02777e127e
* New: Python/C++ API level: * Write a new C++/template wrapper to get rid of boost::python * The int & long Python type are now merged. So a C/C++ level, it became "PyLong_X" (remove "PyInt_X") and at Python code level, it became "int" (remove "long"). * Change: VLSISAPD finally defunct. * Configuration is now integrated as a Hurricane component, makes use of the new C++/template wrapper. * vlsisapd is now defunct. Keep it in the source for now as some remaining non essential code may have to be ported in the future. * Note: Python code (copy of the migration howto): * New print function syntax print(). * Changed "dict.has_key(k)" for "k" in dict. * Changed "except Exception, e" for "except Exception as e". * The division "/" is now the floating point division, even if both operand are integers. So 3/2 now gives 1.5 and no longer 1. The integer division is now "//" : 1 = 3//2. So have to carefully review the code to update. Most of the time we want to use "//". We must never change to float for long that, in fact, represents DbU (exposed as Python int type). * execfile() must be replaced by exec(open("file").read()). * iter().__next__() becomes iter(x).__next__(). * __getslice__() has been removed, integrated to __getitem__(). * The formating used for str(type(o)) has changed, so In Stratus, have to update them ("<class 'MyClass'>" instead of "MyClass"). * the "types" module no longer supply values for default types like str (types.StringType) or list (types.StringType). Must use "isinstance()" where they were occuring. * Remove the 'L' to indicate "long integer" (like "12L"), now all Python integer are long. * Change in bootstrap: * Ported Coriolis builder (ccb) to Python3. * Ported Coriolis socInstaller.py to Python3. * Note: In PyQt4+Python3, QVariant no longer exists. Use None or directly convert using the python syntax: bool(x), int(x), ... By default, it is a string (str). * Note: PyQt4 bindings & Python3 under SL7. * In order to compile user's must upgrade to my own rebuild of PyQt 4 & 5 bindings 4.19.21-1.el7.soc. * Bug: In cumulus/plugins.block.htree.HTree.splitNet(), set the root buffer of the H-Tree to the original signal (mainly: top clock). Strangely, it was only done when working in full chip mode. |
||
---|---|---|
anabatic | ||
bootstrap | ||
bora | ||
coloquinte | ||
crlcore | ||
cumulus | ||
documentation | ||
equinox | ||
etesian | ||
flute | ||
hurricane | ||
ispd | ||
karakaze | ||
katabatic | ||
katana | ||
kite | ||
knik | ||
lefdef | ||
mauka | ||
metis | ||
nimbus | ||
oroshi | ||
solstice | ||
stratus1 | ||
tutorial | ||
unicorn | ||
unittests | ||
vlsisapd | ||
.gitignore | ||
Makefile | ||
README.rst |
README.rst
.. -*- Mode: rst -*- =============== Coriolis README =============== Coriolis is a free database, placement tool and routing tool for VLSI design. Purpose ======= Coriolis provides several tools to perform the layout of VLSI circuits. Its main components are the Hurricane database, the Etesian placer and the Katana router, but other tools can use the Hurricane database and the parsers provided. The user interface <cgt> is the prefered way to use Coriolis, but all Coriolis tools are Python modules and thus scriptable. Documentation ============= The complete documentation is available here, both in pdf & html: ./documentation/output/html ./documentation/UsersGuide/UsersGuide.pdf The documentation of the latest *stable* version is also available online. It may be quite outdated from the *devel* version. https://www-soc.lip6.fr/sesi-docs/coriolis2-docs/coriolis2/en/latex/users-guide/UsersGuide.pdf Building Coriolis ================= To build Coriolis, ensure the following prerequisites are met: * Python 2.7. * cmake. * boost. * bison & flex. * Qt 4 or 5. * libxml2. * RapidJSON * A C++11 compliant compiler. The build system relies on a fixed directory tree from the root of the user currently building it. Thus first step is to get a clone of the repository in the right place. Proceed as follow: :: ego@home:~$ mkdir -p ~/coriolis-2.x/src/support ego@home:~$ cd ~/coriolis-2.x/src/support ego@home:~$ git clone http://github.com/miloyip/rapidjson ego@home:~$ git checkout ec322005072076ef53984462fb4a1075c27c7dfd ego@home:~$ cd ~/coriolis-2.x/src ego@home:src$ git clone https://www-soc.lip6.fr/git/coriolis.git ego@home:src$ cd coriolis If you want to use the *devel* branch: :: ego@home:coriolis$ git checkout devel Then, build the tool: :: ego@home:coriolis$ make install Coriolis gets installed at the root of the following tree: :: ~/coriolis-2.x/<OS>.<DISTRIB>/Release.Shared/install/ Where ``<OS>`` is the name of your operating system and ``<DISTRIB>`` your distribution. Using Coriolis ============== The Coriolis main interface can be launched with the command: :: ego@home:~: ~/coriolis-2.x/<OS>.<DISTRIB>/Release.Shared/install/bin/coriolis The ``coriolis`` script detects its location and setups the UNIX environment appropriately, then lauches ``cgt`` (or *any* command, with the ``--run=<COMMAND>`` option). Conversely, you can setup the current shell environement for Coriolis by using the helper ``coriolisEnv.py``, then run any Coriolis tool: :: ego@home:~$ eval `~/coriolis-2.x/src/coriolis/bootstrap/coriolisEnv.py` ego@home:~$ cgt -V