coriolis/hurricane/doc/hurricane/Transformation.dox

265 lines
10 KiB
C++

// -*- C++ -*-
namespace Hurricane {
/*! \class Transformation
* \brief Transformation description (\b API)
*
* \section secTransformationIntro Introduction
*
* Transformation objects are a combination of a
* <b>translation</b> and an <b>orientation</b> defined by the
* new enumeration <b>Transformation::Orientation</b> whose
* different values are described in table below.
*
*
* \remark <b>Rotations are done counter clock wise</b> :
*/
/*! \class Transformation::Orientation
* This enumeration defines the orientation associated to a
* transformation object. table: Orientation codes and
* associated transfornation matrix headers: Name Aspect Code
* Signification a b c d slots: ID <img src='./gif/id.gif'> 0
* Identity 1 0 0 1 slots: R1 <img src='./gif/r1.gif'> 1 Simple
* rotation (90°) 0 &nbsp;&nbsp;-1&nbsp;&nbsp 1 0 slots: R2 <img
* src='./gif/r2.gif'> 2 Double rotation (180°)
* &nbsp;&nbsp;-1&nbsp;&nbsp 0 0 &nbsp;&nbsp;-1&nbsp;&nbsp
* slots: R3 <img src='./gif/r3.gif'> 3 Triple rotation (270°) 0
* 1 &nbsp;&nbsp;-1&nbsp;&nbsp 0 slots: MX <img
* src='./gif/mx.gif'> 4 Horizontal symetry (Miror X)
* &nbsp;&nbsp;-1&nbsp;&nbsp 0 0 1 slots: XR <img
* src='./gif/xr.gif'> 5 Horizontal symetry followed by a 90°
* rotation 0 &nbsp;&nbsp;-1&nbsp;&nbsp
* &nbsp;&nbsp;-1&nbsp;&nbsp 0 slots: MY <img
* src='./gif/my.gif'> 6 Vertical symetry (Miror Y) 1 0 0
* &nbsp;&nbsp;-1&nbsp;&nbsp slots: YR <img src='./gif/yr.gif'>
* 7 Vertical symetry followed by a 90° rotation 0 1 1 0 To each
* orientation corresponds a 2x2 matrix whose coefficients are
* named a and b for the first line and c and d for the second
* one.
*
* The transformation formula is given by : x' = (a * x) + (b *
* y) + tx y' = (c * x) + (d * y) + ty Where x and y are the
* coordinates of any point, x' and y' the coordinates of the
* trasformed point, tx and ty the horizontal and vertical
* components of the translation and where a, b, c and d are the
* coefficients of the matrix associated to the orientation.
*
* \remark The exact name of the orientation is, i.e. for <b>R1</b> :
* <b>Transformation::Orientation::R1</b>. It's a little verbose
* but you use seldom those codes. If nevertheless you make
* intensive use of them you can locally write :
\code
#define Transformation::Orientation TO
\endcode
* and then use the expression :
\code
TO::R1
\endcode
*/
/*! \name Constructors
*/
// \{
/*! \function Transformation::Transformation();
* Default constructor : The translation is null and the
* orientation is equal to <b>ID</b>.
*/
/*! \function Transformation::Transformation(const Point& translation, const Transformation::Orientation& orientation=Orientation::ID);
* Builds a transformation whose translation part is defined by
* the argument \c \<translation\> and whose default orientation is
* <b>ID</b>.
*/
/*! \function Transformation::Transformation(const Unit& tx, const Unit& ty, const Transformation::Orientation& orientation=Orientation::ID);
* Builds a transformation whose translation part is defined by
* the arguments \c \<xt\> and \c \<ty\> and whose orientation
* is defined by \c \<orientation\> (\c \<ID\> by default).
*/
/*! \function Transformation::Transformation(const Point& translation, const Transformation::Orientation& orientation);
* Builds a transformation whose translation part is defined by
* the argument \c \<translation\> and whose orientation is
* defined by \c \<orientation\>.
*/
/*! \function Transformation::Transformation(const Transformation& transformation);
* Copy constructor.
*/
// \}
/*! \name Operators
*/
// \{
/*! \function Transformation& Transformation::operator=(const Transformation& transformation);
* Assignment operator.
*/
/*! \function bool Transformation::operator==(const Transformation& transformation) const;
* Two transformations are identical if their translations and
* orientation are identical.
*/
/*! \function bool Transformation::operator!=(const Transformation& transformation) const;
* Two transformations are different if eitheir their
* translations or orientation differ.
*/
// \}
/*! \name Accessors
*/
// \{
/*! \function const Unit& Transformation::GetTx() const;
* \Return the horizontal component of the translation.
*/
/*! \function const Unit& Transformation::GetTy() const;
* \Return the vertical component of the translation.
*/
/*! \function Point Transformation::GetTranslation() const;
* \Return the translation component of the transformation.
*/
/*! \function const Translation::Orientation& Transformation::GetOrientation() const;
* \Return the orientation of the transformation (may be used in a
* switch).
*/
/*! \function Unit Transformation::GetX(const Unit& x, const Unit& y) const;
* \Return the point abscissa resulting of the transformation
* application on the point defined by \c \<x\> et \c \<y\>.
*/
/*! \function Unit Transformation::GetY(const Unit& x, const Unit& y) const;
* \Return the point ordinate resulting of the transformation
* application on the point defined by \c \<x\> et \c \<y\>.
*/
/*! \function Unit Transformation::GetX(const Point& point) const;
* \Return the point abscissa resulting of the transformation
* application on \c \<point\>.
*/
/*! \function Unit Transformation::GetY(const Point& point) const;
* \Return the point ordinate resulting of the transformation
* application on \c \<point\>.
*/
/*! \function Unit Transformation::GetDx(const Unit& dx, const Unit& dy) const;
* \Return the horizontal component of the vector resulting from the
* application of the transformation on the vector defined by
* \c \<dx\> et \c \<dy\>.
*/
/*! \function Unit Transformation::GetDy(const Unit& dx, const Unit& dy) const;
* \Return the vertical component of the vector resulting from the
* application of the transformation on the vector defined by
* \c \<dx\> et \c \<dy\>.
*/
/*! \function Point Transformation::GetPoint(const Unit& x, const Unit& y) const;
* \Return the point resulting from the application of the
* transformation on the point defined by \c \<dx\> et
* \c \<dy\>.
*/
/*! \function Point Transformation::GetPoint(const Point& point) const;
* \Return the point resulting from the application of the
* transformation on \c \<point\>.
*/
/*! \function Box Transformation::GetBox(const Unit& x1, const Unit& y1, const Unit& x2, const Unit& y2) const;
* \Return the box resulting from the application of the transformation
* on the box defined by \c \<x1\>, \c \<y1\>, \c \<x2\> et
* \c \<y2\>.
*/
/*! \function Box Transformation::GetBox(const Point& point1, const Point& point2) const;
* \Return the box resulting from the application of the transformation
* on the box defined by \c \<point1\> et \c \<point2\>.
*/
/*! \function Box Transformation::GetBox(const Box& box) const;
* \Return the box resulting from the application of the transformation
* on the box \c \<box\>.
*/
/*! \function Transformation Transformation::GetTransformation(const Transformation& transformation) const;
* \Return the transformation resulting from the application of the
* transformation on the transformation \c \<transformation\>.
*/
/*! \function Transformation Transformation::GetInvert() const;
* \Return the inverse transformation.
*/
// \}
/*! \name Modifiers
*/
// \{
/*! \function Transformation& Transformation::Invert();
* Inverts the transformation \c \<this\> and returns a
* reference to it in order to apply in sequence a new function.
*/
// \}
/*! \section secTransformationTransformers Transformers
*
*
* <b>Transformation::ApplyOn</b>
*
* <b>Transformation::ApplyOn</b>
*
* <b>Transformation::ApplyOn</b>
*
* <b>Transformation::ApplyOn</b>
*/
/* \name Others
*/
// \{
/*! \function void Transformation::ApplyOn(Unit& x, Unit& y) const;
* Applies the transformation on the coordinates given in
* arguments.
*/
/*! \function void Transformation::ApplyOn(Point& point) const;
* Applies the transformation on the point given in argument.
*/
/*! \function void Transformation::ApplyOn(Box& box) const;
* Applies the transformation on the box given in argument.
*/
/*! \function void Transformation::ApplyOn(Transformation& transformation) const;
* Applies the transformation on the transformation given in
* argument. This last one becomes then the transformation
* resulting of the product of those two.
*/
// \}
}