ed557d9027
* Change: In Knik, in Vertex, add a "blocked" flag to signal disabled vertexes in the grid (must not be used by the global router). Modificate the Graph::getVertex() method so that when a vertex is geometrically queried, if is a blocked one, return a non-blocked neighbor. This mechanism is introduced to, at last, prevent the global router to go *under* the pad in case of a commplete chip. * New: In Katabatic, in AutoSegment, a new state has been added: "reduced". A reduced segment is in the same layer as it's perpandiculars. To be reduced, a segments has to be connected on source & target to AutoContactTurn, both of the perpandiculars must be of the same layer (below or above) and it's length must not exceed one pitch in the perpandicular direction. To reduce an AutoSegment, call ::reduce() and to revert the state, call ::raise(). Two associated predicates are associated: ::canReduce() and ::mustRaise(). Note: No two adjacent segments can be reduced at the same time. * Bug: In Katabatic, in GCellTopology, add a new method ::doRp_AccessPad() to connect to the pads. Create wiring, fixed and non managed by Katabatic, to connect the pad connector layer to the lowest routing layers (depth 1 & 2). The former implementation was sometimes leading to gaps (sheared contact) that *must not* occurs during the building stage. Remark: This bug did put under the light the fact that the initial wiring must be created without gaps. Gaps are closed by making doglegs on contacts. But this mechanism could only work when the database if fully initialised (the cache is up to date). Otherwise various problems arise, in the canonization process for example. * New: In Katabatic, in AutoContactTerminal::getNativeConstraintBox(), when anchored on a RoutingPad, now take account the potential rotation of the Path's transformation. Here again, for the chip's pads. * New: In Kite, support for reduced AutoSegment. TrackSegment associateds to reduced AutoSegment are *not* inserted into track to become effectively invisibles. When a segment becomes reduced, a TrackEvent is generated to remove it. Conversely when it is raised a RoutingEvent is created/rescheduled to insert it. All this is mostly managed inside the Session::revalidate() method. * New: In Kite, in KiteEngine::createGlobalGraph(), in case of a chip, mark all global routing vertexes (Knik) that are under a pad, as blockeds. * Bug: In Cumulus, in PadsCorona.Side.getAxis(), inversion between X and Y coordinate of the chip size. Did not show until a non-square chip was routed (i.e. our MIPS R3000). * Change: In Stratus1, in st_placement.py add the ClockBuffer class for backward compatibility with the MIPS32 bench. Have to review this functionnality coming from the deprecated placeAndroute.py. In st_instance.py, no longer creates the Plug ring of a Net. In my opinion it just clutter the display until the P&R is called. Can re-enable later as an option (in Unicorn). * Change: In Unicorn, in cgt.py, more reliable way of loading then running user supplied scripts. Borrowed from alliance-checker-toolkit doChip.py . |
||
---|---|---|
bootstrap | ||
coloquinte | ||
crlcore | ||
cumulus | ||
documentation | ||
equinox | ||
etesian | ||
hurricane | ||
ispd | ||
katabatic | ||
kite | ||
knik | ||
mauka | ||
metis | ||
nimbus | ||
solstice | ||
stratus1 | ||
unicorn | ||
vlsisapd | ||
.dir-locals.el | ||
.gitignore | ||
.projectile | ||
Makefile | ||
README.rst |
README.rst
.. -*- Mode: rst -*- =============== Coriolis README =============== Coriolis is a free database, placement tool and routing tool for VLSI designs. Purpose ======= Coriolis provides several tools to perform the layout of VLSI circuits. Its main components are the Hurricane database, the Etesian placer and the Kite router, but other tools can use the Hurricane database and the parsers provided. The user interface <cgt> is the prefered way to use Coriolis, but all Coriolis tools are Python modules and thus scriptables. Documentation ============= The complete documentation is available here, both in pdf & html: ./documentation/UsersGuide/UsersGuide.html ./documentation/UsersGuide/UsersGuide.pdf The documentation of the latest *stable* version is also available online. It may be quite outdated from the *devel* version. https://soc-extras.lip6.fr/en/coriolis/coriolis2-users-guide/ Building Coriolis ================= To build Coriolis, ensure the following prerequisites are met: * Python 2.7. * cmake. * boost. * bison & flex. * Qt 4 or 5. * libxml2. * A C++11 compliant compiler. The build system relies on a fixed directory tree from the root of the user currently building it. Thus first step is to get a clone of the repository in the right place. Proceed as follow: :: ego@home:~$ mkdir -p ~/coriolis-2.x/src ego@home:~$ cd ~/coriolis-2.x/src ego@home:src$ git clone https://www-soc.lip6.fr/git/coriolis.git ego@home:src$ cd coriolis If you want to use the *devel* branch: :: ego@home:coriolis$ git checkout devel Then, build the tool: :: ego@home:coriolis$ make install Coriolis gets installed at the root of the following tree: :: ~/coriolis-2.x/<OS>.<DISTRIB>/Release.Shared/install/ Where ``<OS>`` is the name of your operating system and ``<DISTRIB>`` your distribution. Using Coriolis ============== The Coriolis main interface can be launched with the command: :: ego@home:~: ~/coriolis-2.x/<OS>.<DISTRIB>/Release.Shared/install/bin/coriolis The ``coriolis`` script is tasked to guess it's location and setup appropriatly the UNIX environment, then lauch ``cgt`` (or *any* command, with the ``--run=<COMMAND>`` option). Conversely, you can setup the current shell environement for Coriolis by using the helper ``coriolisEnv.py``, then run any Coriolis tool: :: ego@home:~$ eval `~/coriolis-2.x/src/coriolis/bootstrap/coriolisEnv.py` ego@home:~$ cgt -V