G_1Pad = CONNEXITY_VALUE( 2, 0, 0, 0, 1 , 0 )
, Conn_3G_1Pad = CONNEXITY_VALUE( 3, 0, 0, 0, 1 , 0 )
, Conn_1G_1PinM2 = CONNEXITY_VALUE( 1, 0, 1, 0, 0 , 1 )
};
// Connexity Union Type.
union UConnexity {
unsigned int connexity;
struct {
unsigned int globals : GlobalBSize;
unsigned int M1 : Metal1BSize;
unsigned int M2 : Metal2BSize;
unsigned int M3 : Metal3BSize;
unsigned int Pad : PadsBSize;
unsigned int Pin : PinsBSize;
} fields;
};
enum TopologyFlag { Global_Vertical_End = 0x00000001
, Global_Horizontal_End = 0x00000002
, Global_Horizontal = 0x00000004
, Global_Vertical = 0x00000008
, Global_Turn = 0x00000010
, Global_Fork = 0x00000020
, Global_Fixed = 0x00000040
, Global_End = Global_Vertical_End | Global_Horizontal_End
, Global_Split = Global_Horizontal | Global_Vertical | Global_Fork
};
// Attributes.
private:
static vector<AutoSegment*> _toFixSegments;
static unsigned int _degree;
UConnexity _connexity;
unsigned int _topology;
Net* _net;
GCell* _gcell;
AutoContact* _sourceContact;
AutoContact* _southWestContact;
AutoContact* _northEastContact;
Hook* _fromHook;
Hook* _east;
Hook* _west;
Hook* _north;
Hook* _south;
vector<Component*> _routingPads;
};
inline unsigned int GCellTopology::getStateG () const { return _connexity.fields.globals; }
inline GCell* GCellTopology::getGCell () const { return _gcell; }
vector<AutoSegment*> GCellTopology::_toFixSegments;
unsigned int GCellTopology::_degree = 0;
void GCellTopology::fixSegments ()
{
for ( size_t i=0 ; i<_toFixSegments.size() ; ++i )
_toFixSegments[i]->setFlags( SegFixed );
_toFixSegments.clear();
}
void GCellTopology::init ( unsigned int degree )
{
_degree = degree;
_toFixSegments.clear();
}
GCellTopology::GCellTopology ( GCellGrid* gcellGrid
, Hook* fromHook
, AutoContact* sourceContact )
: _connexity ()
, _topology (0)
, _gcell (NULL)
, _sourceContact (sourceContact)
, _southWestContact(NULL)
, _northEastContact(NULL)
, _fromHook (fromHook)
, _east (NULL)
, _west (NULL)
, _north (NULL)
, _south (NULL)
, _routingPads ()
{
_connexity.connexity = 0;
ltrace(99) << "GCellTopology::GCellTopology()" << endl;
ltracein(99);
ltrace(99) << getString(fromHook) << endl;
ltrace(99) << sourceContact << endl;
Segment* fromSegment = static_cast<Segment*>( _fromHook->getComponent() );
_net = fromSegment->getNet();
forEach ( Hook*, hook, fromHook->getHooks() ) {
Segment* toSegment = dynamic_cast<Segment*>( hook->getComponent() );
if (toSegment) {
switch ( getSegmentHookType(*hook) ) {
case WestBound: _west = *hook; break;
case EastBound: _east = *hook; break;
case SouthBound: _south = *hook; break;
case NorthBound: _north = *hook; break;
}
_connexity.fields.globals++;
} else {
Component* anchor = hook->getComponent();
RoutingPad* rp = dynamic_cast<RoutingPad*>( anchor );
ltrace(99) << "| Looking for Anchor:" << anchor << " rp:" << rp << endl;
if (anchor) {
Contact* contact = dynamic_cast<Contact*>( anchor );
if (contact
and ( Session::getKatabatic()->isGContact( anchor->getLayer() )
or Session::getKatabatic()->isGMetal ( anchor->getLayer() )) ) {
// Global routing articulation contact are in <gmetalh> not <gcut> ?
GCell* gcell = gcellGrid->getGCell( contact->getCenter() );
ltrace(99) << "* Global Routing Articulation: " << contact << endl;
ltrace(99) << "| " << gcell << endl;
if (gcell == NULL)
throw Error( invalidGCell );
if (_gcell == NULL) _gcell = gcell;
else if (_gcell != gcell) {
throw Error( mismatchGCell );
}
} else {
if (rp and AllianceFramework::get()->isPad(rp->_getEntityAsComponent()->getCell())) {
_connexity.fields.Pad++;
} else {
const Layer* layer = anchor->getLayer();
if (layer == Session::getRoutingLayer(0)) _connexity.fields.M1++; // M1 V
else if (layer == Session::getRoutingLayer(1)) _connexity.fields.M2++; // M2 H
else if (layer == Session::getRoutingLayer(2)) _connexity.fields.M3++; // M3 V
else if (layer == Session::getRoutingLayer(3)) _connexity.fields.M2++; // M4 H
else if (layer == Session::getRoutingLayer(4)) _connexity.fields.M3++; // M5 V
else {
cerr << Warning( "Terminal layer \"%s\" of %s is not managed yet (ignored)."
, getString(layer->getName()).c_str()
, getString(anchor).c_str() )
<< endl;
continue;
}
if (dynamic_cast<Pin*>(rp->getOccurrence().getEntity())) _connexity.fields.Pin++;
}
ltrace(99) << "| Component to connect: " << anchor << endl;
_routingPads.push_back( anchor );
}
}
}
}
ltrace(99) << "east: " << _east << endl;
ltrace(99) << "west: " << _west << endl;
ltrace(99) << "north:" << _north << endl;
ltrace(99) << "south:" << _south << endl;
if (_connexity.fields.globals == 1) {
if ( _north or _south ) _topology |= Global_Vertical_End;
else _topology |= Global_Horizontal_End;
} else if (_connexity.fields.globals == 2) {
if ( _east && _west ) _topology |= Global_Horizontal;
else if ( _north && _south ) _topology |= Global_Vertical;
else _topology |= Global_Turn;
} else {
_topology |= Global_Fork;
}
ltraceout(99);
if (_gcell == NULL) throw Error( missingGCell );
}
void GCellTopology::construct ( ForkStack& forks )
{
ltrace(99) << "GCellTopology::construct() [" << _connexity.connexity << "] in " << _gcell << endl;
ltracein(99);
_southWestContact = NULL;
_northEastContact = NULL;
bool straightLine = false;
switch ( _connexity.connexity ) {
case Conn_1G_1Pad:
case Conn_2G_1Pad:
case Conn_3G_1Pad: _do_xG_1Pad(); break;
case Conn_1G_1PinM2: _do_1G_1PinM2(); break;
case Conn_1G_1M1: _do_1G_1M1(); break;
case Conn_1G_2M1:
case Conn_1G_3M1:
case Conn_1G_4M1: _do_1G_xM1(); break;
case Conn_1G_1M2:
case Conn_1G_2M2:
case Conn_1G_3M2:
case Conn_1G_4M2: _do_xG_xM2(); break;
case Conn_1G_1M3: _do_1G_1M3(); break;
case Conn_1G_2M3:
case Conn_1G_3M3:
case Conn_1G_4M3: _do_xG_xM3 (); break;
case Conn_1G_1M1_1M2: _do_xG_1M1_1M2(); break;
case Conn_1G_1M1_1M3: _do_1G_xM1 (); break;
case Conn_2G_1M1:
case Conn_2G_2M1:
case Conn_2G_3M1:
case Conn_2G_4M1:
case Conn_3G_1M1:
case Conn_3G_2M1:
case Conn_3G_3M1:
case Conn_3G_4M1:
case Conn_3G_2M3:
case Conn_3G_3M3:
case Conn_3G_4M3:
case Conn_4G_1M1:
case Conn_4G_2M1:
case Conn_4G_3M1:
case Conn_4G_4M1: _do_xG_xM1_xM3(); break;
case Conn_2G_1M2:
case Conn_2G_2M2:
case Conn_2G_3M2:
case Conn_2G_4M2:
case Conn_3G_1M2: _do_xG_xM2(); break;
case Conn_2G_1M3:
case Conn_2G_2M3:
case Conn_2G_3M3:
case Conn_2G_4M3:
case Conn_3G_1M3: _do_xG_xM3 (); break;
case Conn_2G_1M1_1M2: _do_xG_1M1_1M2(); break;
case Conn_2G:
if ( (_east and _west) or (_north and _south) ) {
straightLine = true;
break;
}
case Conn_3G:
case Conn_4G:
_do_xG();
break;
default:
cerr << Bug( "Unmanaged Configuration [%d] = [%d+%d+%d+%d,%d+%d] %s in %s\n"
" The global routing seems to be defective."
, _connexity.connexity
, _connexity.fields.globals
, _connexity.fields.M1
, _connexity.fields.M2
, _connexity.fields.M3
, _connexity.fields.Pin
, _connexity.fields.Pad
, _net->_getString().c_str()
, getString(_gcell).c_str()
) << endl;
_do_xG();
}
if (straightLine) {
// This a global router problem.
cerr << Bug( "Unmanaged configuration: straight line,\n"
" The global routing seems to be defective."
) << endl;
return;
} else {
if (_sourceContact) {
AutoContact* targetContact
= ( getSegmentHookType(_fromHook) & (NorthBound|EastBound) )
? _northEastContact : _southWestContact ;
AutoSegment* globalSegment = AutoSegment::create( _sourceContact
, targetContact
, static_cast<Segment*>( _fromHook->getComponent() )
);
globalSegment->setFlags( (_degree == 2) ? SegBipoint : 0 );
ltrace(99) << "Create global segment: " << globalSegment << endl;
#if THIS_IS_DEPRECATED
if ( globalSegment->isHorizontal()
and ( (Session::getRoutingGauge()->getLayerDepth(_sourceContact->getLayer()->getBottom()) > 1)
or (Session::getRoutingGauge()->getLayerDepth(targetContact ->getLayer()->getBottom()) > 1)) ) {
globalSegment->setLayer ( Session::getRoutingLayer(3) );
ltrace(99) << "Source:" << _sourceContact << endl;
ltrace(99) << "Target:" << targetContact << endl;
ltrace(99) << "Moving up global:" << globalSegment << endl;
}
#endif
// HARDCODED VALUE.
if ( (_topology & Global_Fixed) and (globalSegment->getLength() < DbU::lambda(100.0)) )
_toFixSegments.push_back( globalSegment );
if (_connexity.fields.globals < 2) {
ltraceout(99);
return;
}
} else
_fromHook = NULL;
}
if ( _east and (_fromHook != _east) ) {
Hook* toHook = getSegmentOppositeHook( _east );
ltrace(99) << "Pushing East (to) " << getString(toHook) << endl;
ltrace(99) << "Pushing East (from) " << _northEastContact << endl;
forks.push( toHook, _northEastContact );
}
if ( _west and (_fromHook != _west) ) {
Hook* toHook = getSegmentOppositeHook( _west );
ltrace(99) << "Pushing West (to) " << getString(toHook) << endl;
ltrace(99) << "Pushing West (from) " << _southWestContact << endl;
forks.push( toHook, _southWestContact );
}
if ( _north and (_fromHook != _north) ) {
Hook* toHook = getSegmentOppositeHook( _north );
ltrace(99) << "Pushing North (to) " << getString(toHook) << endl;
ltrace(99) << "Pushing North (from) " << _northEastContact << endl;
forks.push( toHook, _northEastContact );
}
if ( _south and (_fromHook != _south) ) {
Hook* toHook = getSegmentOppositeHook( _south );
ltrace(99) << "Pushing South (to) " << getString(toHook) << endl;
ltrace(99) << "Pushing South (from) " << _southWestContact << endl;
forks.push( toHook, _southWestContact );
}
ltraceout(99);
}
void GCellTopology::doRp_AutoContacts ( GCell* gcell
, Component* rp
, AutoContact*& source
, AutoContact*& target
, unsigned int flags
)
{
ltrace(99) << "doRp_AutoContacts()" << endl;
ltracein(99);
ltrace(99) << rp << endl;
source = target = NULL;
Point sourcePosition;
Point targetPosition;
const Layer* rpLayer = rp->getLayer();
unsigned int direction = Session::getLayerDirection( rp->getLayer() );
getPositions( rp, sourcePosition, targetPosition );
if (sourcePosition.getX() > targetPosition.getX()) swap( sourcePosition, targetPosition );
if (sourcePosition.getY() > targetPosition.getY()) swap( sourcePosition, targetPosition );
GCell* sourceGCell = Session::getKatabatic()->getGCellGrid()->getGCell( sourcePosition );
GCell* targetGCell = Session::getKatabatic()->getGCellGrid()->getGCell( targetPosition );
if (rp->getLayer() == Session::getRoutingLayer(0)) {
rpLayer = Session::getContactLayer(0);
direction = KbHorizontal;
}
// Non-M1 terminal or punctual M1 protections.
if ((rp->getLayer() != Session::getRoutingLayer(0)) or (sourcePosition == targetPosition)) {
map<Component*,AutoSegment*>::iterator irp = __routingPadAutoSegments.find( rp );
if (irp == __routingPadAutoSegments.end()) {
AutoContact* sourceProtect = AutoContactTerminal::create( sourceGCell
, rp
, rpLayer
, sourcePosition
, DbU::lambda(1.0), DbU::lambda(1.0)
);
AutoContact* targetProtect = AutoContactTerminal::create( targetGCell
, rp
, rpLayer
, targetPosition
, DbU::lambda(1.0), DbU::lambda(1.0)
);
sourceProtect->setFlags( CntFixed );
targetProtect->setFlags( CntFixed );
AutoSegment* segment = AutoSegment::create( sourceProtect, targetProtect, direction );
segment->setFlags( SegFixed );
__routingPadAutoSegments.insert( make_pair(rp,segment) );
}
}
if (sourcePosition != targetPosition) {
if (flags & DoSourceContact)
source = AutoContactTerminal::create( sourceGCell
, rp
, rpLayer
, sourcePosition
, DbU::lambda(1.0), DbU::lambda(1.0)
);
if (flags & DoTargetContact)
target = AutoContactTerminal::create( targetGCell
, rp
, rpLayer
, targetPosition
, DbU::lambda(1.0), DbU::lambda(1.0)
);
}
if (not source and not target) {
source = target = AutoContactTerminal::create( gcell
, rp
, rpLayer
, rp->getCenter()
, DbU::lambda(1.0), DbU::lambda(1.0)
);
}
ltraceout(99);
return;
}
AutoContact* GCellTopology::doRp_Access ( GCell* gcell, Component* rp, unsigned int flags )
{
ltrace(99) << "doRp_Access() - flags:" << flags << endl;
ltracein(99);
AutoContact* rpContactSource;
AutoContact* rpContactTarget;
flags |= checkRoutingPadSize( rp );
doRp_AutoContacts( gcell, rp, rpContactSource, rpContactTarget, flags );
if ( not (flags & HAccess) and (flags & HSmall) ) {
AutoContact* subContact1 = AutoContactTurn::create( gcell, rp->getNet(), Session::getContactLayer(1) );
AutoSegment::create( rpContactSource, subContact1, KbHorizontal );
rpContactSource = subContact1;
}
ltraceout(99);
return rpContactSource;
}
void GCellTopology::doRp_StairCaseH ( GCell* gcell, Component* rp1, Component* rp2 )
{
ltrace(99) << "doRp_StairCaseH()" << endl;
if (rp1->getCenter().getX() > rp2->getCenter().getX()) swap( rp1, rp2 );
AutoContact* rp1ContactSource = NULL;
AutoContact* rp1ContactTarget = NULL;
AutoContact* rp2ContactSource = NULL;
AutoContact* rp2ContactTarget = NULL;
const Layer* viaLayer = NULL;
doRp_AutoContacts( gcell, rp1, rp1ContactSource, rp1ContactTarget, DoTargetContact );
doRp_AutoContacts( gcell, rp2, rp2ContactSource, rp2ContactTarget, DoSourceContact );
if (rp1ContactTarget->getY() == rp2ContactSource->getY()) {
ltrace(99) << "Aligned horizontal routing pads : straight wire" << endl;
viaLayer = rp1->getLayer();
AutoSegment::create( rp1ContactTarget, rp2ContactSource, KbHorizontal );
return;
}
viaLayer = Session::getContactLayer(1);
AutoContact* subContact1 = AutoContactTurn::create( gcell, rp1->getNet(), viaLayer );
AutoContact* subContact2 = AutoContactTurn::create( gcell, rp1->getNet(), viaLayer );
AutoSegment::create( rp1ContactTarget, subContact1 , KbHorizontal );
AutoSegment::create( subContact1 , subContact2 , KbVertical );
AutoSegment::create( subContact1 , rp2ContactSource, KbHorizontal );
}
void GCellTopology::doRp_StairCaseV ( GCell* gcell, Component* rp1, Component* rp2 )
{
ltrace(99) << "doRp_StairCaseV()" << endl;
if (rp1->getCenter().getY() > rp2->getCenter().getY()) swap( rp1, rp2 );
AutoContact* rp1ContactSource = NULL;
AutoContact* rp1ContactTarget = NULL;
AutoContact* rp2ContactSource = NULL;
AutoContact* rp2ContactTarget = NULL;
const Layer* viaLayer = NULL;
doRp_AutoContacts( gcell, rp1, rp1ContactSource, rp1ContactTarget, DoTargetContact );
doRp_AutoContacts( gcell, rp2, rp2ContactSource, rp2ContactTarget, DoSourceContact );
if (rp1ContactTarget->getX() == rp2ContactSource->getX()) {
ltrace(99) << "Aligned vertical routing pads : straight wire" << endl;
viaLayer = rp1->getLayer();
AutoSegment::create( rp1ContactTarget, rp2ContactSource, KbVertical );
return;
}
viaLayer = Session::getContactLayer(1);
AutoContact* subContact1 = AutoContactTurn::create( gcell, rp1->getNet(), viaLayer );
AutoContact* subContact2 = AutoContactTurn::create( gcell, rp1->getNet(), viaLayer );
AutoSegment::create( rp1ContactTarget, subContact1 , KbVertical );
AutoSegment::create( subContact1 , subContact2 , KbHorizontal );
AutoSegment::create( subContact1 , rp2ContactSource, KbVertical );
}
void GCellTopology::_do_xG ()
{
ltrace(99) << "_do_xG()" << endl;
if (_connexity.fields.globals == 2) {
_southWestContact
= _northEastContact
= AutoContactTurn::create( _gcell, _net, Session::getContactLayer(1) );
} else if (_connexity.fields.globals == 3) {
if (_east and _west) {
_southWestContact = AutoContactTurn::create( _gcell, _net, Session::getContactLayer(1) );
_northEastContact = AutoContactVTee::create( _gcell, _net, Session::getContactLayer(1) );
if (_south) swap( _southWestContact, _northEastContact );
AutoSegment::create( _southWestContact, _northEastContact, KbVertical );
} else {
_southWestContact = AutoContactTurn::create( _gcell, _net, Session::getContactLayer(1) );
_northEastContact = AutoContactHTee::create( _gcell, _net, Session::getContactLayer(1) );
if (_west) swap( _southWestContact, _northEastContact );
AutoSegment::create( _southWestContact, _northEastContact, KbHorizontal );
}
} else { // fields.globals == 4.
AutoContact* turn = AutoContactTurn::create( _gcell, _net, Session::getContactLayer(1) );
_southWestContact = AutoContactHTee::create( _gcell, _net, Session::getContactLayer(1) );
_northEastContact = AutoContactVTee::create( _gcell, _net, Session::getContactLayer(1) );
AutoSegment::create( _southWestContact, turn, KbHorizontal );
AutoSegment::create( turn, _northEastContact, KbVertical );
}
}
void GCellTopology::_do_xG_1Pad ()
{
ltrace(99) << "_do_xG_1Pad() [Managed Configuration - Optimized] " << _topology << endl;
ltracein(99);
bool eastPad = false;
bool westPad = false;
bool northPad = false;
bool southPad = false;
Instance* padInstance = dynamic_cast<RoutingPad*>(_routingPads[0])->getOccurrence().getPath().getHeadInstance();
switch ( padInstance->getTransformation().getOrientation() ) {
case Transformation::Orientation::ID: northPad = true; break;
case Transformation::Orientation::YR: eastPad = true; break;
case Transformation::Orientation::R3: eastPad = true; break;
case Transformation::Orientation::MY: southPad = true; break;
case Transformation::Orientation::R1: westPad = true; break;
default:
cerr << Warning( "Unmanaged orientation %s for pad <%s>."
, getString(padInstance->getTransformation().getOrientation()).c_str()
, getString(padInstance).c_str() ) << endl;
break;
}
Point position = _routingPads[0]->getCenter();
AutoContact* source = NULL;
GCell* gcell = Session::getKatabatic()->getGCellGrid()->getGCell(position);
source = AutoContactTerminal::create ( gcell
, _routingPads[0]
, Session::getContactLayer(3)
, position
, DbU::lambda(1.0), DbU::lambda(1.0)
);
source->setFlags( CntFixed );
if (northPad or eastPad) {
_southWestContact = _northEastContact = source;
ltraceout(99);
return;
}
// Check for straight lines, which are not managed by _do_xG().
if (_connexity.fields.globals == 1) {
if (westPad and (_east != NULL)) {
AutoContact* turn = AutoContactTurn::create( _gcell, _net, Session::getContactLayer(1) );
_northEastContact = AutoContactTurn::create( _gcell, _net, Session::getContactLayer(1) );
AutoSegment::create( source, turn, KbHorizontal );
AutoSegment::create( turn, _northEastContact, KbVertical );
ltraceout(99);
return;
} else if (southPad and (_north != NULL)) {
AutoContact* turn = AutoContactTurn::create( _gcell, _net, Session::getContactLayer(1) );
_northEastContact = AutoContactTurn::create( _gcell, _net, Session::getContactLayer(1) );
AutoSegment::create( source, turn, KbVertical );
AutoSegment::create( turn, _northEastContact, KbHorizontal );
ltraceout(99);
return;
}
}
++_connexity.fields.globals;
--_connexity.fields.Pad;
if (westPad ) _west = source->getBodyHook();
if (southPad) _south = source->getBodyHook();
_do_xG();
if (westPad) {
AutoSegment::create( source, _southWestContact, KbHorizontal );
_west = NULL;
}
if (southPad) {
AutoSegment::create( source, _southWestContact, KbVertical );
_south = NULL;
}
--_connexity.fields.globals;
ltraceout(99);
}
void GCellTopology::_do_1G_1PinM2 ()
{
ltrace(99) << "_do_1G_1PinM2() [Managed Configuration - Optimized] " << _topology << endl;
ltracein(99);
AutoContact* rpContact = doRp_Access( _gcell, _routingPads[0], NoFlags );
AutoContact* turn1 = AutoContactTurn::create( _gcell, _net, Session::getContactLayer(1) );
AutoSegment::create( rpContact, turn1, KbVertical );
if (_north or _south) {
AutoContact* turn2 = AutoContactTurn::create( _gcell, _net, Session::getContactLayer(1) );
AutoSegment::create( turn1, turn2, KbHorizontal );
turn1 = turn2;
}
_southWestContact = _northEastContact = turn1;
ltraceout(99);
}
void GCellTopology::_do_1G_1M1 ()
{
ltrace(99) << "_do_1G_1M1() [Managed Configuration - Optimized] " << _topology << endl;
ltracein(99);
unsigned int flags = NoFlags;
if (_east ) { flags |= HAccess; }
else if (_west ) { flags |= HAccess; }
else if (_north) { flags |= VSmall; }
else if (_south) { flags |= VSmall; }
_southWestContact = _northEastContact = doRp_Access( _gcell, _routingPads[0], flags );
ltraceout(99);
}
void GCellTopology::_do_1G_xM1 ()
{
ltrace(99) << "_do_1G_" << _connexity.fields.M1 << "M1() [Managed Configuration]" << endl;
ltracein(99);
sort( _routingPads.begin(), _routingPads.end(), SortRpByX(NoFlags) ); // increasing X.
for ( unsigned int i=1 ; i<_routingPads.size() ; ++i ) {
AutoContact* leftContact = doRp_Access( _gcell, _routingPads[i-1], HAccess );
AutoContact* rightContact = doRp_Access( _gcell, _routingPads[i ], HAccess );
AutoSegment::create( leftContact, rightContact, KbHorizontal );
}
Component* globalRp = NULL;
if (_east) globalRp = _routingPads[_routingPads.size()-1];
else if (_west) globalRp = _routingPads[0];
else {
globalRp = _routingPads[0];
ltrace(99) << "| Initial N/S Global RP: " << globalRp << endl;
for ( unsigned int i=1 ; i<_routingPads.size() ; ++i ) {
if (_routingPads[i]->getBoundingBox().getHeight() > globalRp->getBoundingBox().getHeight()) {
ltrace(99) << "| Better RP: " << globalRp << endl;
globalRp = _routingPads[i];
}
}
}
AutoContact* globalContact = doRp_Access( _gcell, globalRp, HAccess );
if (_north or _south) {
AutoContact* turn = globalContact;
globalContact = AutoContactTurn::create( _gcell, _net, Session::getContactLayer(1) );
AutoSegment::create( globalContact, turn, KbHorizontal );
}
_northEastContact = _southWestContact = globalContact;
ltraceout(99);
}
void GCellTopology::_do_xG_1M1_1M2 ()
{
ltrace(99) << "_do_xG_1M1_1M2() [Managed Configuration]" << endl;
ltracein(99);
Component* rpL1;
Component* rpL2;
if (_routingPads[0]->getLayer() == Session::getRoutingLayer(0)) {
rpL1 = _routingPads[0];
rpL2 = _routingPads[1];
} else {
rpL1 = _routingPads[1];
rpL2 = _routingPads[0];
}
ltrace(99) << "rpL1 := " << rpL1 << endl;
ltrace(99) << "rpL2 := " << rpL2 << endl;
AutoContact* rpL1ContactSource = NULL;
AutoContact* rpL1ContactTarget = NULL;
AutoContact* rpL2ContactSource = NULL;
AutoContact* rpL2ContactTarget = NULL;
doRp_AutoContacts( _gcell, rpL1, rpL1ContactSource, rpL1ContactTarget, NoFlags );
doRp_AutoContacts( _gcell, rpL2, rpL2ContactSource, rpL2ContactTarget, NoFlags );
AutoContact* subContact = AutoContactTurn::create( _gcell, _net, Session::getContactLayer(1) );
AutoSegment::create( rpL1ContactSource, subContact, KbHorizontal );
AutoSegment::create( rpL2ContactSource, subContact, KbVertical );
if (_south or _west) {
doRp_AutoContacts( _gcell, rpL2, rpL2ContactSource, rpL2ContactTarget, DoSourceContact );
if (_south and _west) {
_southWestContact = AutoContactHTee::create( _gcell, _net, Session::getContactLayer(2) );
AutoSegment::create( rpL2ContactSource, _southWestContact, KbHorizontal );
} else {
if (_south) {
_southWestContact = AutoContactTurn::create( _gcell, _net, Session::getContactLayer(2) );
AutoSegment::create( rpL2ContactSource, _southWestContact, KbHorizontal );
} else {
_southWestContact = rpL2ContactSource;
}
}
}
if (_north or _east) {
doRp_AutoContacts( _gcell, rpL2, rpL2ContactSource, rpL2ContactTarget, DoTargetContact );
if (_north and _east) {
_northEastContact = AutoContactHTee::create( _gcell, _net, Session::getContactLayer(2) );
AutoSegment::create( rpL2ContactTarget, _northEastContact, KbHorizontal );
} else {
if (_north) {
_northEastContact = AutoContactTurn::create( _gcell, _net, Session::getContactLayer(2) );
AutoSegment::create( rpL2ContactTarget, _northEastContact, KbHorizontal );
} else {
_northEastContact = rpL2ContactTarget;
}
}
}
ltraceout(99);
}
void GCellTopology::_do_xG_xM1_xM3 ()
{
ltrace(99) << "_do_xG_" << _connexity.fields.M1
<< "M1_" << _connexity.fields.M3
<< "M3() [G:" << _connexity.fields.globals << " Managed Configuration]" << endl;
ltracein(99);
ltrace(99) << "_connexity: " << _connexity.connexity << endl;
ltrace(99) << "_north: " << _north << endl;
ltrace(99) << "_south: " << _south << endl;
ltrace(99) << "_east: " << _east << endl;
ltrace(99) << "_west: " << _west << endl;
Component* rpM3 = NULL;
if (_routingPads[0]->getLayer() == Session::getRoutingLayer(2))
rpM3 = _routingPads[0];
sort( _routingPads.begin(), _routingPads.end(), SortRpByX(NoFlags) ); // increasing X.
for ( unsigned int i=1 ; i<_routingPads.size() ; ++i ) {
AutoContact* leftContact = doRp_Access( _gcell, _routingPads[i-1], HAccess );
AutoContact* rightContact = doRp_Access( _gcell, _routingPads[i ], HAccess );
AutoSegment::create( leftContact, rightContact, KbHorizontal );
if (not rpM3 and (_routingPads[i]->getLayer() == Session::getRoutingLayer(2)))
rpM3 = _routingPads[i];
}
AutoContact* unusedContact = NULL;
if (rpM3) {
// At least one M3 RoutingPad is present: use it.
if (_west and not _south) {
_southWestContact = doRp_Access( _gcell, _routingPads[0], HAccess );
} else if (not _west and _south) {
doRp_AutoContacts( _gcell, rpM3, _southWestContact, unusedContact, DoSourceContact );
} else if (_west and _south) {
AutoContact* rpContact = NULL;
doRp_AutoContacts( _gcell, rpM3, rpContact, unusedContact, DoSourceContact );
_southWestContact = AutoContactVTee::create( _gcell, _net, Session::getContactLayer(1) );
AutoSegment::create( rpContact, _southWestContact, KbVertical );
}
if (_east and not _north) {
_northEastContact = doRp_Access( _gcell, _routingPads[_routingPads.size()-1], HAccess );
} else if (not _east and _north) {
doRp_AutoContacts( _gcell, rpM3, unusedContact, _northEastContact, DoTargetContact );
} else if (_east and _north) {
AutoContact* rpContact = NULL;
doRp_AutoContacts( _gcell, rpM3, unusedContact, rpContact, DoTargetContact );
_northEastContact = AutoContactVTee::create( _gcell, _net, Session::getContactLayer(1) );
AutoSegment::create( rpContact, _northEastContact, KbVertical );
}
} else {
Component* southWestRp = _routingPads[0];
ltrace(99) << "| Initial S-W Global RP: " << southWestRp << endl;
for ( unsigned int i=1 ; i<_routingPads.size() ; ++i ) {
if (southWestRp->getBoundingBox().getHeight() >= 4*DbU::lambda(5.0)) break;
if (_routingPads[i]->getBoundingBox().getHeight() > southWestRp->getBoundingBox().getHeight()) {
ltrace(99) << "| Better RP: " << southWestRp << endl;
southWestRp = _routingPads[i];
}
}
// All RoutingPad are M1.
if (_west and not _south) {
_southWestContact = doRp_Access( _gcell, southWestRp, HAccess );
} else if (not _west and _south) {
AutoContact* rpContact = doRp_Access( _gcell, southWestRp, HAccess );
_southWestContact = AutoContactTurn::create( _gcell, _net, Session::getContactLayer(1) );
AutoSegment::create( rpContact, _southWestContact, KbHorizontal );
} else if (_west and _south) {
AutoContact* rpContact = doRp_Access( _gcell, southWestRp, HAccess );
_southWestContact = AutoContactHTee::create( _gcell, _net, Session::getContactLayer(1) );
AutoSegment::create( rpContact, _southWestContact, KbHorizontal );
}
Component* northEastRp = _routingPads[_routingPads.size()-1];
ltrace(99) << "| Initial N-E Global RP: " << northEastRp << endl;
if (_routingPads.size() > 1) {
unsigned int i=_routingPads.size()-2;
do {
if (northEastRp->getBoundingBox().getHeight() >= 4*DbU::lambda(5.0)) break;
if (_routingPads[i]->getBoundingBox().getHeight() > northEastRp->getBoundingBox().getHeight()) {
ltrace(99) << "| Better RP: " << northEastRp << endl;
northEastRp = _routingPads[i];
}
} while (i != 0);
}
if (_east and not _north) {
_northEastContact = doRp_Access( _gcell, northEastRp, HAccess );
} else if (not _east and _north) {
AutoContact* rpContact = doRp_Access( _gcell, northEastRp, HAccess );
_northEastContact = AutoContactTurn::create( _gcell, _net, Session::getContactLayer(1) );
AutoSegment::create( rpContact, _northEastContact, KbHorizontal );
} else if (_east and _north) {
AutoContact* rpContact = doRp_Access( _gcell, northEastRp, HAccess );
_northEastContact = AutoContactHTee::create( _gcell, _net, Session::getContactLayer(1) );
AutoSegment::create( rpContact, _northEastContact, KbHorizontal );
}
}
ltraceout(99);
}
void GCellTopology::_do_xG_xM2 ()
{
ltrace(99) << "_do_"
<< _connexity.fields.globals << "G_"
<< _connexity.fields.M2 << "M2() [Managed Configuration - x]" << endl;
ltracein(99);
Component* biggestRp = _routingPads[0];
for ( unsigned int i=1 ; i<_routingPads.size() ; ++i ) {
doRp_StairCaseH( _gcell, _routingPads[i-1], _routingPads[i] );
if (_routingPads[i]->getBoundingBox().getWidth() > biggestRp->getBoundingBox().getWidth())
biggestRp = _routingPads[i];
}
AutoContact* unusedContact = NULL;
if (_west and not _south) {
doRp_AutoContacts( _gcell, _routingPads[0], _southWestContact, unusedContact, DoSourceContact );
} else if (not _west and _south) {
_southWestContact = doRp_Access( _gcell, biggestRp, NoFlags );
} else if (_west and _south) {
AutoContact* rpContact = doRp_Access( _gcell, biggestRp, NoFlags );
_southWestContact = AutoContactVTee::create( _gcell, _net, Session::getContactLayer(1) );
AutoSegment::create( rpContact, _southWestContact, KbVertical );
}
if (_east and not _north) {
doRp_AutoContacts( _gcell, _routingPads[_routingPads.size()-1], _northEastContact, unusedContact, DoSourceContact );
} else if (not _east and _north) {
_northEastContact = doRp_Access( _gcell, biggestRp, NoFlags );
} else if (_east and _north) {
AutoContact* rpContact = doRp_Access( _gcell, biggestRp, NoFlags );
_northEastContact = AutoContactVTee::create( _gcell, _net, Session::getContactLayer(1) );
AutoSegment::create( rpContact, _northEastContact, KbVertical );
}
ltraceout(99);
}
void GCellTopology::_do_1G_1M3 ()
{
ltrace(99) << "_do_1G_1M3() [Optimised Configuration]" << endl;
ltracein(99);
unsigned int flags = (_east or _west) ? HAccess : NoFlags;
flags |= (_north) ? DoTargetContact : NoFlags;
flags |= (_south) ? DoSourceContact : NoFlags;
doRp_AutoContacts( _gcell
, _routingPads[0]
, _southWestContact
, _northEastContact
, flags
);
if (not _southWestContact) _southWestContact = _northEastContact;
if (not _northEastContact) _northEastContact = _southWestContact;
ltrace(99) << "_southWest: " << _southWestContact << endl;
ltrace(99) << "_northEast: " << _northEastContact << endl;
if (flags & HAccess) {
// HARDCODED VALUE.
if (_routingPads[0]->getBoundingBox().getHeight() < DbU::lambda(15)) {
AutoContact* subContact = AutoContactTurn::create( _gcell, _net, Session::getContactLayer(1) );
AutoSegment::create( _southWestContact, subContact, KbVertical );
_southWestContact = _northEastContact = subContact;
}
} else {
if (_sourceContact) {
if (_sourceContact->getX() != _southWestContact->getX()) {
AutoContactTurn* turn1 = AutoContactTurn::create( _gcell, _net, Session::getContactLayer(1) );
AutoContactTurn* turn2 = AutoContactTurn::create( _gcell, _net, Session::getContactLayer(1) );
AutoSegment::create( _southWestContact, turn1, KbVertical );
AutoSegment::create( turn1 , turn2, KbHorizontal );
_southWestContact = _northEastContact = turn2;
}
}
}
ltraceout(99);
}
void GCellTopology::_do_xG_xM3 ()
{
ltrace(99) << "_do_xG_" << _connexity.fields.M3
<< "M3() [Managed Configuration]" << endl;
ltracein(99);
ltrace(99) << "_west:" << _west << endl;
ltrace(99) << "_east:" << _east << endl;
ltrace(99) << "_south:" << _south << endl;
ltrace(99) << "_north:" << _north << endl;
sort( _routingPads.begin(), _routingPads.end(), SortRpByY(NoFlags) ); // increasing Y.
for ( unsigned int i=1 ; i<_routingPads.size() ; i++ ) {
doRp_StairCaseV( _gcell, _routingPads[i-1], _routingPads[i] );
}
AutoContact* unusedContact = NULL;
Component* rp = _routingPads[0];
if (_west and not _south) {
_southWestContact = doRp_Access( _gcell, rp, HAccess );
} else if (not _west and _south) {
doRp_AutoContacts( _gcell, rp, _southWestContact, unusedContact, DoSourceContact );
if (_sourceContact) {
if (_sourceContact->getX() != _southWestContact->getX()) {
ltrace(200) << "Misaligned South: _source:" << DbU::getValueString(_sourceContact->getX())
<< "_southWest:" << DbU::getValueString(_southWestContact->getX()) << endl;
AutoContactTurn* turn1 = AutoContactTurn::create( _gcell, _net, Session::getContactLayer(1) );
AutoContactTurn* turn2 = AutoContactTurn::create( _gcell, _net, Session::getContactLayer(1) );
AutoSegment::create( _southWestContact, turn1, KbVertical );
AutoSegment::create( turn1 , turn2, KbHorizontal );
_southWestContact = turn2;
}
}
} else if (_west and _south) {
AutoContact* rpContact = NULL;
doRp_AutoContacts( _gcell, rp, rpContact, unusedContact, DoSourceContact );
_southWestContact = AutoContactVTee::create( _gcell, _net, Session::getContactLayer(1) );
AutoSegment::create( rpContact, _southWestContact, KbVertical );
}
rp = _routingPads[_routingPads.size()-1];
if (_east and not _north) {
_northEastContact = doRp_Access( _gcell, rp, HAccess );
} else if (not _east and _north) {
doRp_AutoContacts( _gcell, rp, unusedContact, _northEastContact, DoTargetContact );
if (_sourceContact) {
if (_sourceContact->getX() != _northEastContact->getX()) {
ltrace(200) << "Misaligned North: _source:" << DbU::getValueString(_sourceContact->getX())
<< "_southWest:" << DbU::getValueString(_northEastContact->getX()) << endl;
AutoContactTurn* turn1 = AutoContactTurn::create( _gcell, _net, Session::getContactLayer(1) );
AutoContactTurn* turn2 = AutoContactTurn::create( _gcell, _net, Session::getContactLayer(1) );
AutoSegment::create( _northEastContact, turn1, KbVertical );
AutoSegment::create( turn1 , turn2, KbHorizontal );
_northEastContact = turn2;
}
}
} else if (_east and _north) {
AutoContact* rpContact = NULL;
doRp_AutoContacts( _gcell, rp, unusedContact, rpContact, DoTargetContact );
_northEastContact = AutoContactVTee::create( _gcell, _net, Session::getContactLayer(1) );
AutoSegment::create( rpContact, _northEastContact, KbVertical );
}
ltraceout(99);
}
void singleGCell ( KatabaticEngine* ktbt, Net* net )
{
ltrace(99) << "singleGCell() " << net << endl;
ltracein(99);
vector<Component*> rpM1s;
Component* rpM2 = NULL;
forEach ( RoutingPad*, irp, net->getRoutingPads() ) {
if (Session::getRoutingGauge()->getLayerDepth(irp->getLayer()) == 1)
rpM2 = *irp;
else
rpM1s.push_back( *irp );
}
if ((rpM1s.size() < 2) and not rpM2) {
cerr << Error( "For %s, less than two Plugs/Pins (%d)."
, getString(net).c_str()
, rpM1s.size() ) << endl;
ltraceout(99);
return;
}
sort( rpM1s.begin(), rpM1s.end(), SortRpByX(NoFlags) ); // increasing X.
GCell* gcell = ktbt->getGCellGrid()->getGCell( (*rpM1s.begin ())->getCenter()
, (*rpM1s.rbegin())->getCenter() );
if (not gcell) {
cerr << Error( "No GCell under %s.", getString(rpM1s[0]).c_str() ) << endl;
ltraceout(99);
return;
}
ltrace(80) << "singleGCell " << gcell << endl;
AutoContact* turn = NULL;
AutoContact* source = NULL;
AutoContact* target = NULL;
for ( size_t irp=1 ; irp<rpM1s.size() ; ++irp ) {
GCellTopology::doRp_AutoContacts( gcell, rpM1s[irp-1], source, turn, DoSourceContact );
GCellTopology::doRp_AutoContacts( gcell, rpM1s[irp ], target, turn, DoSourceContact );
AutoSegment::create( source, target, KbHorizontal );
}
if (rpM2) {
GCellTopology::doRp_AutoContacts( gcell, rpM1s[0], source, turn, DoSourceContact );
GCellTopology::doRp_AutoContacts( gcell, rpM2 , target, turn, DoSourceContact );
turn = AutoContactTurn::create( gcell, rpM2->getNet(), Session::getContactLayer(1) );
AutoSegment::create( source, turn , KbHorizontal );
AutoSegment::create( turn , target, KbVertical );
}
ltraceout(99);
}
} // Anonymous namespace.
namespace Katabatic {
using Hurricane::ltracein;
using Hurricane::ltraceout;
using Hurricane::ltracelevel;
using Hurricane::Name;
using Hurricane::DebugSession;
using Hurricane::Error;
using Hurricane::Warning;
using Hurricane::Bug;
using CRL::addMeasure;
using CRL::getMeasure;
void KatabaticEngine::_loadGrByNet ()
{
cmess1 << " o Loading Nets global routing from Knik." << endl;
cmess1 << Dots::asDouble(" - Saturation",getMeasure<double>(getCell(),"Sat.")->getData()) << endl;
startMeasures();
Session::open( this );
NetSet::iterator inet = _routingNets.begin();
while ( inet != _routingNets.end() ) {
DebugSession::open( *inet, 80 );
_loadNetGlobalRouting( *(inet++) );
Session::revalidate();
DebugSession::close();
}
#if defined(CHECK_DATABASE)
_check ( "after Katabatic loading" );
#endif
_print();
Session::close();
stopMeasures();
printMeasures( "load" );
addMeasure<size_t>( getCell(), "Globals", AutoSegment::getGlobalsCount() );
addMeasure<size_t>( getCell(), "Edges" , AutoSegment::getAllocateds() );
}
void KatabaticEngine::_loadNetGlobalRouting ( Net* net )
{
ltrace(100) << "Katabatic::_loadNetGlobalRouting( " << net << " )" << endl;
ltracein(99);
ForkStack forks;
Hook* sourceHook = NULL;
AutoContact* sourceContact = NULL;
lookupClear();
RoutingPads routingPads = net->getRoutingPads();
size_t degree = routingPads.getSize();
if (degree == 0) {
cmess2 << Warning("Net \"%s\" do not have any RoutingPad (ignored)."
,getString(net->getName()).c_str()) << endl;
ltraceout(99);
return;
}
if (degree < 2) {
#if 0
if ( !getDemoMode() )
cmess2 << Warning("Net \"%s\" have less than 2 plugs/pins (ignored)."
,getString(net->getName()).c_str()) << endl;
#endif
ltraceout(99);
return;
}
ltracein(99);
Hook* startHook = NULL;
GCell* lowestGCell = NULL;
size_t unconnecteds = 0;
size_t connecteds = 0;
GCellTopology::init( degree );
ltrace(99) << "Start RoutingPad Ring" << endl;
forEach ( RoutingPad*, startRp, routingPads ) {
bool segmentFound = false;
forEach ( Hook*, ihook, startRp->getBodyHook()->getHooks() ) {
ltrace(99) << "Component " << ihook->getComponent() << endl;
Segment* segment = dynamic_cast<Segment*>( ihook->getComponent() );
if (segment) {
++connecteds;
segmentFound = true;
GCellTopology gcellConf ( getGCellGrid(), *ihook, NULL );
if (gcellConf.getStateG() == 1) {
if ( (lowestGCell == NULL) or (lowestGCell->getIndex() > gcellConf.getGCell()->getIndex()) ) {
ltrace(99) << "Starting from GCell " << gcellConf.getGCell() << endl;
lowestGCell = gcellConf.getGCell();
startHook = *ihook;
}
break;
}
}
}
unconnecteds += (segmentFound) ? 0 : 1;
if ( (unconnecteds > 10) and (connecteds == 0) ) {
cerr << Warning("More than 10 unconnected RoutingPads (%u) on %s, missing global routing?"
,unconnecteds, getString(net->getName()).c_str() ) << endl;
_routingNets.erase( net );
ltraceout(99);
return;
}
// Uncomment the next line to disable the lowest GCell search.
// (takes first GCell with exactly one global).
//if (startHook) break;
}
ltraceout(99);
if (startHook == NULL) { singleGCell( this, net ); ltraceout(99); return; }
GCellTopology startGCellConf ( getGCellGrid(), startHook, NULL );
startGCellConf.construct( forks );
sourceHook = forks.getFrom ();
sourceContact = forks.getContact();
forks.pop();
while ( sourceHook ) {
GCellTopology gcellConf ( getGCellGrid(), sourceHook, sourceContact );
gcellConf.construct( forks );
sourceHook = forks.getFrom();
sourceContact = forks.getContact();
forks.pop();
ltrace(99) << "Popping (from) " << sourceHook << endl;
ltrace(99) << "Popping (to) " << sourceContact << endl;
}
lookupClear();
Session::revalidate();
#if THIS_IS_DISABLED
set<AutoSegment*>::iterator iover = overconstraineds.begin();
for ( ; iover != overconstraineds.end() ; ++iover ) {
(*iover)->makeDogLeg( (*iover)->getAutoSource()->getGCell(), true );
}
#endif
Session::revalidate();
GCellTopology::fixSegments();
ltraceout(99);
}
} // Katabatic namespace.