coriolis/coloquinte/src/topologies.cxx

536 lines
21 KiB
C++

#include "coloquinte/topologies.hxx"
#include "coloquinte/circuit_helper.hxx"
#include "coloquinte/union_find.hxx"
#include <algorithm>
#include <cassert>
#include <set>
#include <functional>
#include <cmath>
#include <array>
namespace coloquinte{
using edge_t = std::pair<index_t, index_t>;
namespace{
struct minmax_t{
int_t min, max;
minmax_t(int_t mn, int_t mx) : min(mn), max(mx) {}
minmax_t() {}
void merge(minmax_t const o){
min = std::min(o.max, min);
max = std::max(o.min, max);
}
void merge(int_t const p){
min = std::min(p, min);
max = std::max(p, max);
}
};
}
namespace steiner_lookup{
template<int pin_cnt>
int_t Hconnectivity<pin_cnt>::get_wirelength(std::array<point<int_t>, pin_cnt> const sorted_points) const{
std::array<minmax_t, pin_cnt-2> minmaxs;
for(index_t i=0; i<pin_cnt-2; ++i){
minmaxs[i] = minmax_t(sorted_points[i+1].y, sorted_points[i+1].y);
}
std::uint8_t b_con = extremes & 15u, e_con = extremes >> 4;
minmaxs[b_con].merge(sorted_points.front() .y);
minmaxs[e_con].merge(sorted_points.back() .y);
for(std::uint8_t const E : connexions){
minmaxs[(E >> 4)].merge(minmaxs[(E & 15u)]);
}
int_t cost = sorted_points.back().x - sorted_points.front().x + sorted_points[b_con+1].x - sorted_points[e_con+1].x;
for(std::uint8_t const E : connexions){
cost += std::abs((float)(sorted_points[(E >> 4) +1].x - sorted_points[(E & 15u) +1].x));
}
for(index_t i=0; i<pin_cnt-2; ++i){
cost += (minmaxs[i].max - minmaxs[i].min);
}
return cost;
}
template<int pin_cnt>
std::array<edge_t, pin_cnt-1> Hconnectivity<pin_cnt>::get_x_topology(std::array<point<int_t>, pin_cnt> const sorted_points) const{
std::array<edge_t, pin_cnt-1> ret;
std::uint8_t b_con = extremes & 15u, e_con = extremes >> 4;
ret[0] = edge_t(0, b_con+1);
ret[1] = edge_t(pin_cnt-1, e_con+1);
for(index_t i=0; i<pin_cnt-3; ++i){
std::uint8_t E = connexions[i];
ret[i+2] = edge_t((E & 15u) +1, (E >> 4) +1);
}
return ret;
}
} // End namespace steiner_lookup
namespace {
template<int n, int array_size>
int_t get_wirelength_from_sorted(std::vector<point<int_t> > const & pins, std::array<steiner_lookup::Hconnectivity<n>, array_size> const & lookups){
std::array<point<int_t>, n> points;
std::copy_n(pins.begin(), n, points.begin());
int_t cost = std::numeric_limits<int_t>::max();
for(auto const L : lookups){
cost = std::min(cost, L.get_wirelength(points));
}
return cost;
}
std::int64_t get_wirelength_from_topo(std::vector<point<int_t> > const & points, std::vector<std::pair<index_t, index_t> > Htopo){
std::vector<minmax_t> minmaxs(points.size());
for(index_t i=0; i<points.size(); ++i){
minmaxs[i] = minmax_t(points[i].y, points[i].y);
}
for(auto const E : Htopo){
minmaxs[E.second].merge(minmaxs[E.first]);
}
std::int64_t cost = 0;
for(edge_t const E : Htopo){
cost += std::abs((float)(points[E.first].x - points[E.second].x));
}
for(index_t i=0; i<points.size(); ++i){
cost += (minmaxs[i].max - minmaxs[i].min);
}
return cost;
}
struct indexed_pt : point<int_t>{
index_t index;
indexed_pt(point<int_t> pt, index_t pos) : point<int_t>(pt), index(pos) {}
indexed_pt(){}
};
template<int n, int array_size>
std::vector<std::pair<index_t, index_t> > get_topology_from_sorted(std::vector<point<int_t> > const & pins, std::array<steiner_lookup::Hconnectivity<n>, array_size> const & lookups){
std::array<point<int_t>, n> points;
std::copy_n(pins.begin(), n, points.begin());
// Find the horizontal topology with the smallest cost
int_t cost = std::numeric_limits<int_t>::max();
index_t ind = std::numeric_limits<index_t>::max();
for(index_t i=0; i<array_size; ++i){
int_t this_cost = lookups[i].get_wirelength(points);
if(this_cost < cost){
cost = this_cost;
ind = i;
}
}
assert(ind != std::numeric_limits<index_t>::max());
auto ret = lookups[ind].get_x_topology(points);
return std::vector<std::pair<index_t, index_t> >(ret.begin(), ret.end());
}
std::vector<edge_t> get_vertical_topology(std::vector<point<int_t> > pins, std::vector<edge_t> const & Htopo){
index_t const null_ind = std::numeric_limits<index_t>::max();
std::vector<indexed_pt> ipoints(pins.size());
for(index_t i=0; i<pins.size(); ++i){
ipoints[i] = indexed_pt(pins[i], i);
}
std::sort(ipoints.begin(), ipoints.end(), [](indexed_pt a , indexed_pt b){return a.y < b.y; });
// First pin with y ordering
std::vector<index_t> min_y_pin(pins.size());
for(index_t i=0; i<ipoints.size(); ++i){
min_y_pin[ipoints[i].index] = i;
}
std::vector<index_t> max_y_pin = min_y_pin;
std::vector<index_t> nxt_y_pin(pins.size(), null_ind);
std::vector<edge_t> ret;
for(auto const E : Htopo){
// Assuming a correctly ordered horizontal topology where the first node of the edge is never visited again
index_t f=E.first, s=E.second;
index_t first_yf=min_y_pin[f], first_ys=min_y_pin[s];
// Push the edges from the first and insert one of its elements in the second's linked structure
if(max_y_pin[f] < min_y_pin[s] or max_y_pin[s] < min_y_pin[f]){
for(index_t yf=first_yf; nxt_y_pin[yf] != null_ind; yf = nxt_y_pin[yf]){
ret.push_back(edge_t(yf, nxt_y_pin[yf]));
}
if(max_y_pin[f] < min_y_pin[s]){
nxt_y_pin[max_y_pin[f]] = min_y_pin[s];
min_y_pin[s] = max_y_pin[f];
}
else if(max_y_pin[s] < min_y_pin[f]){
nxt_y_pin[max_y_pin[s]] = min_y_pin[f];
max_y_pin[s] = min_y_pin[f];
nxt_y_pin[min_y_pin[f]] = null_ind;
}
else{
abort();
}
}
else{ // Need to chose a pin with two connexions because there will be no L route
// One pin from the second is in the middle of the first
if(max_y_pin[f] > max_y_pin[s]){
index_t middle_pin = max_y_pin[s];
index_t yf=first_yf;
// Make the first connexions
for(; nxt_y_pin[yf] < middle_pin; yf = nxt_y_pin[yf]){
ret.push_back(edge_t(yf, nxt_y_pin[yf]));
}
// Make the two connexions with the new pin
ret.push_back(edge_t(yf, middle_pin));
yf = nxt_y_pin[yf];
ret.push_back(edge_t(yf, middle_pin));
// Finish the connexions
for(; nxt_y_pin[yf] != null_ind; yf = nxt_y_pin[yf]){
ret.push_back(edge_t(yf, nxt_y_pin[yf]));
}
}
// One pin from the first is in the middle of the second
else{
for(index_t yf=first_yf; nxt_y_pin[yf] != null_ind; yf = nxt_y_pin[yf]){
ret.push_back(edge_t(yf, nxt_y_pin[yf]));
}
index_t middle_pin = max_y_pin[f];
// Find the place where we can insert this pin
index_t ys=first_ys;
for(; nxt_y_pin[ys] < middle_pin; ys = nxt_y_pin[ys]);
nxt_y_pin[middle_pin] = nxt_y_pin[ys];
nxt_y_pin[ys] = middle_pin;
}
}
}
// The last visited gives the remaining connexions to push
for(index_t yf=min_y_pin[Htopo.back().second]; nxt_y_pin[yf] != null_ind; yf = nxt_y_pin[yf]){
ret.push_back(edge_t(yf, nxt_y_pin[yf]));
}
// Back to the original ordering
for(auto & E : ret){
E.first = ipoints[E.first].index;
E.second = ipoints[E.second].index;
}
return ret;
}
inline void northeast_octant_neighbours(std::vector<point<int_t> > pins, std::vector<std::pair<index_t, index_t> > & edges){
std::vector<indexed_pt> point_list;
for(index_t i=0; i<pins.size(); ++i){
point_list.push_back(indexed_pt(pins[i], i));
}
std::sort(point_list.begin(), point_list.end(),
[](indexed_pt const a, indexed_pt const b){ return a.x + a.y < b.x + b.y; }
);
// Decreasing order of x and y; multiset not necessary because no two elements have same coordinate
std::set<indexed_pt, std::function<bool (indexed_pt const, indexed_pt const)> >
active_upper_octant([](indexed_pt const a, indexed_pt const b)->bool{return a.x > b.x;}),
active_lower_octant([](indexed_pt const a, indexed_pt const b)->bool{return a.y > b.y;});
for(indexed_pt const current : point_list){
{ // North to north-east region
auto first_it = active_upper_octant.lower_bound(current); // Largest x with x <= current.x
auto it = first_it;
for(; it != active_upper_octant.end() && it->x - it->y >= current.x - current.y; ++it){
edges.push_back(std::pair<index_t, index_t>(current.index, it->index));
}
if(first_it != active_upper_octant.end()){ active_upper_octant.erase(first_it, it); }
active_upper_octant.insert(it, current); // Hint to insert the element since it is the correct position
} // End region
{ // North-east to east region
auto first_it = active_lower_octant.lower_bound(current); // Largest y with y <= current.y
auto it = first_it;
for(; it != active_lower_octant.end() && it->y - it->x >= current.y - current.x; ++it){
edges.push_back(std::pair<index_t, index_t>(current.index, it->index));
}
if(first_it != active_lower_octant.end()){ active_lower_octant.erase(first_it, it); }
active_lower_octant.insert(it, current); // Hint to insert the element since it is the correct position
} // End region
}
}
// Gets the nearest octant neighbour for each point in the south-east quadrant
inline void southeast_octant_neighbours(std::vector<point<int_t> > pins, std::vector<std::pair<index_t, index_t> > & edges){
for(auto & pin : pins){
pin.y = - pin.y;
}
northeast_octant_neighbours(pins, edges);
}
std::vector<std::pair<index_t, index_t> > get_small_horizontal_topology_from_sorted(std::vector<point<int_t> > const & pins){
assert(pins.size() <= 10);
switch(pins.size()){
case 2:
return std::vector<edge_t>(1, edge_t(0, 1));
case 3:
return std::vector<edge_t>{{0, 1}, {1, 2}};
case 4:
return get_topology_from_sorted<4, 2>(pins, steiner_lookup::topologies_4);
case 5:
return get_topology_from_sorted<5, 6>(pins, steiner_lookup::topologies_5);
case 6:
return get_topology_from_sorted<6, 23>(pins, steiner_lookup::topologies_6);
case 7:
return get_topology_from_sorted<7, 111>(pins, steiner_lookup::topologies_7);
case 8:
return get_topology_from_sorted<8, 642>(pins, steiner_lookup::topologies_8);
case 9:
return get_topology_from_sorted<9, 4334>(pins, steiner_lookup::topologies_9);
case 10:
return get_topology_from_sorted<10, 33510>(pins, steiner_lookup::topologies_10);
default: // Only 1 and 0 left (11 and more are protected by an assertion)
return std::vector<edge_t>();
}
}
// Get an ordering of the edges that is compatible with the processing functions
std::vector<edge_t> get_tree_topo_sort(std::vector<edge_t> const & topo){
std::vector<edge_t> sorted_topo;
std::vector<std::vector<index_t> > neighbours(topo.size()+1);
for(edge_t const E : topo){
neighbours[E.first].push_back(E.second);
neighbours[E.second].push_back(E.first);
}
std::vector<index_t> to_visit;
std::vector<int_t> nbr_unvisited(topo.size()+1);
for(index_t i=0; i<=topo.size(); ++i){
nbr_unvisited[i] = neighbours[i].size();
assert(topo.size() == 0 or nbr_unvisited[i] >= 1);
if(nbr_unvisited[i] == 1)
to_visit.push_back(i);
}
std::vector<int> visited(topo.size()+1, 0);
while(not to_visit.empty()){
index_t f = to_visit.back();
assert(visited[f] == 0);
visited[f] = 1;
to_visit.pop_back();
for(index_t s : neighbours[f]){
--nbr_unvisited[s];
if(visited[s] == 0){ // It is not a node we already visited
sorted_topo.push_back(edge_t(f, s));
}
if(nbr_unvisited[s] == 1){
to_visit.push_back(s);
}
}
}
assert(sorted_topo.size() == topo.size());
return sorted_topo;
}
std::vector<edge_t> get_big_horizontal_topology_from_sorted(std::vector<point<int_t> > const & pins, index_t exactitude_limit){
auto spanning = get_MST_topology(pins);
// TODO: perform local optimizations on the topology using exact Steiner tree algorithms
// Remove horizontal suboptimalities i.e. when the connexions to the left and right are unbalanced
// Reuse existing code by translation to vertical topology
auto first_Htopo = get_tree_topo_sort(spanning);
auto Vtopo = get_vertical_topology(pins, first_Htopo);
Vtopo = get_tree_topo_sort(Vtopo);
std::vector<point<int_t> > inverted_coords = pins;
for(point<int_t> & pt : inverted_coords){
std::swap(pt.x, pt.y);
}
auto Htopo = get_vertical_topology(inverted_coords, Vtopo);
// Sort the tree so that it is usable when building an RSMT
return get_tree_topo_sort(Htopo);
}
} // End anonymous namespace
std::vector<edge_t> get_RSMT_horizontal_topology(std::vector<point<int_t> > const & pins, index_t exactitude_limit){
if(pins.size() <= 1)
return std::vector<edge_t>();
else if(pins.size() == 2)
return std::vector<edge_t>(1, edge_t(0, 1));
else if(pins.size() == 3){
std::vector<indexed_pt> ipoints(pins.size());
for(index_t i=0; i<pins.size(); ++i){
ipoints[i] = indexed_pt(pins[i], i);
}
auto xpoints=ipoints;
std::sort(xpoints.begin(), xpoints.end(), [](indexed_pt a , indexed_pt b){return a.x < b.x; });
return std::vector<edge_t>{{xpoints[0].index, xpoints[1].index}, {xpoints[1].index, xpoints[2].index}};
}
else{
std::vector<edge_t> horizontal_topology;
// Sort the pins by x coordinate
std::vector<indexed_pt> ipoints(pins.size());
for(index_t i=0; i<pins.size(); ++i){
ipoints[i] = indexed_pt(pins[i], i);
}
std::sort(ipoints.begin(), ipoints.end(), [](indexed_pt a , indexed_pt b){return a.x < b.x; });
std::vector<point<int_t> > sorted_pins(pins.size());
for(index_t i=0; i<pins.size(); ++i){
sorted_pins[i] = ipoints[i];
}
// Get the topology for this ordering
if(pins.size() <= exactitude_limit){
horizontal_topology = get_small_horizontal_topology_from_sorted(sorted_pins);
}
else{
horizontal_topology = get_big_horizontal_topology_from_sorted(sorted_pins, exactitude_limit);
}
// Back to the original ordering
for(auto & E : horizontal_topology){
E.first = ipoints[E.first].index;
E.second = ipoints[E.second].index;
}
return horizontal_topology;
}
}
std::vector<std::pair<index_t, index_t> > get_MST_topology(std::vector<point<int_t> > const & pins){
std::vector<edge_t> edges;
if(pins.size() <= 2){
if(pins.size() == 2){
edges.push_back(edge_t(0, 1));
}
if(pins.size() == 3){
auto D = [](point<int_t> a, point<int_t> b){ return (int_t)(std::abs((float)(a.x - b.x)) + std::abs((float)(a.y - b.y))); };
auto dists = std::array<int_t, 3>({{D(pins[1], pins[2]), D(pins[1], pins[2]), D(pins[0], pins[1])}});
index_t mx = std::max_element(dists.begin(), dists.end()) - dists.begin();
for(index_t i=0; i<3; ++i){
if(i != mx)
edges.push_back(edge_t((i+1) % 3, (i+2) % 3));
}
}
return edges;
}
northeast_octant_neighbours(pins, edges);
southeast_octant_neighbours(pins, edges);
std::vector<edge_t> returned_edges;
auto edge_length = [&](edge_t E){
point<int_t> p1 = pins[E.first],
p2 = pins[E.second];
return std::abs((float)(p1.x - p2.x)) + std::abs((float)(p1.y - p2.y));
};
// Perform Kruskal to get the tree
std::sort(edges.begin(), edges.end(), [&](edge_t a, edge_t b){ return edge_length(a) < edge_length(b); });
union_find merger(pins.size());
for(index_t i=0; i<edges.size() && returned_edges.size()+1 < pins.size(); ++i){
edge_t E = edges[i];
if(merger.find(E.first) != merger.find(E.second)){
merger.merge(E.first, E.second);
assert(merger.find(E.first) == merger.find(E.second));
returned_edges.push_back(E);
}
}
assert(returned_edges.size() + 1 == pins.size());
assert(merger.is_connex());
return returned_edges;
}
std::int64_t MST_length(std::vector<point<int_t> > const & pins){
auto edges = get_MST_topology(pins);
std::int64_t sum = 0;
for(auto E : edges){
sum += std::abs((float)(pins[E.first].x - pins[E.second].x));
sum += std::abs((float)(pins[E.first].y - pins[E.second].y));
}
return sum;
}
std::int64_t RSMT_length(std::vector<point<int_t> > const & pins, index_t exactitude_limit){
assert(exactitude_limit <= 10 and exactitude_limit >= 3);
if(pins.size() <= 3){
if(pins.size() == 2){
return std::abs((float)(pins[0].x - pins[1].x)) + std::abs((float)(pins[0].y - pins[1].y));
}
else if(pins.size() == 3){
auto minmaxX = std::minmax_element(pins.begin(), pins.end(), [](point<int_t> a, point<int_t> b){ return a.x < b.x; }),
minmaxY = std::minmax_element(pins.begin(), pins.end(), [](point<int_t> a, point<int_t> b){ return a.y < b.y; });
return (minmaxX.second->x - minmaxX.first->x) + (minmaxY.second->y - minmaxY.first->y);
}
else{
return 0;
}
}
else{
std::vector<point<int_t> > points = pins;
std::sort(points.begin(), points.end(), [](point<int_t> a , point<int_t> b){return a.x < b.x; });
if(points.size() <= exactitude_limit){
switch(points.size()){
case 4:
return get_wirelength_from_sorted<4, 2>(points, steiner_lookup::topologies_4);
case 5:
return get_wirelength_from_sorted<5, 6>(points, steiner_lookup::topologies_5);
case 6:
return get_wirelength_from_sorted<6, 23>(points, steiner_lookup::topologies_6);
case 7:
return get_wirelength_from_sorted<7, 111>(points, steiner_lookup::topologies_7);
case 8:
return get_wirelength_from_sorted<8, 642>(points, steiner_lookup::topologies_8);
case 9:
return get_wirelength_from_sorted<9, 4334>(points, steiner_lookup::topologies_9);
case 10:
return get_wirelength_from_sorted<10, 33510>(points, steiner_lookup::topologies_10);
default:
abort();
}
}
else{ // Need to create the full topology, then calculate the length back
//return MST_length(points);
auto horizontal_topology = get_big_horizontal_topology_from_sorted(points, exactitude_limit);
return get_wirelength_from_topo(points, horizontal_topology);
}
}
}
point<std::vector<std::pair<index_t, index_t> > > get_RSMT_topology(std::vector<point<int_t> > const & pins, index_t exactitude_limit){
assert(exactitude_limit <= 10 and exactitude_limit >= 3);
// For 3 pin and fewer, the topology is very simple
if(pins.size() <= 2){
if(pins.size() == 2){
auto ret = std::vector<edge_t>(1, edge_t(0, 1));
return point<std::vector<edge_t> >(ret, ret);
}
else{
return point<std::vector<edge_t> >();
}
}
else if(pins.size() == 3){
std::vector<indexed_pt> ipoints(pins.size());
for(index_t i=0; i<pins.size(); ++i){
ipoints[i] = indexed_pt(pins[i], i);
}
auto xpoints=ipoints;
std::sort(xpoints.begin(), xpoints.end(), [](indexed_pt a , indexed_pt b){return a.x < b.x; });
auto ypoints=ipoints;
std::sort(ypoints.begin(), ypoints.end(), [](indexed_pt a , indexed_pt b){return a.y < b.y; });
return point<std::vector<edge_t> >{{{xpoints[0].index, xpoints[1].index}, {xpoints[1].index, xpoints[2].index}}, {{ypoints[0].index, ypoints[1].index}, {ypoints[1].index, ypoints[2].index}}};
}
else{
std::vector<edge_t> horizontal_topology = get_RSMT_horizontal_topology(pins, exactitude_limit);
return point<std::vector<edge_t> >(horizontal_topology, get_vertical_topology(pins, horizontal_topology));
}
}
} // Namespace coloquinte