coriolis/hurricane/doc/hurricane/Transformation.dox

279 lines
12 KiB
C++
Raw Blame History

// -*- C++ -*-
namespace Hurricane {
/*! \class Transformation
* \brief Transformation description (\b API)
*
* \section secTransformationIntro Introduction
*
* Transformation objects are a combination of a
* <b>translation</b> and an <b>orientation</b> defined by the
* new enumeration <b>Transformation::Orientation</b> whose
* different values are described in table below.
* The <b>orientation</b> is done <em>before</em> the
* <b>translation</b>, which is to say that the orientation is
* applied in the coordinate system of the model.
*
* The transformation formula is given by:
\f[
\Large
\left \{
\begin{array}{r c l l l l l}
x' & = & (a \times x) & + & (b \times y) & + & tx \\
y' & = & (c \times x) & + & (d \times y) & + & ty
\end{array}
\right .
\f]
* where x and y are the
* coordinates of any point, x' and y' the coordinates of the
* transformed point, tx and ty the horizontal and vertical
* components of the translation and where a, b, c and d are the
* coefficients of the matrix associated to the orientation.
* See Orientation for the value of a, b, c & d.
*
* \remark <b>Rotations are done counter clock wise</b>
*/
/*! \class Transformation::Orientation
* This enumeration defines the orientation associated to a
* transformation object.
*
* <center>
* <table class="UserDefined">
* <caption>Orientation codes and associated transformation matrix</caption>
* <tr>
* <th><center>Name</center>
* <th><center>Aspect</center>
* <th><center>Code</center>
* <th><center>Signification</center>
* <th width="6%"><center>a</center>
* <th width="6%"><center>b</center>
* <th width="6%"><center>c</center>
* <th width="6%"><center>d</center>
* <tr>
* <td><center><b>ID</b></center> <td>\image html transf-ID.png ""
* <td> <center><b>0</b></center> <td> Identity
* <td> <center>1</center> <td> <center>0</center> <td> <center>0</center> <td> <center>1</center>
* <tr>
* <td><center><b>R1</b></center> <td>\image html transf-R1.png ""
* <td> <center><b>1</b></center> <td> Simple rotation (90<39>)
* <td> <center>0</center> <td> <center>-1</center> <td> <center>1</center> <td> <center>0</center>
* <tr>
* <td><center><b>R2</b></center> <td>\image html transf-R2.png ""
* <td> <center><b>2</b></center> <td> Double rotation (180<38>)
* <td> <center>-1</center> <td> <center>0</center> <td> <center>0</center> <td> <center>-1</center>
* <tr>
* <td><center><b>R3</b></center> <td>\image html transf-R3.png ""
* <td><center><b>3</b></center><td>Triple rotation (270<37>)
* <td><center>0</center><td><center>1</center><td><center>-1</center><td><center>0</center>
* <tr>
* <td><center><b>MX</b></center> <td>\image html transf-MX.png ""
* <td> <center><b>4</b></center> <td>Horizontal symetry (Mirror X)
* <td> <center>-1 </center><td> <center>0 </center><td> <center>0 </center><td> <center>1</center>
* <tr>
* <td><center><b>XR</b></center> <td>\image html transf-XR.png ""
* <td><center><b>5</b></center><td>Horizontal symetry followed by a 90<39> rotation
* <td> <center>0</center> <td> <center>-1</center> <td> <center>-1</center> <td> <center>0</center>
* <tr>
* <td><center><b>MY</b></center><td>\image html transf-MY.png ""
* <td><center><b>6</b></center><td>Vertical symetry (Mirror Y)
* <td> <center>1</center> <td> <center>0</center> <td> <center>0</center> <td> <center>-1</center>
* <tr>
* <td><center><b>YR</b></center> <td>\image html transf-YR.png ""
* <td><center><b>7</b></center><td>Vertical symetry followed by a 90<39> rotation
* <td> <center>0</center> <td> <center>1</center> <td> <center>1</center> <td> <center>0</center>
* </table>
* </center>
*
* The transformation formula is given by:
\f[
\Large
\left \{
\begin{array}{r c l l l l l}
x' & = & (a \times x) & + & (b \times y) & + & tx \\
y' & = & (c \times x) & + & (d \times y) & + & ty
\end{array}
\right .
\f]
* where x and y are the
* coordinates of any point, x' and y' the coordinates of the
* transformed point, tx and ty the horizontal and vertical
* components of the translation and where a, b, c and d are the
* coefficients of the matrix associated to the orientation.
*
*/
/*! \function Transformation::Transformation();
* Default constructor : The translation is null and the
* orientation is equal to <b>ID</b>.
*/
/*! \function Transformation::Transformation(const Point& translation, const Transformation::Orientation& orientation=Orientation::ID);
* Builds a transformation whose translation part is defined by
* the argument \c \<translation\> and whose default orientation is
* <b>ID</b>.
*/
/*! \function Transformation::Transformation(const DbU::Unit& tx, const DbU::Unit& ty, const Transformation::Orientation& orientation=Orientation::ID);
* Builds a transformation whose translation part is defined by
* the arguments \c \<xt\> and \c \<ty\> and whose orientation
* is defined by \c \<orientation\> (\c \<ID\> by default).
*/
/*! \function Transformation::Transformation(const Point& translation, const Transformation::Orientation& orientation);
* Builds a transformation whose translation part is defined by
* the argument \c \<translation\> and whose orientation is
* defined by \c \<orientation\>.
*/
/*! \function Transformation::Transformation(const Transformation& transformation);
* Copy constructor.
*/
/*! \function Transformation& Transformation::operator=(const Transformation& transformation);
* Assignment operator.
*/
/*! \function bool Transformation::operator==(const Transformation& transformation) const;
* Two transformations are identical if their translations and
* orientation are identical.
*/
/*! \function bool Transformation::operator!=(const Transformation& transformation) const;
* Two transformations are different if eitheir their
* translations or orientation differ.
*/
/*! \function const DbU::Unit& Transformation::getTx() const;
* \Return the horizontal component of the translation.
*/
/*! \function const DbU::Unit& Transformation::getTy() const;
* \Return the vertical component of the translation.
*/
/*! \function Point Transformation::getTranslation() const;
* \Return the translation component of the transformation.
*/
/*! \function const Translation::Orientation& Transformation::getOrientation() const;
* \Return the orientation of the transformation (may be used in a
* switch).
*/
/*! \function DbU::Unit Transformation::getX(const DbU::Unit& x, const DbU::Unit& y) const;
* \Return the point abscissa resulting of the transformation
* application on the point defined by \c \<x\> et \c \<y\>.
*/
/*! \function DbU::Unit Transformation::getY(const DbU::Unit& x, const DbU::Unit& y) const;
* \Return the point ordinate resulting of the transformation
* application on the point defined by \c \<x\> et \c \<y\>.
*/
/*! \function DbU::Unit Transformation::getX(const Point& point) const;
* \Return the point abscissa resulting of the transformation
* application on \c \<point\>.
*/
/*! \function DbU::Unit Transformation::getY(const Point& point) const;
* \Return the point ordinate resulting of the transformation
* application on \c \<point\>.
*/
/*! \function DbU::Unit Transformation::getDx(const DbU::Unit& dx, const DbU::Unit& dy) const;
* \Return the horizontal component of the vector resulting from the
* application of the transformation on the vector defined by
* \c \<dx\> et \c \<dy\>.
*/
/*! \function DbU::Unit Transformation::getDy(const DbU::Unit& dx, const DbU::Unit& dy) const;
* \Return the vertical component of the vector resulting from the
* application of the transformation on the vector defined by
* \c \<dx\> et \c \<dy\>.
*/
/*! \function Point Transformation::getPoint(const DbU::Unit& x, const DbU::Unit& y) const;
* \Return the point resulting from the application of the
* transformation on the point defined by \c \<dx\> et
* \c \<dy\>.
*/
/*! \function Point Transformation::getPoint(const Point& point) const;
* \Return the point resulting from the application of the
* transformation on \c \<point\>.
*/
/*! \function Box Transformation::getBox(const DbU::Unit& x1, const DbU::Unit& y1, const DbU::Unit& x2, const DbU::Unit& y2) const;
* \Return the box resulting from the application of the transformation
* on the box defined by \c \<x1\>, \c \<y1\>, \c \<x2\> et
* \c \<y2\>.
*/
/*! \function Box Transformation::getBox(const Point& point1, const Point& point2) const;
* \Return the box resulting from the application of the transformation
* on the box defined by \c \<point1\> et \c \<point2\>.
*/
/*! \function Box Transformation::getBox(const Box& box) const;
* \Return the box resulting from the application of the transformation
* on the box \c \<box\>.
*/
/*! \function Transformation Transformation::getTransformation(const Transformation& transformation) const;
* \Return the transformation resulting from the application of the
* transformation on the transformation \c \<transformation\>.
*/
/*! \function Transformation Transformation::getInvert() const;
* \Return the inverse transformation.
*/
/*! \function Transformation& Transformation::invert();
* inverts the transformation \c \<this\> and returns a
* reference to it in order to apply in sequence a new function.
*/
/*! \section secTransformationTransformers Transformers
*
*
* <b>Transformation::applyOn</b>
*
* <b>Transformation::applyOn</b>
*
* <b>Transformation::applyOn</b>
*
* <b>Transformation::applyOn</b>
*/
/*! \function void Transformation::applyOn(DbU::Unit& x, DbU::Unit& y) const;
* Applies the transformation on the coordinates given in
* arguments.
*/
/*! \function void Transformation::applyOn(Point& point) const;
* Applies the transformation on the point given in argument.
*/
/*! \function void Transformation::applyOn(Box& box) const;
* Applies the transformation on the box given in argument.
*/
/*! \function void Transformation::applyOn(Transformation& transformation) const;
* Applies the transformation on the transformation given in
* argument. This last one becomes then the transformation
* resulting of the product of those two.
*/
}