Go to file
Jean-Paul Chaput 424b66e671 Added new GCell configurations to handle Libre-SOC test_issuer.
* New: In Anabatic::NetBuilder, some GCells configurations of Libre-SOC
    "test_issuer" (soclayout/experiments9) did have more METAL1 terminals
    than was though possible. Just added more entries in the connexity
    table for bigger numbers of METAL1. No new configuration was added,
    used the already existing ones.
2020-06-29 13:02:27 +02:00
anabatic Added new GCell configurations to handle Libre-SOC test_issuer. 2020-06-29 13:02:27 +02:00
bootstrap Update docker config for Debian-10 / LibreSOC. 2020-04-27 14:11:44 +02:00
bora Bug fix, reset Cell flags after unrouting an analog design. 2020-04-30 00:38:32 +02:00
coloquinte Compliance with Debian 10 Buster. 2020-03-19 18:18:35 +01:00
crlcore Fixes bad VHDL port map assignment for vectors in VST driver. 2020-06-26 17:13:18 +02:00
cumulus Fixes cumulus recursive save plugin. 2020-06-26 17:13:52 +02:00
documentation Full update of the generated documentation. 2020-04-27 14:14:03 +02:00
equinox Compliance with Debian 10 Buster. 2020-03-19 18:18:35 +01:00
etesian Add setters for space margin and aspect ratio in Etesian. 2020-06-16 21:39:10 +02:00
flute Compliance with Debian 10 Buster. 2020-03-19 18:18:35 +01:00
hurricane Adjustements to the ExceptionWidget behavior. 2020-06-16 21:37:18 +02:00
ispd Various typos correction (courtesy of G. Gouvine). 2019-07-30 13:13:57 +02:00
karakaze Correct Cell object detection while reading Oceane parameters. 2020-05-27 16:11:53 +02:00
katabatic Full update of the generated documentation. 2020-04-27 14:14:03 +02:00
katana Bug fix, restore the FreePDK 45 (real) support. 2020-04-27 10:34:19 +02:00
kite Full update of the generated documentation. 2020-04-27 14:14:03 +02:00
knik Compliance with Debian 10 Buster. 2020-03-19 18:18:35 +01:00
lefdef Migrating doc from Sphinx towards Pelican. 2020-02-03 17:44:15 +01:00
mauka Compliance with Debian 10 Buster. 2020-03-19 18:18:35 +01:00
metis Compliance with Debian 10 Buster. 2020-03-19 18:18:35 +01:00
nimbus Compliance with Debian 10 Buster. 2020-03-19 18:18:35 +01:00
oroshi Enabled support for track positionning in analog Transistor devices. 2020-05-11 15:59:45 +02:00
solstice Compliance with Debian 10 Buster. 2020-03-19 18:18:35 +01:00
stratus1 Migrating doc from Sphinx towards Pelican. 2020-02-03 17:44:15 +01:00
tutorial More PEP8 compliant Python code. Start rewrite Python/C++ wrappers. 2020-04-08 11:24:42 +02:00
unicorn The VST driver is now allowed to preserve the case of identifiers. 2020-06-08 13:34:25 +02:00
unittests More PEP8 compliant Python code. Start rewrite Python/C++ wrappers. 2020-04-08 11:24:42 +02:00
vlsisapd Add forgotten asDouble() method to the Parameter interface. 2020-06-16 21:33:33 +02:00
.gitignore Various bug corrections to pass the alliance-check-toolkit reference benchs. 2019-05-24 23:57:22 +02:00
Makefile Enabling the user to choose the devtoolset it needs. 2019-03-04 14:20:13 +01:00
README.rst Update doc link for the new Pelican generated one. 2020-02-10 13:38:06 +01:00

README.rst

.. -*- Mode: rst -*-


===============
Coriolis README
===============

Coriolis is a free database, placement tool and routing tool for VLSI design.


Purpose
=======

Coriolis provides several tools to perform the layout of VLSI circuits.  Its
main components are the Hurricane database, the Etesian placer and the Katana
router, but other tools can use the Hurricane database and the parsers
provided.

The user interface <cgt> is the prefered way to use Coriolis, but all
Coriolis tools are Python modules and thus scriptable.


Documentation
=============

The complete documentation is available here, both in pdf & html:

   ./documentation/output/html
   ./documentation/UsersGuide/UsersGuide.pdf

The documentation of the latest *stable* version is also
available online. It may be quite outdated from the *devel*
version.

    https://www-soc.lip6.fr/sesi-docs/coriolis2-docs/coriolis2/en/latex/users-guide/UsersGuide.pdf


Building Coriolis
=================

To build Coriolis, ensure the following prerequisites are met:

* Python 2.7.
* cmake.
* boost.
* bison & flex.
* Qt 4 or 5.
* libxml2.
* RapidJSON
* A C++11 compliant compiler.

The build system relies on a fixed directory tree from the root
of the user currently building it. Thus first step is to get a clone of
the repository in the right place. Proceed as follow: ::

   ego@home:~$ mkdir -p ~/coriolis-2.x/src/support
   ego@home:~$ cd ~/coriolis-2.x/src/support
   ego@home:~$ git clone http://github.com/miloyip/rapidjson
   ego@home:~$ git checkout ec322005072076ef53984462fb4a1075c27c7dfd
   ego@home:~$ cd ~/coriolis-2.x/src
   ego@home:src$ git clone https://www-soc.lip6.fr/git/coriolis.git
   ego@home:src$ cd coriolis

If you want to use the *devel* branch: ::

    ego@home:coriolis$ git checkout devel

Then, build the tool: ::

    ego@home:coriolis$ make install

Coriolis gets installed at the root of the following tree: ::

    ~/coriolis-2.x/<OS>.<DISTRIB>/Release.Shared/install/

Where ``<OS>`` is the name of your operating system and ``<DISTRIB>`` your
distribution.


Using Coriolis
==============

The Coriolis main interface can be launched with the command: ::

    ego@home:~: ~/coriolis-2.x/<OS>.<DISTRIB>/Release.Shared/install/bin/coriolis

The ``coriolis`` script detects its location and setups the UNIX
environment appropriately, then lauches ``cgt`` (or *any* command, with the
``--run=<COMMAND>`` option).

Conversely, you can setup the current shell environement for Coriolis by 
using the helper ``coriolisEnv.py``, then run any Coriolis tool: ::

    ego@home:~$ eval `~/coriolis-2.x/src/coriolis/bootstrap/coriolisEnv.py`
    ego@home:~$ cgt -V