coriolis/anabatic/doc/NetBuilder.dox

347 lines
19 KiB
C++

// -*- C++ -*-
namespace Anabatic {
/*! \defgroup LoadGlobalRouting Global Routing Loading
* \brief Translation rules to build detailed routing from global
*
* This module documents how the global routing built by \c Knik is
* loaded into the \c Anabatic data-base. It is intented for developpers
* only.
*/
//! \addtogroup LoadGlobalRouting
//! \{
//! \enum LocalFunctionFlag
//! A set of flags for all functions of the LoadGlobalRouting module.
//! They can be combined to form the \e flags argument of functions.
//! the functions will ignore flags that are not intended to them.
//!
//! For \c HSmall, \c VSmall & \c Punctual see checkRoutingPadSize().
//! \var LocalFunctionFlag::NoFlags
//! A simple alias over zero to explicitly tell that no flag at all is
//! passed to the function.
//! \var LocalFunctionFlag::HAccess
//! The constructed topology will be accessed through an horizontal
//! segment. The absence of this flag tell that the access will be done
//! trough a vertical.
//! \var LocalFunctionFlag::VSmall
//! The RoutingPad vertically covers a very small number of access points,
//! so it is likely overconstrained for direct horizontal connexion.
//! \var LocalFunctionFlag::HSmall
//! The RoutingPad horizontally covers a very small number of access points,
//! so it is likely overconstrained for direct vertical connexion.
//! \var LocalFunctionFlag::Punctual
//! The RoutingPad covers only an access point in either direction.
//! \var LocalFunctionFlag::DoSourceContact
//! When creating Anabatic::AutoContactTerminal on non-punctual RoutingPad, this flag
//! request the creation of a contact <em>on the source point</em>.
//! \var LocalFunctionFlag::DoTargetContact
//! When creating Anabatic::AutoContactTerminal on non-punctual RoutingPad, this flag
//! request the creation of a contact <em>on the target point</em>.
//! \function uint64_t checkRoutingPadSize ( Component* rp );
//!
//! Look at the geometrical size of the Component and assess if
//! it's span is too narrow either horizontally or vertically.
//! Return a combination of flags indicating it's state:
//! - HSmall : less than 3 pitches in horizontal direction.
//! - VSmall : less than 3 pitches in vertical direction.
//! - Punctual : one pitch in either directions.
//!
//! The component can be a RoutingPad, a Vertical or an Horizontal.
//!
//! \image html checkRoutingPadSize.png "checkRoutingPadSize()"
/*! \class NetBuilder
*
* \brief Build the wiring for a Net inside a GCell (\b internal).
*
* As this class is called to initially construct the Anabatic wiring,
* it must build a \b connex wiring. That is without gaps in layer depth,
* because the topology restauration mechanism (AutoContact::updateTopology())
* of the AutoContact cannot work until all AutoSegments are revalidated at
* least once. The topology restauration work by creating doglegs which in turn,
* call the canonization, which needs all the caches to be up to date.
*/
//! \function void NetBuilder::doRp_AutoContacts ( GCell* gcell, Component* rp, AutoContact*& source, AutoContact*& target, uint64_t flags );
//! \param gcell The GCell into which create the AutoContact.
//! \param rp The Component we want to access.
//! \param source The AutoContact created on the \c source (\e returned).
//! \param target The AutoContact created on the \c target (\e returned).
//! \param flags Managed by this function:
//! - LocalFunctionFlag::DoSourceContact
//! - LocalFunctionFlag::DoTargetContact
//!
//! Create the AutoContact directly anchored on the Component (terminal).
//! Three cases are manageds:
//! -# <b>Ordinary (non-punctual) \c METAL1 terminal</b>: an AutoContactTerminal
//! is anchored on the RoutingPad.
//! -# <b>Punctual \c METAL1 terminal</b>, the access must never be blocked
//! by other routing. To ensure it, we create a fixed AutoSegment (anchored
//! on two AutoContactTerminal) to cover it. The \e normal AutoContactTerminal
//! is also created.
//! -# <b>non \c METAL1 terminal</b>, as for the punctual \c METAL1, a
//! fixed protection is added over the RoutingPad. If we access
//! horizontally a vertical RoutingPad or vertically an horizontal
//! one, an extra AutoContactTerminal is added (to allow is displacement
//! along the RoutingPad).
//!
//! To avoid creating a fixed protection over a RoutingPad multiple times,
//! the RoutingPad and it's associated protection is stored in a static
//! \c map : \c __routingPadAutoSegments.
//!
//! Conversely, because an AutoContactTerminal can only be connected to one
//! segment, each time this function is called a new terminal will be created
//! (or maybe two in case of non-punctual terminals). If only one AutoContact
//! is requested, it is created centered on the RoutingPad. The initial
//! position of AutoContact <em>do not prevent them to move afterwards</em>,
//! even those created on source/target on a non-punctual RoutingPad.
//!
//! \remark For clarity we describe the layer management of this function in term
//! of \c METAL, but it is the RoutingGauge depth which is actually used.
//!
//! \image html doRp_AutoContacts.png "doRp_AutoContacts()"
//! \function AutoContact* NetBuilder::doRp_Access ( GCell* gcell, Component* rp, uint64_t flags );
//! \param gcell The GCell into which create the AutoContact.
//! \param rp The Component onto which anchor the access contact.
//! \param flags Relevant flags are:
//! - HAccess, the terminal is to be accessed through an horizontal
//! segment.
//! - VSmall, force the terminal to be considered as small in the
//! vertical direction.
//!
//! If \c HAccess is set, the Component is to be accessed trough an horizontal
//! segment. If unset, the access is done vertically.
//!
//! Create an AutoContact to access a Component (terminal). If the Component
//! is not to be accessed through an horizontal segment, and do not cover a
//! large span in the horizontal direction (flag \c VSmall), a local horizontal
//! AutoSegment is added to slacken the vertical constraints.
//!
//! \image html doRp_Access.png "doRp_Access()"
//! \function AutoContact* NetBuilder::doRp_AccessPad ( RoutingPad* rp, uint64_t flags );
//! \param rp The Component onto which anchor the access contact.
//! \param flags Relevant flags are:
//! - HAccess, the terminal is to be accessed through an horizontal
//! segment.
//! - VSmall, force the terminal to be considered as small in the
//! vertical direction.
//! \return A Anabatic::AutoContactTerminal .
//!
//! The Component \c rp is a RoutingPad which belongs to a pad cell. This case
//! occurs when we are routing a complete chip. This method build, from the
//! \c rp a stack of articulated punctual segments and contacts to reach the
//! default H/V routing layers (usually \c METAL2 & \c METAL3). This may be
//! needed when the pad terminal is in \c METAL5, for instance.
//!
//! The returned AutoContactTerminal is anchored on the last punctual segment
//! build.
//!
//! The GCell into which the AutoContactTerminal is created may be under the
//! pads area. However, it will be right on the border of the GCell.
//! The global router vertexes of GCell under the pad area are marked as
//! blocked so will never be used for routing.
//!
//! \remark The segments and contacts added to ensure the layer connexity are not
//! put into the Anabatic database. They are plain Hurricane objects, invisibles
//! from it.
//! \function void NetBuilder::doRp_StairCaseH ( GCell* gcell, Component* rp1, Component* rp2 );
//!
//! Build the wiring to connect to horizontal Component. Two cases:
//! - The Component are aligneds, then only a straight wire is created.
//! - They are \e not aligned, then a complete dogleg is created.
//!
//! \image html doRp_StairCaseH.png "doRp_StairCaseH()"
//! \function void NetBuilder::doRp_StairCaseV ( GCell* gcell, Component* rp1, Component* rp2 );
//!
//! Build the wiring to connect to vertical Components. Two cases:
//! - The Components are aligneds, then only a straight wire is created.
//! - They are \e not aligned, then a complete dogleg is created.
//!
//! \image html doRp_StairCaseV.png "doRp_StairCaseV()"
//! \function void NetBuilder::_do_xG_1Pad ();
//!
//! Construct the topology, when there is only global wires and one local
//! terminal, but coming from a Pad. As thoses connectors will always be
//! on one border of the GCell they can be considered as a kind of global.
//!
//! So this method mostly calls NetBuilder::doRp_AccessPad() to create
//! the AutoContactTerminal, then calls NetBuilder::_do_xG(), except
//! for straight lines which are managed directly.
//! \function void NetBuilder::_do_xG ();
//!
//! Construct the topology, when there is only global wires (no local terminals).
//!
//! Some topology are not handled because they must not be managed by this
//! function:
//! <ul>
//! <li>One global: nonsensical because there also must be a terminal.
//! <li>Two aligned globals: in that case we do a straight wire whithout
//! any AutoContact (handled by the source/target of the wire).
//! </ul>
//!
//! \image html _do_xG.png "_do_xG()"
//! \function void NetBuilder::_do_1G_1M1 ();
//!
//! Construct a topology where there is \e one global and one RoutingPad
//! in \c METAL1. The \c METAL1 is assumed to be vertical.
//!
//! \remark When accessing the RoutingPad through an horizontal global segment
//! and the vertical extension of the segment is small, the global is
//! still directly attached to the terminal, inducing a high constraint
//! on it. We left to job of slackening it to the router.
//!
//! \image html _do_1G_1M1.png "_do_1G_1M1()"
//! \function void NetBuilder::_do_1G_xM1 ();
//!
//! Construct a topology where there is \e one global and any number of
//! RoutingPad in \c METAL1. The \c METAL1 is assumed to be vertical.
//!
//! The RoutingPads are linked together two by two. If the horizontal
//! segments are not aligned by the router, part of the routage will be
//! done through the RoutingPad itself. The global incoming segment will
//! connected to the leftmost, rightmost or centermost RoutingPad according
//! from wich side it comes from.
//!
//! \image html _do_1G_xM1.png "_do_1G_xM1()"
//! \function void NetBuilder::_do_xG_1M1_1M2 ();
//!
//! Construct a topology where there is at least one global (and up to 4),
//! one \c METAL1 RoutingPad (assumed V) and one \c METAL2 RoutingPad (assumed H).
//!
//! In this topology, we want to try to reuse the \c METAL2 RoutingPad as a
//! feedtrough in the horizontal routage. Thus:
//! - The \c METAL1 and \c METAL2 RoutingPad are connected through a separate wiring.
//! - The south & west global wiring is attached to the leftmost contact of
//! the \c METAL2.
//! - The north & east global wiring is attached to the rightmost contact of
//! the \c METAL2.
//!
//! South/west and north/south can be build independantly. Depending on the number
//! of globals, they can consist of:
//! - Nothing (no south nor west).
//! - An AutoContact (west present).
//! - An horizontal plus a turn (south present).
//! - An horizontal plus a HTee (south & west present).
//!
//! \remark Not all configurations are represented below.
//!
//! \image html _do_xG_1M1_1M2.png "_do_xG_1M1_1M2()"
//! \function void NetBuilder::_do_xG_xM1_xM3 ();
//!
//! Construct a topology where there is at least one global (and up to 4),
//! at least one \c METAL1 RoutingPad (assumed V) and at least one \c METAL3
//! RoutingPad (assumed V).
//!
//! In this topology, we want to try to reuse the \c METAL3 RoutingPad as a
//! feedtrough in the vertical routage. Thus:
//! - The \c METAL1 and \c METAL3 RoutingPad are connected through a separate
//! wiring made of separate horizontals.
//! - The south-west global wiring is attached to the leftmost RoutingPad
//! if there isn't south or to the first \c METAL3 otherwise.
//! - The north-east global wiring is attached to the rightmost RoutingPad
//! if there isn't north or to the first \c METAL3 otherwise.
//!
//! South/west and north/south can be build independantly. Depending on the number
//! of globals, they can consist of:
//! - Nothing (no south nor west).
//! - An AutoContact on the leftmost RoutingPad (west present).
//! - An AutoContact on the first \c METAL3 (only south present).
//! - An AutoContact plus a vertical plus a VTee (south & west present).
//!
//! \image html _do_xG_xM1_xM3.png "_do_xG_xM1_xM3()"
//! \function void NetBuilder::_do_xG_xM2 ();
//!
//! Construct a topology where there is at least one global (and up to 4),
//! and any number of \c METAL2 RoutingPads (assumeds H).
//!
//! In this topology, we want to try to reuse the \c METAL2 RoutingPad as a
//! feedtrough in the horizontal routage. Thus:
//! - The RoutingPad are connecteds trough a separate staircase (or
//! straight wire if aligneds).
//! - The south-west global wiring is attached to the leftmost RoutingPad
//! if there isn't south or to the biggest horizontal RoutingPad otherwise.
//! - The north-east global wiring is attached to the rightmost RoutingPad
//! if there isn't south or to the biggest horizontal RoutingPad otherwise.
//!
//! \image html _do_xG_xM2.png "_do_xG_xM2()"
//! \function void NetBuilder::_do_1G_1M3 ();
//!
//! Construct a topology where there is one global and one \c METAL3 RoutingPad
//! (assumeds V).
//!
//! In this topology, we reuse the \c METAL3 RoutingPad as a feedtrough in the
//! vertical routage. Thus:
//! - If the global is either north or south, we directly connect to the
//! north end or south end of the RoutingPad. \red{The vertical global will}
//! \red{have no slack at all we assume that METAL3 terminals are only from}
//! \red{blocks and are aligneds vertically.}
//! - If the global is east or west \e and the RoutingPad is sufficiently
//! extended in the vertical direction, we connect an horizontal in the
//! normal way.
//! - If the global is not sufficiently extended, we add a turn to give some
//! slack to the global.
//!
//!
//! \image html _do_1G_1M3.png "_do_1G_1M3()"
//! \function void NetBuilder::_do_xG_xM3 ();
//!
//! Construct a topology where there at least one global and two \c METAL3 RoutingPad
//! (assumed V).
//!
//! In this topology, we reuse the \c METAL3 RoutingPad as a feedtrough in the
//! vertical routage. \red{We assume that the most likely relative position}
//! \red{of the RoutingPads is to be aligned vertically}.
//! Thus:
//! - All RoutingPads are linked two by two trough vertical staircases.
//! - The south-west global wiring is attached to the bottommost RoutingPad
//! (without vertical slack). If a misalignment is detected, then a
//! dogleg is added.
//! - The north-east global wiring is attached to the topmost RoutingPad
//! (without vertical slack).
//!
//! South/west and north/south can be build independantly. Depending on the number
//! of globals, they can consist of:
//! - Nothing (no south nor west).
//! - An sliding AutoContact on the bottommost RoutingPad (west present).
//! - An fixed AutoContact on the bottommost RoutingPad (only south present).
//! - An fixed AutoContact plus a vertical plus a VTee (south & west present).
//!
//! \image html _do_xG_xM3.png "_do_xG_xM3()"
//! \function void singleGCell ( AnabaticEngine* anbt, Net* net );
//!
//! All the RoutingPads of the net are concentrated under a single
//! GCell. This function assumes that all the terminals are in
//! \c METAL1 (vertical), and link them two by two by horizontal
//! wires.
//! \}
}