Go to file
Jean-Paul Chaput dbb16b618f Correct managment of macro block regarding to P&R.
* Change: In NetBuilder::getPositions(), ordering of source/target points
    is now integrated to this function instead of left to the caller.
    In case of real (non-symbolic) routing gauge, skrink the ends of
    half the wire width.
* Change: In NetBuilderHV::doRp_AutoContacts(), in case of non-METAL1
    RoutingPad, put the axis of the segment on the nearest track.
    Issue a warning if we have to shift, as it may be a potential
    source of routing problems.
* New: Anabatic::Session::getNearestTrackaAxis(), proxy to compute
    track positions, knowing the design abutment box.
* Bug: In Katana::PreProcess::propagateCagedConstraints(), when
    looking at all the slave components anchoreds on a RoutingPad,
    if they do not have an AutoSegment lookup, skip them instead
    of crashing.
* New: In cumulus/plugins.block.Block.placeMacro(), new method to
    place a macro cell, partly delegating to the Macro block wrapper.
      Must be called *after* both core and corona abutment boxes have
    been set.
      Adjust the macro block position so the METAL2 & METAL3 pins
    are exactly on pitch regarding the full routing grid. The reference
    being the corona.
      A shift, less than one pitch may be applied, leading in some
    cases of overlapping abutment boxes. But this shouldn't be a
    problem.
      The macro to place is designated through a path of instances
    names, rooted at the *core* (not the corona). Meaning that the
    head instance must be one of the core.
* Change: In cumulus/plugins.chip.Chip, the complete chip I/O pads
    plus corona and core placement is moved out from doPnR() and
    put into doChipFloorplan(). It is now mandatory to call this
    method *before* doPnR().
      Those methods are now cleanly separated so we can perform macro
    block placement or any inner core floorplaning operations between
    them.
* Change:  In cumulus/plugins.macro.Macro, instead of creating large
    pads for the I/O pins so whatever the block position, they will
    be under a grid point, create a simple dogleg to put them on
    grid.
      To ensure that they are "on grid", the block pins must be
    in METAL2 (horizontal E/W) or METAL3 (vertical N/S) and the block
    is assumed to be placed so the bottom left corner of it's
    abutment box is exactly on one grid point for M2/M3.
      This should be done by Block.placeMacro().
2021-03-14 16:16:54 +01:00
anabatic Correct managment of macro block regarding to P&R. 2021-03-14 16:16:54 +01:00
bootstrap Added utlity script bootstrap/resetDoc.sh to revert the generated doc. 2020-11-14 18:54:23 +01:00
bora Bug fix, reset Cell flags after unrouting an analog design. 2020-04-30 00:38:32 +02:00
coloquinte Add updators to modify cell sizes on the fly in Coloquinte. 2021-01-13 19:10:31 +01:00
crlcore Bug: Forgot to export Pins in GdsDriver. 2021-03-02 12:47:20 +01:00
cumulus Correct managment of macro block regarding to P&R. 2021-03-14 16:16:54 +01:00
documentation Updated PDFs, November 13, 2020 (15:02). 2020-11-13 15:02:56 +01:00
equinox Compliance with Debian 10 Buster. 2020-03-19 18:18:35 +01:00
etesian New method EtesianEngine::flattenPower() to build power abstract. 2021-03-02 12:18:11 +01:00
flute Added support for loading user defined global routing in Anabatic. 2020-09-30 11:55:39 +02:00
hurricane Allow Hurricane::Query to stop on master cells with designated flags. 2021-03-02 12:17:13 +01:00
ispd Various typos correction (courtesy of G. Gouvine). 2019-07-30 13:13:57 +02:00
karakaze Correct Cell object detection while reading Oceane parameters. 2020-05-27 16:11:53 +02:00
katabatic Documentation cleanup & rebuild. 2020-11-12 14:22:31 +01:00
katana Correct managment of macro block regarding to P&R. 2021-03-14 16:16:54 +01:00
kite Documentation cleanup & rebuild. 2020-11-12 14:22:31 +01:00
knik Documentation cleanup & rebuild. 2020-11-12 14:22:31 +01:00
lefdef Migrating doc from Sphinx towards Pelican. 2020-02-03 17:44:15 +01:00
mauka Compliance with Debian 10 Buster. 2020-03-19 18:18:35 +01:00
metis Compliance with Debian 10 Buster. 2020-03-19 18:18:35 +01:00
nimbus Compliance with Debian 10 Buster. 2020-03-19 18:18:35 +01:00
oroshi Documentation cleanup & rebuild. 2020-11-12 14:22:31 +01:00
solstice Compliance with Debian 10 Buster. 2020-03-19 18:18:35 +01:00
stratus1 Documentation cleanup & rebuild. 2020-11-12 14:22:31 +01:00
tutorial More PEP8 compliant Python code. Start rewrite Python/C++ wrappers. 2020-04-08 11:24:42 +02:00
unicorn Documentation cleanup & rebuild. 2020-11-12 14:22:31 +01:00
unittests Enhanced techno rule support. Inspector support bug fix. 2020-07-21 11:22:04 +02:00
vlsisapd Documentation cleanup & rebuild. 2020-11-12 14:22:31 +01:00
.gitignore Various bug corrections to pass the alliance-check-toolkit reference benchs. 2019-05-24 23:57:22 +02:00
Makefile Enabling the user to choose the devtoolset it needs. 2019-03-04 14:20:13 +01:00
README.rst Update doc link for the new Pelican generated one. 2020-02-10 13:38:06 +01:00

README.rst

.. -*- Mode: rst -*-


===============
Coriolis README
===============

Coriolis is a free database, placement tool and routing tool for VLSI design.


Purpose
=======

Coriolis provides several tools to perform the layout of VLSI circuits.  Its
main components are the Hurricane database, the Etesian placer and the Katana
router, but other tools can use the Hurricane database and the parsers
provided.

The user interface <cgt> is the prefered way to use Coriolis, but all
Coriolis tools are Python modules and thus scriptable.


Documentation
=============

The complete documentation is available here, both in pdf & html:

   ./documentation/output/html
   ./documentation/UsersGuide/UsersGuide.pdf

The documentation of the latest *stable* version is also
available online. It may be quite outdated from the *devel*
version.

    https://www-soc.lip6.fr/sesi-docs/coriolis2-docs/coriolis2/en/latex/users-guide/UsersGuide.pdf


Building Coriolis
=================

To build Coriolis, ensure the following prerequisites are met:

* Python 2.7.
* cmake.
* boost.
* bison & flex.
* Qt 4 or 5.
* libxml2.
* RapidJSON
* A C++11 compliant compiler.

The build system relies on a fixed directory tree from the root
of the user currently building it. Thus first step is to get a clone of
the repository in the right place. Proceed as follow: ::

   ego@home:~$ mkdir -p ~/coriolis-2.x/src/support
   ego@home:~$ cd ~/coriolis-2.x/src/support
   ego@home:~$ git clone http://github.com/miloyip/rapidjson
   ego@home:~$ git checkout ec322005072076ef53984462fb4a1075c27c7dfd
   ego@home:~$ cd ~/coriolis-2.x/src
   ego@home:src$ git clone https://www-soc.lip6.fr/git/coriolis.git
   ego@home:src$ cd coriolis

If you want to use the *devel* branch: ::

    ego@home:coriolis$ git checkout devel

Then, build the tool: ::

    ego@home:coriolis$ make install

Coriolis gets installed at the root of the following tree: ::

    ~/coriolis-2.x/<OS>.<DISTRIB>/Release.Shared/install/

Where ``<OS>`` is the name of your operating system and ``<DISTRIB>`` your
distribution.


Using Coriolis
==============

The Coriolis main interface can be launched with the command: ::

    ego@home:~: ~/coriolis-2.x/<OS>.<DISTRIB>/Release.Shared/install/bin/coriolis

The ``coriolis`` script detects its location and setups the UNIX
environment appropriately, then lauches ``cgt`` (or *any* command, with the
``--run=<COMMAND>`` option).

Conversely, you can setup the current shell environement for Coriolis by 
using the helper ``coriolisEnv.py``, then run any Coriolis tool: ::

    ego@home:~$ eval `~/coriolis-2.x/src/coriolis/bootstrap/coriolisEnv.py`
    ego@home:~$ cgt -V