2c73cfe76c
* New: In bootstrap/coriolisEnv.py, add the "etc" directory to the PYTHONPATH as initialization are now Python modules. * New: In Hurricane/analogic, first groundwork for the integration of PIP/MIM/MOM multi-capacitors. Add C++ and Python interface for the allocation matrix and the list of capacities values. * Change: In Hurricane::RegularLayer, add a layer parameter to the constructor so the association between the RegularLayer and it's BasicLayer can readily be done. * Change: In Hurricane::Layer, add a new getCut() accessor to get the cut layer in ViaLayer. * Change: In Hurricane::DataBase::get(), the Python wrapper should no longer consider an error if the data-base has not been created yet. Just return None. * Bug: In Isobar::PyLayer::getEnclosure() wrapper, if the overall enclosure is requested, pass the right parameter to the C++ function. * Change: In AllianceFramework, make public _bindLibraries() and export it to the Python interface. * Change: In AllianceFramework::create(), do not longer call bindLibraries(). This now must be done explicitely and afterwards. * Change: In AllianceFramework::createLibrary() and Environement::addSYSTEM_LIBRARY(), minor bug corrections that I don't recall. * Change: In SearchPath::prepend(), set the selected index to zero and return it. * Change: In CRL::System CTOR, add "etc" to the PYTHONPATH as the configuration files are now organized as Python modules. * New: In PyCRL, export the CRL::System singleton, it's creation is no longer triggered by the one of AllianceFramework. * New: In CRL/etc/, convert most of the configuration files into the Python module format. For now, keep the old ".conf", but that are no longer used. For the real technologies, we cannot keep the directory name as "180" or "45" as it not allowed by Python syntax, so we create "node180" or "node45" instead. Most of the helpers and coriolisInit.py are no longer used now. To be removed in future commits after being sure that everything works... * Bug: In AutoSegment::makeDogleg(AutoContact*), the layer of the contacts where badly computed when one end of the original segment was attached to a non-preferred direction segment (mostly on terminal contacts). Now use the new AutoContact::updateLayer() method. * Bug: In Dijkstra::load(), limit symetric search area only if the net is a symmetric one ! * Change: In Katana/python/katanaInit.py, comply with the new initialisation scheme. * Change: In Unicorn/cgt.py, comply to the new inititalization scheme. * Change: In cumulus various Python scripts remove the call to helpers.staticInitialization() as they are not needed now (we run in only *one* interpreter, so we correctly share all init). In plugins/__init__.py, read the new NDA directory variable. * Bug: In cumulus/plugins/Chip.doCoronafloorplan(), self.railsNb was not correctly managed when there was no clock. * Change: In cumulus/plugins/Configuration.coronaContactArray(), compute the viaPitch from the technology instead of the hard-coded 4.0 lambdas. In Configuration.loadConfiguration(), read the "ioring.py" from the new user's settings module. * Bug: In stratus.dpgen_ADSB2F, gives coordinates translated into DbU to the XY functions. In st_model.Save(), use the VstUseConcat flag to get correct VST files. In st_net.hur_net(), when a net is POWER/GROUND or CLOCK also make it global. * Change: In Oroshi/python/WIP_Transistor.py, encapsulate the generator inside a try/except block to get prettier error (and stop at the first). |
||
---|---|---|
anabatic | ||
bootstrap | ||
bora | ||
coloquinte | ||
crlcore | ||
cumulus | ||
documentation | ||
equinox | ||
etesian | ||
flute | ||
hurricane | ||
ispd | ||
karakaze | ||
katabatic | ||
katana | ||
kite | ||
knik | ||
lefdef | ||
mauka | ||
metis | ||
nimbus | ||
oroshi | ||
solstice | ||
stratus1 | ||
tutorial | ||
unicorn | ||
unittests | ||
vlsisapd | ||
.gitignore | ||
Makefile | ||
README.rst |
README.rst
.. -*- Mode: rst -*- =============== Coriolis README =============== Coriolis is a free database, placement tool and routing tool for VLSI design. Purpose ======= Coriolis provides several tools to perform the layout of VLSI circuits. Its main components are the Hurricane database, the Etesian placer and the Katana router, but other tools can use the Hurricane database and the parsers provided. The user interface <cgt> is the prefered way to use Coriolis, but all Coriolis tools are Python modules and thus scriptable. Documentation ============= The complete documentation is available here, both in pdf & html: ./documentation/_build/html/index.html ./documentation/UsersGuide/UsersGuide.pdf The documentation of the latest *stable* version is also available online. It may be quite outdated from the *devel* version. https://www-soc.lip6.fr/sesi-docs/coriolis2-docs/coriolis2/en/latex/users-guide/UsersGuide.pdf Building Coriolis ================= To build Coriolis, ensure the following prerequisites are met: * Python 2.7. * cmake. * boost. * bison & flex. * Qt 4 or 5. * libxml2. * RapidJSON * A C++11 compliant compiler. The build system relies on a fixed directory tree from the root of the user currently building it. Thus first step is to get a clone of the repository in the right place. Proceed as follow: :: ego@home:~$ mkdir -p ~/coriolis-2.x/src/support ego@home:~$ cd ~/coriolis-2.x/src/support ego@home:~$ git clone http://github.com/miloyip/rapidjson ego@home:~$ git checkout ec322005072076ef53984462fb4a1075c27c7dfd ego@home:~$ cd ~/coriolis-2.x/src ego@home:src$ git clone https://www-soc.lip6.fr/git/coriolis.git ego@home:src$ cd coriolis If you want to use the *devel* branch: :: ego@home:coriolis$ git checkout devel Then, build the tool: :: ego@home:coriolis$ make install Coriolis gets installed at the root of the following tree: :: ~/coriolis-2.x/<OS>.<DISTRIB>/Release.Shared/install/ Where ``<OS>`` is the name of your operating system and ``<DISTRIB>`` your distribution. Using Coriolis ============== The Coriolis main interface can be launched with the command: :: ego@home:~: ~/coriolis-2.x/<OS>.<DISTRIB>/Release.Shared/install/bin/coriolis The ``coriolis`` script detects its location and setups the UNIX environment appropriately, then lauches ``cgt`` (or *any* command, with the ``--run=<COMMAND>`` option). Conversely, you can setup the current shell environement for Coriolis by using the helper ``coriolisEnv.py``, then run any Coriolis tool: :: ego@home:~$ eval `~/coriolis-2.x/src/coriolis/bootstrap/coriolisEnv.py` ego@home:~$ cgt -V