Go to file
Jean-Paul Chaput 9b2648241d In Anabatic/Katana, add support for VH gauges (real technos).
* Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(),
    when the anchor is a RoutingPad (which must be always the case),
    perform the true computation of it's position based on the
    segment occurrence. It is a important change, previously the
    area was in fact the "center line" of the connector while now
    it is really an area (mandatory for "half-offgrid" terminals of
    real technologies).
      The change is not complete yet, the area should be shrinked
    by the half size of a VIA, because the area applies to the center
    coordinate of the VIA (to be done quickly).
* Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg
    is created (restore connexity after a layer change) the layer of
    the VIA, based on the segments it connects to must be re-computed
    *after* the dogleg has been made.
* Change: In all files of Anabatic, when comparing two layers, no longer
    use the Layer pointer itself, but the layer mask. This allow a
    transparent management of both real and symbolic layers (which
    do share the same mask). Real metal layers (not VIAs) will be
    BasicLayer and symbolic metal layers will be RegularLayer.
* New: Anabatic::Configuration::selectRpComponent(), select the best
    RoutingPad component for metal1 terminals. Look for the metal1
    component with the biggest accessibility on-grid.
      RoutingPad using other metals are left untoucheds.
* New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the
    neighbor Vertex through an Edge*. This method allows to write
    clearer code as we no longer need to access the neighbor through
    the underlying GCell.
      Also add proxies for GCell methods in Vertex.
* Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when
    a component with multiples vertexes is reached *and* two of it's
    vertexes are reached *at the same time* (one from which we backtrack
    and one still in the queue) extraneous edges may be created by
    _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1".
      To solve this, Dijkstra::_toSource() is modificated, the "from"
    edges of the newly reacheds vertexes are reset to NULL, *except*
    for the one we will be backtracking from. That is, the one given
    in the source argument.
* Change: In Anabatic::NetBuilder class, put the various Hooks and
    RoutingPad sorting functions as class ones.
* Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag.
    This unset flag was causing AutoContactTurn::updateTopology()
    to not work as expected and making gaps, this was the cause of
    the last remaining warnings about layer connexity.
2018-01-06 16:55:53 +01:00
anabatic In Anabatic/Katana, add support for VH gauges (real technos). 2018-01-06 16:55:53 +01:00
bootstrap Compliance with cmake 3.0 (Debian 9.2). Corrects all warnings. 2017-12-02 14:30:05 +01:00
coloquinte Compliance with cmake 3.0 (Debian 9.2). Corrects all warnings. 2017-12-02 14:30:05 +01:00
crlcore In CRL, update real conf. files. Smarter management of pin in LEF parser. 2018-01-06 16:18:33 +01:00
cumulus Compliance with cmake 3.0 (Debian 9.2). Corrects all warnings. 2017-12-02 14:30:05 +01:00
documentation Updating the documentation of the startup procedure. 2017-12-02 15:51:21 +01:00
equinox Compliance with cmake 3.0 (Debian 9.2). Corrects all warnings. 2017-12-02 14:30:05 +01:00
etesian In Etesian::AddFeed, do nothing if no feed of a suitable width is found. 2018-01-06 15:15:35 +01:00
hurricane Disable backtrace generation in Hurricane::Error constructor. 2018-01-06 15:13:20 +01:00
ispd Compliance with cmake 3.0 (Debian 9.2). Corrects all warnings. 2017-12-02 14:30:05 +01:00
katabatic Correct the doxygen CSS to be compliant with 1.8.13+. 2017-12-03 03:19:10 +01:00
katana Complete the modularization of the detail routing converter. 2017-12-18 18:15:14 +01:00
kite Correct the doxygen CSS to be compliant with 1.8.13+. 2017-12-03 03:19:10 +01:00
knik Compliance with cmake 3.0 (Debian 9.2). Corrects all warnings. 2017-12-02 14:30:05 +01:00
lefdef Compliance with cmake 3.0 (Debian 9.2). Corrects all warnings. 2017-12-02 14:30:05 +01:00
mauka Compliance with cmake 3.0 (Debian 9.2). Corrects all warnings. 2017-12-02 14:30:05 +01:00
metis Compliance with cmake 3.0 (Debian 9.2). Corrects all warnings. 2017-12-02 14:30:05 +01:00
nimbus Compliance with cmake 3.0 (Debian 9.2). Corrects all warnings. 2017-12-02 14:30:05 +01:00
solstice Compliance with cmake 3.0 (Debian 9.2). Corrects all warnings. 2017-12-02 14:30:05 +01:00
stratus1 Compliance with cmake 3.0 (Debian 9.2). Corrects all warnings. 2017-12-02 14:30:05 +01:00
tutorial Compliance with cmake 3.0 (Debian 9.2). Corrects all warnings. 2017-12-02 14:30:05 +01:00
unicorn Correct the doxygen CSS to be compliant with 1.8.13+. 2017-12-03 03:19:10 +01:00
vlsisapd Compliance with cmake 3.0 (Debian 9.2). Corrects all warnings. 2017-12-02 14:30:05 +01:00
.gitignore Update documentation to build on Debian 9.2 (stretch). 2017-10-30 15:33:37 +01:00
Makefile Implementation of DataBase native save/restore in JSON (step 2). 2016-01-21 00:25:39 +01:00
README.rst Complete hoverhaul of the documentation to Sphinx. 2017-07-15 17:35:02 +02:00

README.rst

.. -*- Mode: rst -*-


===============
Coriolis README
===============


Coriolis is a free database, placement tool and routing tool for VLSI designs.


Purpose
=======

Coriolis provides several tools to perform the layout of VLSI circuits.  Its
main components are the Hurricane database, the Etesian placer and the Kite
router, but other tools can use the Hurricane database and the parsers
provided.

The user interface <cgt> is the prefered way to use Coriolis, but all
Coriolis tools are Python modules and thus scriptables.


Documentation
=============

The complete documentation is available here, both in pdf & html:

   ./documentation/_build/html/index.html
   ./documentation/UsersGuide/UsersGuide.pdf

The documentation of the latest *stable* version is also
available online. It may be quite outdated from the *devel*
version.

    https://soc-extras.lip6.fr/en/coriolis/coriolis2-users-guide/


Building Coriolis
=================

To build Coriolis, ensure the following prerequisites are met:

* Python 2.7.
* cmake.
* boost.
* bison & flex.
* Qt 4 or 5.
* libxml2.
* RapidJSON
* A C++11 compliant compiler.

The build system relies on a fixed directory tree from the root
of the user currently building it. Thus first step is to get a clone of
the repository in the right place. Proceed as follow: ::

   ego@home:~$ mkdir -p ~/coriolis-2.x/src/support
   ego@home:~$ cd ~/coriolis-2.x/src/support
   ego@home:~$ git clone http://github.com/miloyip/rapidjson
   ego@home:~$ git checkout ec322005072076ef53984462fb4a1075c27c7dfd
   ego@home:~$ cd ~/coriolis-2.x/src
   ego@home:src$ git clone https://www-soc.lip6.fr/git/coriolis.git
   ego@home:src$ cd coriolis

If you want to use the *devel* branch: ::

    ego@home:coriolis$ git checkout devel

Then, build the tool: ::

    ego@home:coriolis$ make install

Coriolis gets installed at the root of the following tree: ::

    ~/coriolis-2.x/<OS>.<DISTRIB>/Release.Shared/install/

Where ``<OS>`` is the name of your operating system and ``<DISTRIB>`` your
distribution.


Using Coriolis
==============

The Coriolis main interface can be launched with the command: ::

    ego@home:~: ~/coriolis-2.x/<OS>.<DISTRIB>/Release.Shared/install/bin/coriolis

The ``coriolis`` script is tasked to guess it's location and setup appropriatly
the UNIX environment, then lauch ``cgt`` (or *any* command, with the
``--run=<COMMAND>`` option).

Conversely, you can setup the current shell environement for Coriolis by 
using the helper ``coriolisEnv.py``, then run any Coriolis tool: ::

    ego@home:~$ eval `~/coriolis-2.x/src/coriolis/bootstrap/coriolisEnv.py`
    ego@home:~$ cgt -V