coriolis/oroshi/python/capacitorvrtracks.py

488 lines
24 KiB
Python

#!/usr/bin/python
import sys
from collections import OrderedDict
import numpy
from ..Hurricane import *
from ..CRL import *
from ..helpers.io import ErrorMessage as Error
from ..helpers import trace
from . import getRules
from .capacitorunit import CapacitorUnit
from .capacitormatrix import CapacitorStack
## Route two matched capacitors, C1 and C2, drawn in a capacitor matrix.
# Connections are put in place with reference to a given matching scheme.
# Elementary capacitor units are connected to horizontal and vertical routing
# tracks that represent top plates and bottom plates nets of C1 and C2.
# Supported types of capacitors are Poly-Poly and Metal-Metal.
# Technologycal rules are provided by 350 nm AMS CMOS technology with
# three-four metal layers. Metal layers that are used for routeing are
# placed similarly to horziontal-vertical (HV) symbolic Alliance CAD tool router,
# where horizontal metal channels are drawn in metal 2 and the vertical ones are
# in metal 3. Given a matrix of dimensions \f$ R*C \f$, the total number of
# vertical tracks is \f$ 2C+2 \f$ equivalent to \f$ C+1 \f$ couples,
# ensuring that every elementary capacitor is positioned between four
# vertical tracks, two from each side. In fact, every adjacent couple of these
# tracks represent top plates and bottom plates of C1 or C2 as shown in Figure 1.
#
# \image html Layout.png "Layout" width=.1\linewidth
#
# An elementary capacitor unit can be a part of C1 or C2 according to the
# matching scheme. However, to respect common-centroid layout specifications,
# for C1 and C2 to be equal, the matrix number of colums and number of rows
# must be both even. Addionnally, the number of elementary capacitors dedicated
# to C1 must be equal to those dedicated to C2. These two conditions are tested
# in one of the class methods. An exception is raised if at least one of the two
# is not respected.
class VerticalRoutingTracks ( CapacitorStack ):
rules = getRules()
def __init__( self, capacitorInstance, capacitor, minimizeVRT = False ) :
self.device = capacitorInstance.device
self.capacitorInstance = capacitorInstance
self.capacitor = capacitor
self.matchingScheme = capacitorInstance.matchingScheme
self.capacitorType = capacitorInstance.capacitorType
self.abutmentBox = capacitorInstance.abutmentBox
self.matrixDim = self.capacitorInstance.matrixDim
self.nets = capacitorInstance.nets
self.capacitorsNumber = capacitorInstance.capacitorsNumber
self.dummyRing = capacitorInstance.dummyRing
self.dummyElement = capacitorInstance.dummyElement
self.capacitorIds = range(0,self.capacitorsNumber)
self.abutmentBox_spacing = capacitorInstance.abutmentBox_spacing
self.vRoutingTrack_width = self.capacitorInstance.vRoutingTrack_width
self.vRoutingTrackXCenter = []
self.vRoutingTrackDict = {}
self.minimizeVRT = minimizeVRT
self.vRTsToEliminate = []
self.vRTsDistribution = []
self.platesDistribution = []
return
def getVTrackYMin ( self ): return self.vRoutingTrackDict["YMin"] - self.hRoutingTrack_width/2
def getVTrackYMax ( self ): return self.vRoutingTrackDict["YMax"] + self.hRoutingTrack_width/2
## Sets vertical stretching value considering spacing between elementary capacitors in the matrix.
# \return stratching value.
def __setStretching__( self ): return self.minSpacing_botPlate + self.abutmentBox_spacing/2
## Defines technology rules used to draw the layout. Some of the rules, namely those describing routeing layers and tracks are applicable for both MIM and PIP capacitors. However, cuts rules are different. \remark All \c CapacitorStack class rules are also reloaded in this class. An exception is raised if the entered capacitor type is unsupported.
# \return a dictionary with rules labels as keys and rules content as values.
def setRules ( self ):
CapacitorStack.setRules( self )
self.minWidth_hRoutingTrackCut = VerticalRoutingTracks.rules.minWidth_cut2
self.minWidth_hRoutingLayer_vRoutingTrack_cut = VerticalRoutingTracks.rules.minWidth_cut2
self.minWidth_hRoutingTrack = VerticalRoutingTracks.rules.minWidth_metal2
self.minEnclosure_hRoutingLayer_vRoutingTrack_cut = VerticalRoutingTracks.rules.minEnclosure_metal2_cut2
self.minEnclosure_hRoutingTrackCut = VerticalRoutingTracks.rules.minEnclosure_metal2_cut2
self.minWidth_hRoutingLayer = VerticalRoutingTracks.rules.minWidth_metal2
self.minSpacing_hRoutingTrack = VerticalRoutingTracks.rules.minSpacing_metbot
return
def create( self ):
UpdateSession.open ()
self.setRules ()
vRoutingTracksLayer = DataBase.getDB().getTechnology().getLayer("metal3" )
#print 'self.capacitorInstance.doMatrix:', self.capacitorInstance.doMatrix
#print 'self.capacitorsNumber:', self.capacitorsNumber
if self.capacitorInstance.doMatrix == True and self.capacitorsNumber > 1 :
self.minimizeVRTs()
self.computeVRTDimensions()
self.drawVRoutingTracks( vRoutingTracksLayer )
else : raise Error(1, 'create() : Impossible to route. This class only routes a matrix of two or more capacitors. Please use <routeCapacitorMatrix> class instead.')
UpdateSession.close ()
return
## Iteratively draws vertical routing tracks given the physical layer
# \c vRoutingTracksLayer. Every elementary capacitor is consequently
# positioned between four routing tracks, two from each side.
# Each couple of adjacent routeing tracks represent top plate and
# bottom plate nets of Ci, where i is in [1,2]. As given in Figure 2,
# capacitor \f$ C_{ij} \f$ with an even j value situated in even columns
# have and inversely for odd columns numbers.
def drawVRoutingTracks ( self, vRoutingTracksLayer ) :
netsDistribution = self.__setNetsDistribution__()
k = 0
for j in range( 0, self.matrixDim["columns"] + 1 ):
for key in self.vRoutingTrackXCenter[j]:
if self.vRoutingTrackXCenter[j][key] is not None:
Vertical.create( netsDistribution[j][k]
, vRoutingTracksLayer
, int(self.vRoutingTrackXCenter[j][key])
, int(self.vRoutingTrack_width)
, int(self.getVTrackYMin())
, int(self.getVTrackYMax() ))
k = k + 1 if k < len(key)-1 else 0
return
def computeVRTDimensions ( self ) :
self.hRoutingTrack_width = max( self.minWidth_hRoutingTrack, self.minWidth_hRoutingTrackCut + 2*self.minEnclosure_hRoutingTrackCut )
abutmentBoxYMin = self.capacitorInstance.computeAbutmentBoxDimensions( self.abutmentBox_spacing )["YMin"]
abutmentBoxYMax = abutmentBoxYMin + self.capacitorInstance.computeAbutmentBoxDimensions( self.abutmentBox_spacing )["height"]
self.minimumPosition = abutmentBoxYMin - self.__setStretching__() - self.hpitch + self.metal2Width
self.maximumPosition = abutmentBoxYMax + self.__setStretching__() + self.hpitch - self.metal2Width
height = self.maximumPosition - self.minimumPosition
heightAdjust = height % (2*self.hpitch)
if heightAdjust:
heightAdjust = 2*self.hpitch - heightAdjust
trace( 101, '\tAdjust height: {0}\n'.format( DbU.getValueString(heightAdjust) ))
trace( 101, '\tHeight before adjust: {0}\n'.format( DbU.getValueString(self.maximumPosition - self.minimumPosition) ))
trace( 101, '\tminimum before adjust: {0}\n'.format( DbU.getValueString(self.minimumPosition) ))
self.maximumPosition += heightAdjust/2
self.minimumPosition -= heightAdjust/2
trace( 101, '\tHeight after adjust: {0}\n'.format( DbU.getValueString(self.maximumPosition - self.minimumPosition) ))
trace( 101, '\tminimum after adjust: {0}\n'.format( DbU.getValueString(self.minimumPosition) ))
vRTsNumber = self.__computeVRTsNumber__()
#self.vRoutingTrackDict["YMin"] = self.minimumPosition - vRTsNumber*(self.hRoutingTrack_width + self.minSpacing_hRoutingTrack)
#self.vRoutingTrackDict["YMax"] = self.maximumPosition + vRTsNumber*(self.hRoutingTrack_width + self.minSpacing_hRoutingTrack)
self.vRoutingTrackDict["YMin"] = self.minimumPosition - (vRTsNumber-1)*self.hpitch
self.vRoutingTrackDict["YMax"] = self.maximumPosition + (vRTsNumber-1)*self.hpitch
self.__setPlatesDistribution__()
self.computeXCenters()
return
def __computeVRTsNumber__ ( self ):
if self.dummyElement == True :
vRTsNumber = 2*self.capacitorsNumber - 1
else :
vRTsNumber = 2*self.capacitorsNumber + 1 if self.dummyRing == True else 2*self.capacitorsNumber
return vRTsNumber
def computeXCenters( self ):
unitCapDim = self.capacitorInstance.getCapDim()
abutmentBoxUnitCap_width = CapacitorUnit.computeAbutmentBoxDimensions( self, unitCapDim )["width"]
unitCapXMin = self.abutmentBox.getXMin() if self.dummyRing == False else self.abutmentBox.getXMin() + abutmentBoxUnitCap_width + self.capacitorInstance.abutmentBox_spacing
vRoutingTrack_spacing = self.capacitorInstance.minSpacing_vRoutingTrack
[ factor1 , factor2 ] = [ self.capacitorsNumber , self.capacitorsNumber-1 ] if ( self.capacitorsNumber % 2 == 0 ) else [ self.capacitorsNumber + 1 , self.capacitorsNumber ]
if self.vRTsToEliminate[0][0] == 1 :
self.vRoutingTrackXCenter.append( OrderedDict() )
self.vRoutingTrackXCenter[0][ self.platesDistribution[0][0] ] = unitCapXMin - factor1*vRoutingTrack_spacing - (factor2)*self.vRoutingTrack_width - self.vRoutingTrack_width/2
else :
self.vRoutingTrackXCenter.append( OrderedDict() )
self.vRoutingTrackXCenter[0][ self.platesDistribution[0][0] ] = None
leftVRTNumber = self.capacitorsNumber if ( self.capacitorsNumber % 2 == 0 ) else self.capacitorsNumber + 1
for k in range( 1, leftVRTNumber ):
self.vRoutingTrackXCenter[0][self.platesDistribution[0][k]] = unitCapXMin - (factor1-k)*vRoutingTrack_spacing -(factor2-k)*self.vRoutingTrack_width - self.vRoutingTrack_width/2 if self.vRTsToEliminate[0][k] == 1 else None
#print('self.vRoutingTrackXCenter',self.vRoutingTrackXCenter)
for j in range( 1, self.matrixDim["columns"] + 1 ):
factor3 = j - 1 if self.dummyRing == False else j
unitCapXMin = self.abutmentBox.getXMin() + factor3*( abutmentBoxUnitCap_width + self.capacitorInstance.abutmentBox_spacing )
unitCapXMax = unitCapXMin + abutmentBoxUnitCap_width
if self.vRTsToEliminate[j][0] == 1:
self.vRoutingTrackXCenter.append( OrderedDict() )
self.vRoutingTrackXCenter[j][ self.platesDistribution[j][0] ] = unitCapXMax + vRoutingTrack_spacing + self.vRoutingTrack_width/2
else :
self.vRoutingTrackXCenter.append( OrderedDict() )
self.vRoutingTrackXCenter[j][ self.platesDistribution[j][0] ] = None
if self.capacitorsNumber % 2 == 0:
rightVRTNumber = self.capacitorsNumber
else :
if (j % 2 == 0) :
rightVRTNumber = self.capacitorsNumber + 1
else : rightVRTNumber = self.capacitorsNumber - 1 if self.dummyElement == False else self.capacitorsNumber - 2
for k in range( 1, rightVRTNumber ):
self.vRoutingTrackXCenter[j][ self.platesDistribution[j][k] ] = unitCapXMax + (k+1)*vRoutingTrack_spacing + (k)*self.vRoutingTrack_width + self.vRoutingTrack_width/2 if self.vRTsToEliminate[j][k] == 1 else None
#print('self.vRoutingTrackXCenter',self.vRoutingTrackXCenter)
return
def __findUsedCapIdsPerColumn__( self ):
usedCapIdsPerColumn = []
for j in range(0, self.matrixDim["columns"] ):
usedCapIdsPerColumn.append( [self.matchingScheme[0][j]] )
for i in range(1, self.matrixDim["rows"] ):
usedCapIdsPerColumn[j].append( self.matchingScheme[i][j] )
usedCapIdsPerColumn[j] = numpy.unique(usedCapIdsPerColumn[j])
return usedCapIdsPerColumn
def __findCapIdsToEliminatePerColumn__( self, usedCapIdsPerColumn ):
capIdsToEliminatePerColumn = []
for j in range(0, len(usedCapIdsPerColumn) ):
if len(usedCapIdsPerColumn[j]) == self.capacitorsNumber:
capIdsToEliminatePerColumn.append( [None] )
else :
capIdsToEliminatePerColumn.append( list (set(usedCapIdsPerColumn[j])^set(self.capacitorIds) ) )
return capIdsToEliminatePerColumn
def __findCapIdsToEliminate__( self, capIdsToEliminatePerColumn ):
capIdsToEliminate = []
capIdsj = capIdsToEliminatePerColumn[0]
#print('capIdsj',capIdsj)
sharedVRTIds = self.capacitorIds[0:self.capacitorsNumber//2] if self.capacitorsNumber % 2 == 0 else self.capacitorIds[0: int(self.capacitorsNumber//2+1)]
#print('sharedVRTIds',sharedVRTIds)
intersection2 = list( set(capIdsj).intersection(set(sharedVRTIds)) )
capIdsToEliminate.append( [None] ) if len(intersection2) == 0 else capIdsToEliminate.append( intersection2 )
for j in range(0, len(capIdsToEliminatePerColumn) ):
capIdsj = capIdsToEliminatePerColumn[j]
if (j % 2 == 0):
sharedVRTIds = self.capacitorIds[self.capacitorsNumber//2 : self.capacitorsNumber] if (self.capacitorsNumber % 2 == 0) else self.capacitorIds[int(self.capacitorsNumber//2+1) : self.capacitorsNumber]
else:
sharedVRTIds = self.capacitorIds[0:self.capacitorsNumber//2] if (self.capacitorsNumber % 2 == 0) else self.capacitorIds[0: int(self.capacitorsNumber//2+1)]
#print('sharedVRTIds',sharedVRTIds)
if j == len(capIdsToEliminatePerColumn)-1:
intersection1 = list( set(capIdsj) )
else :
capIdsjp1 = capIdsToEliminatePerColumn[j+1]
intersection1 = list( set(capIdsj).intersection(set(capIdsjp1)) )
intersection2 = list( set(intersection1).intersection(set(sharedVRTIds)) )
capIdsToEliminate.append( [None] ) if len(intersection2) == 0 else capIdsToEliminate.append( intersection2 )
return capIdsToEliminate
def __findVRTsToEliminate__( self, capIdsToEliminate ):
#print('capIdsToEliminate',capIdsToEliminate)
for j in range( 0,len(self.vRTsDistribution) ) :
for k in range( 0,len(self.vRTsDistribution[j]) ) :
if k == 0 :
if self.vRTsDistribution[j][0] in capIdsToEliminate[j] :
self.vRTsToEliminate.append( [0] )
self.vRTsToEliminate[j].append( 0 )
else :
self.vRTsToEliminate.append( [1] )
self.vRTsToEliminate[j].append( 1 )
#print('vRTsToEliminate',self.vRTsToEliminate)
else :
if self.vRTsDistribution[j][k] in capIdsToEliminate[j]:
[self.vRTsToEliminate[j].append( 0 ) for u in range(0,2)]
else :
[self.vRTsToEliminate[j].append( 1 ) for u in range(0,2)]
return
def minimizeVRTs( self ) :
self.__setVRTsDistribution__()
if self.minimizeVRT == False :
for j in range( 0, self.matrixDim["columns"]+1 ) :
self.vRTsToEliminate.append( [1] )
self.vRTsToEliminate[j].append( 1 )
for k in range( 0,len(self.vRTsDistribution[j]) ) :
[self.vRTsToEliminate[j].append( 1 ) for u in range(0,2)]
elif self.minimizeVRT == True :
usedCapIdsPerColumn = self.__findUsedCapIdsPerColumn__ ()
capIdsToEliminatePerColumn = self.__findCapIdsToEliminatePerColumn__(usedCapIdsPerColumn )
capIdsToEliminate = self.__findCapIdsToEliminate__ (capIdsToEliminatePerColumn)
self.__findVRTsToEliminate__ (capIdsToEliminate )
#print("self.matchingScheme" ,self.matchingScheme)
#print("usedCapIdsPerColumn" ,usedCapIdsPerColumn)
#print("capIdsToEliminatePerColumn",capIdsToEliminatePerColumn)
#print("capIdsToEliminate" ,capIdsToEliminate)
#print('self.vRTsToEliminate' ,self.vRTsToEliminate)
else : raise Error(1,'minimizeVRTs() : ')
return
def __setVRTsDistribution__( self ):
if self.capacitorsNumber % 2 == 0:
element = [ self.capacitorIds[0:self.capacitorsNumber//2]
, self.capacitorIds[self.capacitorsNumber//2:self.capacitorsNumber] ]
else:
element = [ self.capacitorIds[0:int( self.capacitorsNumber//2 + 1 )]
, self.capacitorIds[int( self.capacitorsNumber//2 + 1 ):self.capacitorsNumber] ]
u = 0
for j in range(0,self.matrixDim["columns"]+1) :
self.vRTsDistribution.append( element[u] )
u = u+1 if u < 1 else 0
#print('self.vRTsDistribution',self.vRTsDistribution)
return
def __setNetsDistribution__( self ):
netsList = self.nets[0:len(self.nets)-1] if self.dummyRing == True and self.dummyElement == False else self.nets
if len(netsList) % 2 == 0:
element = [ netsList[0:len(netsList)//2]
, netsList[len(netsList)//2:len(netsList)] ]
else:
element = [ netsList[0:int( len(netsList)//2 + 1 )]
, netsList[int( len(netsList)//2 + 1 ):len(netsList)] ]
u = 0
netsDistribution = []
for j in range(0,self.matrixDim["columns"]+1) :
netsDistribution.append( [element[u][0][0]] )
netsDistribution[j].append( element[u][0][1] )
for k in range(1,len(element[u])):
netsDistribution[j].append( element[u][k][0] )
netsDistribution[j].append( element[u][k][1] )
u = u+1 if u < 1 else 0
#print('netsDistribution',netsDistribution)
return netsDistribution
def __setPlatesDistribution__( self ):
element = [ self.capacitorIds[0:self.capacitorsNumber//2], self.capacitorIds[self.capacitorsNumber//2:self.capacitorsNumber] ] if self.capacitorsNumber % 2 == 0 else [ self.capacitorIds[0:int( self.capacitorsNumber//2 + 1 )], self.capacitorIds[int( self.capacitorsNumber//2 + 1 ):self.capacitorsNumber] ]
u = 0
for j in range(0,self.matrixDim["columns"]+1) :
self.platesDistribution.append( ['t' + str(element[u][0])] )
#print('self.platesDistribution',self.platesDistribution)
if self.dummyElement == False or self.dummyElement == True and j % 2 == 0 and len(element[u]) > 1 :
self.platesDistribution[j].append( 'b' + str(element[u][0]) )
for k in element[u][1:len(element[u])]:
self.platesDistribution[j].append( 't' + str(k) )
if self.dummyElement == False or self.dummyElement == True and j % 2 == 0 or self.dummyElement == True and j % 2 != 0 and k != element[u][len(element[u])-1] :
self.platesDistribution[j].append( 'b' + str(k) )
u = u+1 if u < 1 else 0
#print('self.platesDistribution',self.platesDistribution)
return
def gethRoutingTrack_width ( self ) : return self.hRoutingTrack_width
def getvRoutingTrackXCenter ( self ) : return self.vRoutingTrackXCenter
def scriptMain( **kw ):
editor = None
if 'editor' in kw and kw['editor']:
editor = kw['editor']
UpdateSession.open()
Device = AllianceFramework.get().createCell( 'capacitor' )
Device.setTerminal( True )
bottomPlate_net0 = Net.create( Device, 'b0' )
bottomPlate_net1 = Net.create( Device, 'b1' )
bottomPlate_net2 = Net.create( Device, 'b2' )
bottomPlate_net3 = Net.create( Device, 'b3' )
bottomPlate_net0.setExternal( True )
bottomPlate_net1.setExternal( True )
bottomPlate_net2.setExternal( True )
bottomPlate_net3.setExternal( True )
b0 = Device.getNet("b0")
b1 = Device.getNet("b1")
b2 = Device.getNet("b2")
b3 = Device.getNet("b3")
topPlate_net0 = Net.create( Device, 't0' )
topPlate_net1 = Net.create( Device, 't1' )
topPlate_net2 = Net.create( Device, 't2' )
topPlate_net3 = Net.create( Device, 't3' )
topPlate_net0.setExternal( True )
topPlate_net1.setExternal( True )
topPlate_net2.setExternal( True )
topPlate_net3.setExternal( True )
t0 = Device.getNet("t0")
t1 = Device.getNet("t1")
t2 = Device.getNet("t2")
t3 = Device.getNet("t3")
if editor:
UpdateSession.close()
editor.setCell( Device )
editor.fit()
UpdateSession.open()
nets = [[t0, b0] , [t1, b1] , [t2, b2] ] # [t3, b3] ]
#capacitorInstance = CapacitorStack( Device, capacitance, 'MIMCap', [0,0], nets, unitCap = 93, matchingMode = True, matchingScheme = [ ['C2','C2','C2','C2'] , ['C1','C2','C2','C2'] , ['C1','C2','C2','C2'] , ['C1','C2','C2','C1'] ] )
capacitorInstance = CapacitorStack( Device, [372,1116], 'MIMCap', [0,0], nets,unitCap = 93, matrixDim = [4,4], matchingMode = True, matchingScheme = [ [1,1,1,0] , [0,1,1,1] , [1,1,1,0] , [0,1,1,1]], dummyRing = True)
# capacitorInstance = CapacitorStack( Device, [372,1116], 'MIMCap', [0,0], nets,unitCap = 93, matrixDim = [4,4], matchingMode = True, matchingScheme = [ [1,1,1,0] , [0,1,1,1] , [1,1,1,0] , [0,1,1,1] ], dummyRing = True)
# capacitorInstance = CapacitorStack( Device, [279], 'MIMCap', [0,0], nets, unitCap = 279 ) #, matrixDim = [4,4], matchingMode = True, matchingScheme = [ [1,1,1,0] , [0,1,2,1] , [1,1,1,0] , [2,1,1,1] ], dummyElement = True )#dummyRing = True)
# capacitorInstance = CapacitorStack( Device, [279,1023, 186], 'MIMCap', [0,0], nets, unitCap = 93, matrixDim = [4,4], matchingMode = True, matchingScheme = [ [1,1,1,0] , [0,1,2,1] , [1,1,1,0] , [2,1,1,1] ], dummyElement = True )#dummyRing = True)
# capacitorInstance = CapacitorStack( Device, capacitance, 'MIMCap', [0,0], nets, unitCap = 93, matchingMode = True, matchingScheme = [ ['C2','C2','C1','C2'] , ['C1','C2','C2','C1'] , ['C1','C1','C2','C3'] , ['C1','C1','C2','C3'] ] )
# capacitorInstance = CapacitorStack( Device, capacitance, 'MIMCap', [0,0], nets, unitCap = 93, matchingMode = True, matchingScheme = [ ['C1','C4','C1','C2'] , ['C1','C2','C4','C1'] , ['C3','C1','C4','C3'] , ['C3','C1','C2','C3'] ] )
capacitor = capacitorInstance.create( )
capWithVRT = VerticalRoutingTracks( capacitorInstance, capacitor, True ) # )
capWithVRT.create()
AllianceFramework.get().saveCell( Device, Catalog.State.Views )
return True