
Coriolis Documentation January 10, 2023

Design Flow Quick Start

Contents

1. Introduction . 2
1.1 Task vs. Rules . 2
1.2 A Warning About Determinism . 2
2. Using The Design Flow. 2
2.1 Locating the Various Parts . 2
2.2 Basic Example of dodo File . 3
3. Rules’s Catalog . 5
3.1 Alliance Legacy Tools. 5
3.2 Current Tools . 5
3.3 Utility Rules . 6
3.4 Rule Sets . 6

lip6/cian www-soc.lip6.fr/en/team-cian 1

https://www-soc.lip6.fr/en/team-cian/

Coriolis Documentation January 10, 2023

1. Introduction

The goal of the DesignFlow Python tool is to provide a replacement for Makefiles, especially thecomplex system that has been developped for alliance-check-toolkit. It is build upon DoIt (DoIt).
1.1 Task vs. Rules

Both as a tribute to Makefile, to avoid ambiguties with DoIt and to remember that they aretask generators, the classes defined to create tasks for the design flow are called rules.
1.2 A Warning About Determinism

There is a very important execution difference from a Makefile. In a Makefile each rulecommand is executed in a a separated process, so information is effectively passed through fileswhich are written then read from disk. But in DoIt we are running inside one Python process,so while using Coriolis and the Hurricane database, all informations stays in memory. Files aredriven, but not re-read as the database will use the datas already present in memory.This is not whitout consequences about determism. Let’s look at two different scenarii.
1. We run straight from the RTL to the layout, using the rule/task sequence:

Yosys => design.blif => blif2vst => design.vst => PnR => design.gds

In this case, while design.vst is written on disk, the PnR stage will not re-read the vstfile and directly access the data in memory.
2. Run in two separated steps, first we create the vst file:

Yosys => design.blif => blif2vst => design.vst

Then, we perform the PnR:
design.vst => PnR => design.gds

In this case, as the DoIt processess has been restarted between the two tasks, the PnRstage will read the vst file.
The determism in Coriolis is ensured through the unique identifiers of the objects, attributedin creation order. So between thoses two scenarii, the identifiers will change and so the algo-rithm results. The differences should be minor as the identifiers are used as a last ditch test tosort between two objects which cost functions are exactly equal, nevertheless, it will occur.

Note

CORIOLIS is deterministic, meaning that each scenario will always give the same result. The differ-
ence is truly between scenarii.

2. Using The Design Flow

2.1 Locating the Various Parts

One of the most tricky part of setting up the design flow is to locate where the various compo-nents are. The script needs to be able to find:
1. Coriolis, binaries & libraries. This depends widely of your kind of installation and system.The helper script crlenv.py supplied both in alliance-check-toolkit and Coriolismay help you there. It looks in all the standard locations (that it is aware of) to try to findit.

lip6/cian www-soc.lip6.fr/en/team-cian 2

https://pydoit.org/contents.html
https://www-soc.lip6.fr/en/team-cian/

Coriolis Documentation January 10, 2023

Note

Usually, ALLIANCE is installed in the same tree as CORIOLIS, so it’s setup can be deduced from it.

2. The configurations files for the technology to beused. Here again, thedesignflow.technosmodule provides youwith a set of pre-defined configurations for open sources technologieshipped with Coriolis. For unsupported ones, you may write your own, it should performthe whole initialization of the Coriolis and Hurricane database.
3. Optionnaly the alliance-check-toolkit.

2.2 Basic Example of dodo File

This example canbe found inalliance-check-toolkit, underbenchs/arlet6502/sky130_c4m.
from designflow.technos import setupSky130_c4m

setupSky130_c4m(checkToolkit=’../../..’
, pdkMasterTop=’../../../pdkmaster/C4M.Sky130’)

DOIT_CONFIG = { ’verbosity’ : 2 }

from designflow.pnr import PnR
from designflow.yosys import Yosys
from designflow.blif2vst import Blif2Vst
from designflow.alias import Alias
from designflow.clean import Clean
PnR.textMode = True

from doDesign import scriptMain

ruleYosys = Yosys .mkRule(’yosys’, ’Arlet6502.v’)
ruleB2V = Blif2Vst.mkRule(’b2v’ , [’arlet6502.vst’

, ’Arlet6502.spi’]
, [ruleYosys]
, flags=0)

rulePnR = PnR .mkRule(’pnr’ , [’arlet6502_cts_r.gds’
, ’arlet6502_cts_r.spi’
, ’arlet6502_cts_r.vst’]

, [ruleB2V]
, scriptMain)

ruleCgt = PnR .mkRule(’cgt’)
ruleGds = Alias .mkRule(’gds’, [rulePnR])
ruleClean = Clean .mkRule()

You can run it with:
ego@home:sky130_c4m> ../../../bin/crlenv.py -- doit list
b2v Run <blif2vst arlet6502 depends=[Arlet6502.blif]>.
cgt Run plain CGT (no loaded design)
clean_flow Clean all generated (targets) files.
gds Run <Alias "gds" for "pnr">.
pnr Run <pnr arlet6502_cts_r.gds depends=[arlet6502.vst,Arlet6502.spi]>.
yosys Run <yosys Arlet6502.v top=Arlet6502 blackboxes=[] flattens=[]>.
ego@home:sky130_c4m> ../../../bin/crlenv.py -- doit pnr
ego@home:sky130_c4m> ../../../bin/crlenv.py -- doit clean_flow

lip6/cian www-soc.lip6.fr/en/team-cian 3

https://www-soc.lip6.fr/en/team-cian/

Coriolis Documentation January 10, 2023

Let’s have a detailed look on the various parts of the script.
A. Choosing the technologyHere, we load thepredefined configuration for SkyWater 130nm.We also have to give the location of the alliance-check-toolkit, it may be relativeor absolute.

If you want to use another one, it up to you to configure Coriolis at this point by anymeansyou see fit.
from designflow.technos import setupSky130_c4m

setupSky130_c4m(checkToolkit=’../../..’
, pdkMasterTop=’../../../pdkmaster/C4M.Sky130’)

B. Loading the various task/rule generators that we will use, from the designflownamespace. The rules are named from the tool they encapsulate.
from designflow.pnr import PnR
from designflow.yosys import Yosys
from designflow.blif2vst import Blif2Vst
from designflow.alias import Alias
from designflow.clean import Clean
PnR.textMode = True

C. Creating the rule set. Each rule generator as a static method mkRule() to create a newtask. The three first parameters are always:
1. The name of the task (the basename for DoIt).
2. A target or list of targets, must be files or pathlib.Path objects.
3. A dependency or list of dependencies, they can be files, pathlib.Path objects, orother tasks. We can see that the Blif2Vst rule uses directly the Yosys one (theinput file will be the first target of the Yosys rule).
4. Any extra parameters. A set of flag for Blif2Vst. The PnR rule takes an optionalcallable argument, any callable. In this case we import the scriptMain() functionfrom doDesign().

There are two more special rules:
• Alias, to rename a rule. It this case gds is defined as an alias to PnR (because itgenerate the gds file).
• Clean to create a rule that will remove all the generated targets.

Note

The clean rule is named clean_flow because DOIT already have a clean arguments which
would shadow it.

PnR.textMode = True

from doDesign import scriptMain

ruleYosys = Yosys .mkRule(’yosys’, ’Arlet6502.v’)
ruleB2V = Blif2Vst.mkRule(’b2v’ , [’arlet6502.vst’

, ’Arlet6502.spi’]
, [ruleYosys]
, flags=0)

rulePnR = PnR .mkRule(’pnr’ , [’arlet6502_cts_r.gds’

lip6/cian www-soc.lip6.fr/en/team-cian 4

https://www-soc.lip6.fr/en/team-cian/

Coriolis Documentation January 10, 2023

, ’arlet6502_cts_r.spi’
, ’arlet6502_cts_r.vst’]

, [ruleB2V]
, scriptMain)

ruleCgt = PnR .mkRule(’cgt’)
ruleGds = Alias .mkRule(’gds’, [rulePnR])
ruleClean = Clean .mkRule()

3. Rules’s Catalog

3.1 Alliance Legacy Tools

Support for the Alliance legacy tools. They are run through sub-processes. For more detaileddocumentation about those tools, refer to their man pages.
1. Asimut, vhdl simulator.
2. Boog, logical synthesys. Map a vhdl behavioral description to a standard cell library (workswith boom & loon).
3. Boom, behavioral description optimizer (works with boog & loon).
4. Cougar, symbolic layout extractor.
5. Dreal, real layout (gds, cif) editor.
6. Druc, symbolic layout drc.
7. Flatph, flatten a layout, fully or in part.
8. Genpat, pattern generator (for use with Asimut).
9. Graal, symbolic layout editor.
10. Loon, netlist optimizer for surface and/or delay (works with boom & boog).
11. Lvx, netlist comparator (Layout Versus Extracted).
12. S2R, symbolic to real translator (to gds or cif).
13. Vasy, Alliance vhdl subset translator towards standard vhdl or Verilog.

3.2 Current Tools

1. Blif2Vst, translate a blif netlist (Yosys output) into the Alliance netlist format vst. Thisis a Python script calling Coriolis directly integrated inside the task.
2. PnR, maybe a bit of a misnomer. This is a caller to function that the user have to write toperform the P&R as he sees fit for it’s particular design.
3. Yosys, call the Yosys logical synthesyser. Provide an off the shelf subset of functionalitiesto perform classic use cases.

lip6/cian www-soc.lip6.fr/en/team-cian 5

https://www-soc.lip6.fr/en/team-cian/

Coriolis Documentation January 10, 2023

3.3 Utility Rules

1. Alias, create a name alias for a rule.
2. Clean, remove all the generated targets of all the rules. Thenameof the rule isclean_flow‘

to not interfer with the |DoIt| clean arguments. Files not part of
any rules targets can be added to be removeds. Then, to actually remove
them, add the ‘‘--extras flag to the command line.

ego@home:sky130_c4m> ../../../bin/crlenv.py -- doit clean_flow --extras

3. Copy, copy a file into the current directory.
3.4 Rule Sets

For commonly used sequences of rules, some predefined sets are defined.
1. alliancesynth, to apply the logical Alliance logical synthesis set of tools. From vhdl tooptimized vst. The set is as follow:

x.vbe => boom => x_boom.vbe => boog => x_boog.vst => loon => x.vst

An additional rule using vasy is triggered if the input format is standard vhdl.
2. pnrcheck, complete flow from Verilog to symbolic layout, with drc and lvx checks. UsesYosys for synthesis.
3. routecheck, perform the routing, the drc and lvx check on an already placed design. Usesymbolic layout.

lip6/cian www-soc.lip6.fr/en/team-cian 6

https://www-soc.lip6.fr/en/team-cian/

	Contents
	1. Introduction
	1.1 Task vs. Rules
	1.2 A Warning About Determinism

	2. Using The Design Flow
	2.1 Locating the Various Parts
	2.2 Basic Example of dodo File

	3. Rules's Catalog
	3.1 Alliance Legacy Tools
	3.2 Current Tools
	3.3 Utility Rules
	3.4 Rule Sets

