48f3a2bc3c
* Bug: In Hurricane, in StaticObservable::getObserver(), if the slot pointer is NULL, do not try to access the owner. Returns NULL, so the caller can be aware of the situation... * Change: In Hurricane, in BreakpointWidget & ExceptionWidget some cosmetic changes (fonts and window sizes). * Bug: In Anabatic, In AutoHorizontal::getConstraints(), take into account the constraints from the source AutoContact, as it holds the constraints transmitted by the RoutingPads and sets up by propageConstraintsFromRp(). It is likely to be a bug affecting the original Katabatic as well. * Change: In Anabatic, in RawGCellsUnder(), check that the segment is not completly oustside the cell abutment box and truncate the coordinates to the part that is inside. Use the "shrink" if we reach the east/north border. * Change: In Anabatic, in Configuration, no more decorator because we will use a true derived relationship. Katana *derives* from *Anabatic* and do not *decorate* it, so the Configuration can do the same. It also implies that we directly create a Katana engine, not an Anabatic one. * Change: In Anabatic, in Session, do not allow the opening of the Session in a standalone fashion (with a static method). Instead it must be opened using the relevant method of the Anabatic/Katana engine. This ensure we are opening the right Session type. * Change: In Anabatic, in AutoSegment_Aligneds() collection the seed segment is not part of the collection by default, but will be included if the Flags::WithSelf is set. * Change: In Configuration, all the flags value are now defined in two steps. Declared in the header and initialized in the module. This is to prevent the fact that on some cases, in relation with the Python "extern C" part modules, we need a true allocated variable. It was causing weird linking problems. A side effect is that they can no longer be used as entry is switches, have to replace them by if/else. * New: In Anabatic, new GCell::getNeighborAt() utility function. * Bug: In Anabatic, in GCell::doGrid(), tag all the GCells of the grid with the grid type... Back annote all the edges capacity (north & east) with the reserved local capacity. * New: Complete portage of Kite over Anabatic. The new engine is christened "Katana" for Kite-Analogic. When it's capabilities and performances will be on a part with Kite, it is to completly replace it (and take back the "Kite" name). Preliminary tests seems to show that, contrary to intuition (because built on a more complex/slower grid), it is even slightly faster than Kite 8-). |
||
---|---|---|
anabatic | ||
bootstrap | ||
coloquinte | ||
crlcore | ||
cumulus | ||
documentation | ||
equinox | ||
etesian | ||
hurricane | ||
ispd | ||
katabatic | ||
katana | ||
kite | ||
knik | ||
mauka | ||
metis | ||
nimbus | ||
solstice | ||
stratus1 | ||
unicorn | ||
vlsisapd | ||
.dir-locals.el | ||
.gitignore | ||
.projectile | ||
Makefile | ||
README.rst |
README.rst
.. -*- Mode: rst -*- =============== Coriolis README =============== Coriolis is a free database, placement tool and routing tool for VLSI designs. Purpose ======= Coriolis provides several tools to perform the layout of VLSI circuits. Its main components are the Hurricane database, the Etesian placer and the Kite router, but other tools can use the Hurricane database and the parsers provided. The user interface <cgt> is the prefered way to use Coriolis, but all Coriolis tools are Python modules and thus scriptables. Documentation ============= The complete documentation is available here, both in pdf & html: ./documentation/UsersGuide/UsersGuide.html ./documentation/UsersGuide/UsersGuide.pdf The documentation of the latest *stable* version is also available online. It may be quite outdated from the *devel* version. https://soc-extras.lip6.fr/en/coriolis/coriolis2-users-guide/ Building Coriolis ================= To build Coriolis, ensure the following prerequisites are met: * Python 2.7. * cmake. * boost. * bison & flex. * Qt 4 or 5. * libxml2. * RapidJSON * A C++11 compliant compiler. The build system relies on a fixed directory tree from the root of the user currently building it. Thus first step is to get a clone of the repository in the right place. Proceed as follow: :: ego@home:~$ mkdir -p ~/coriolis-2.x/src/support ego@home:~$ cd ~/coriolis-2.x/src/support ego@home:~$ git clone http://github.com/miloyip/rapidjson ego@home:~$ git checkout ec322005072076ef53984462fb4a1075c27c7dfd ego@home:~$ cd ~/coriolis-2.x/src ego@home:src$ git clone https://www-soc.lip6.fr/git/coriolis.git ego@home:src$ cd coriolis If you want to use the *devel* branch: :: ego@home:coriolis$ git checkout devel Then, build the tool: :: ego@home:coriolis$ make install Coriolis gets installed at the root of the following tree: :: ~/coriolis-2.x/<OS>.<DISTRIB>/Release.Shared/install/ Where ``<OS>`` is the name of your operating system and ``<DISTRIB>`` your distribution. Using Coriolis ============== The Coriolis main interface can be launched with the command: :: ego@home:~: ~/coriolis-2.x/<OS>.<DISTRIB>/Release.Shared/install/bin/coriolis The ``coriolis`` script is tasked to guess it's location and setup appropriatly the UNIX environment, then lauch ``cgt`` (or *any* command, with the ``--run=<COMMAND>`` option). Conversely, you can setup the current shell environement for Coriolis by using the helper ``coriolisEnv.py``, then run any Coriolis tool: :: ego@home:~$ eval `~/coriolis-2.x/src/coriolis/bootstrap/coriolisEnv.py` ego@home:~$ cgt -V