Some would say, why not use off the shelf wrappers like swig, boost::python or pybind11, here are some clues.
Partial exposure of the C++ class tree. We expose at Python level C++ base classes, only if they provides common methods that we want to see. Otherwise, we just show them as base classes under Python. For instance Library is derived from DBo, but we won't see it under Python.
Bi-directional communication. When a Python object is deleted, the wrapper obviously has a pointer toward the underlying C++ object and is able to delete it. But, the reverse case can occurs, meaning that you have a C++ object wrapped in Python and the database delete the underlying object. The wrapped Python object must be informed that it no longer refer a valid C++ one. Moreover, as we do not control when Python objects gets deleteds (that is, when their reference count reaches zero), we can have valid Python object with a dangling C++ pointer. So our Python objects can be warned by the C++ objects that they are no longer valid and any other operation than the deletion should result in a severe non-blocking error.
To be precise, this apply to persistent object in the C++ database, like Cell, Net, Instance or Component. Short lived objects like Box or Point retains the classic Python behavior.
Another aspect is that, for all derived DBo objects, one and only one Python object is associated. For one given Instance object we will always return the same PyInstance object, thanks to the bi-directional link. Obviously, the reference count of the PyInstance is managed accordingly. This mechanism is implemented by the PyTypeManager::_link() method.
Linking accross modules. As far as I understand, the wrappers are for monolithic libraries. That is, you wrap the entire library in one go. But Hurricane has a modular design, the core database then various tools. We do not, and cannot, have one gigantic wrapper that would encompass all the libraries in one go. We do one Python module for one C++ library.
This brings another issue, at Python level this time. The Python modules for the libraries have to share some functions. Python provides a mechanism to pass C function pointers accross modules, (Capsule) but I did not fully understand it.
Instead, we register all the newly defined Python type object in the PyTypeManager and we link the associated C++ library into all Python modules. So all types and ancillary functions can easily be seen accross modules.
This way, we do not rely upon a pointer transmission through Python modules, but directly uses linker capabilities.
The PyTypeManager approach also suppress the need to split into two libraries the Python modules like in the C-Macros implementation, and the double compilation pass.
We do not try to provides an iterface as sleek as pybind11 that completely hides the Python/C API. Instead we keep mostly visible the classic structure of the Python/C API but we provides templates to automate as much as possible the boring tasks (and code duplication). This way, if we need a very specific feature at some point, we can still revert back to the pure Python/C API.
The key features of our wrapper are:
We creates only two kind of PyObject (but many PyTypeObject):
PyVoidpointer which encapsulate one void pointer to the C++ associated object.
extern "C" {
typedef struct PyVoidPointer {
PyObject_HEAD
void* _object;
};
}
PyIteratorPointer which encapsulate one void pointer to the C++ associated iterator and one another to the PyObject of the container.
extern "C" {
typedef struct PyVoidPointer {
PyObject_HEAD
void* _object; // C++ iterator.
PyVoidPointer* _container; // Python wrapped container.
};
}
PyTypeManager has two usage:
Act as a registry of all the created PyTypeObject, and serve as a dispatcher for the PyTypeObject tp like methods.
Provide a non-template abstract base class for all the derived PyTypeObject. As said, it is not a template class but it supplies function member template. Derived classes are provides for different kind of C++ class.
PyTypeManagerVTrunk<CppT>
Is an intermediate between the non-template base class and all the templatized others.
PyTypeManagerNonDBo<CppT>
Template for standalone C++ classes that are not derived from DBo. For example Box or Parameter.
PyTypeManagerDBo<CppT>
Template for C++ classes that are not derived from DBo. For example Cell or Instance.
PyTypeManagerVector<CppT>, template for C++ std::vector<CppT*>.
PyTypeManagerVectorIterator<CppT>
Template for C++ std::vector<CppT*>::iterator, automatically created from the vector registration.
PyTypeManagerMap<CppK,CppT>, template for C++ std::map<CppK*,CppT*>.
PyTypeManagerMapIterator<CppK,CppT>
Template for C++ std::vector<CppK*,CppT*>::iterator, automatically created from the map registration.
PyTypeManagerCollection<,CppT>, template for C++ Hurricane::Collection<CppT*>.
PyTypeManagerCollectionIterator<,CppT>
Template for C++ Hurricane::Locator<CppT*>, automatically created from the collection registration.
Functions of a PyTypeObject like the tp methods (tp_alloc, tp_print, tp_hash, ...) must have a C-linkage. So we create one function per slot that we want to use, set that same function for all the created PyTypeObject, and perform a dispact in it. The drawback is that for each access we have to perform a map lookup. Hope it is fast.
Excerpt from the code:
namespace Isobar3 {
extern "C" {
// Here we have C-linkage.
extern long _tpHash ( PyObject* self )
{
// Dispatch towards the relevant class, based on ob_type pointer.
return PyTypeManager::get( self->ob_type )->_getTpHash( asVPtr(self) );
}
}
class PyTypeManager {
public:
void PyTypeManager::_setupPyType ()
// Derived classes must implement it as they see fit.
virtual long _getTpHash ( PyVoidPointer* ) = 0;
template<typename CppT>
static PyTypeManager* _get();
private:
PyTypeObject _typeObject;
};
void PyTypeManager::_setupPyType ()
{
PyTypeObject* ob_type = _getTypeObject();
ob_type->tp_name = _getPyTypeName().c_str();
ob_type->tp_dealloc = (destructor)&::Isobar3::_tpDeAlloc;
ob_type->tp_str = (reprfunc) &::Isobar3::_tpStr;
// All Python Type will call the same _tpHash().
ob_type->tp_hash = (hashfunc) &::Isobar3::_tpHash;
ob_type->tp_compare = (cmpfunc) &::Isobar3::_getTpCompare;
ob_type->tp_methods = _getMethods();
ob_type->tp_getset = _getGetsets();
}
} // Isobar3 namespace.
To convert a C++ object (pointer) into a Python object, a set of pyAs<> templates functions are supplieds.
Specialization for all POD type that can be directly translated into Python types must be provideds (bool, int, long, double, std::string, ...).
Partial specialization for type availables through the PyTypeManager is supplied. It checks the manager for the type's existence.
// Most generic template, should *not* be used.
// So issue an error message and report a failed conversion.
template<typename T>
inline bool pyAs ( PyObject* pyArg, T& arg )
{
std::cerr << "Isobar3.pyAs<T>(): Unsupported type \""
<< demangle(typeid(T).name()) << "\"" << endl;
return false;
}
// Template specialization for POD type "int".
template<>
inline bool pyAs ( PyObject* pyArg, int& arg )
{
if (PyInt_Check (pyArg)) { arg = PyInt_AsLong ( pyArg ); }
else if (PyLong_Check(pyArg)) { arg = PyLong_AsLong( pyArg ); }
else return false;
return true;
}
// Template partial specialization for any type registered in
// the PyTypeManager.
template<typename T>
inline bool pyAs ( PyObject* pyArg, T*& arg )
{
PyTypeManager* manager = PyTypeManager::_get<T>();
if (not manager) {
std::cerr << "Isobar3.pyAs<T>(): Unsupported type \""
<< typeid(T).name() << "\"" << endl;
return false;
}
arg = (T*)( asVPtr( pyArg )->_object );
return true;
}
template<typename T>
inline bool pyAs ( PyVoidPointer* pyArg, T*& arg )
{ return pyAs( (PyObject*)pyArg, arg ); }
To convert a Python object into a C++ object, a set of objectLink<> templates functions are supplieds.
We completely disable the partially specialized templates for objects that are non-POD as the compiler seems to be unable to choose the fully specialized template in this case (or I still misunderstood the template resolution mechanism).
In the case of object registered in PyTypeManager, we delegate the PyObject creation to the PyTypeManager::link() template function, which in turn, can call the right PyTypeManagerVTrunk<CppT>::_link() method.
Note
The PyTypeManagerVTrunk<CppT>::_link() method is the reason why we need the intermediate PyTypeManagerVTrunk<CppT> template class.
// The most generic template, should *not* be used. So raise a Python exception.
template< typename CppT >
inline PyObject* objectLink ( CppT object )
{
std::string message = "Overload for Isobar3::objectLink< "
+ demangle(typeid(CppT).name()) + " >() is missing.";
PyErr_SetString( HurricaneError, message.c_str() );
return NULL;
}
// Disable this template if "CppT" is an already supported type.
template< typename CppT
, typename std::enable_if< !std::is_same<CppT,bool>::value
&& !std::is_same<CppT,int >::value
&& !std::is_same<CppT,std::string>::value
&& !std::is_same<CppT,const std::string>::value
,bool>::type = true >
inline PyObject* objectLink ( CppT* object )
{ return PyTypeManager::link<CppT>( object ); }
// Disable this template if "CppT" is an already supported type.
template< typename CppT
, typename std::enable_if< !std::is_same<CppT,bool>::value
&& !std::is_same<CppT,int >::value
&& !std::is_same<CppT,std::string>::value
&& !std::is_same<CppT,const std::string>::value
,bool>::type = true >
inline PyObject* objectLink ( const CppT* object )
{ return PyTypeManager::link<CppT>( const_cast<CppT*>( object )); }
// Specializations for POD type "int" .
template<> inline PyObject* objectLink<int > ( int i )
{ return PyInt_FromLong( i ); }
template<> inline PyObject* objectLink<const int > ( const int i )
{ return PyInt_FromLong( i ); }
template<> inline PyObject* objectLink<const int*> ( const int* i )
{ return PyInt_FromLong( *i ); }
One of the more tedious task in exporting a C++ interface towards Python is to have wrap the C++ functions/methods into C-linkage functions that can be put into the PyMethodDef table.
Basically, we want to fit:
A C++ function or method with a variable number of arguments, each argument having it's own type.
class Parameter {
// ...
public:
void addValue ( std::string s, int v );
// ...
};
Into a PyCFunction prototype.
extern "C" {
typedef PyObject* ( *PyCFunction )( PyObject* self, PyObject* args );
}
Here, the C++ object is provided through the first argument and the functions arguments through a tuple in second argument. In Python wrappers, the tuple doesn't have any complex structure, it boils down to a sequence of PyObject* (that must match the number of arguments of it's C++ function conterpart).
So, the problem is to change a tuple which size is only kown at runtime into a list of C/C++ parameters known at compile time.
I am not such an expert in template programming so I can find a generic solution able to handle any number of parameters. Instead I did write a set of templates managing the translation from zero to ten parameters. I did delay that translation as much as possible so it happens very close to the C++ function call and the duplicated code needed for each template is kept to a minimum.
To translate the Python tuple into an ordered list (vector like) of C++ object of different types, the obvious choice is C++ std::tuple<>.
Another challenge is the return type. I distinguish three flavor of return type:
To uniformize the return type we create four templates _callMethodReturn<>() that takes whatever the C++ return type is, and turn it into a PyObject*. Except for the functions returning void, we call objectLink<>() to wrap the value.
Here is an excerpt of the code:
// Flavor for "return by pointer".
template< typename TC, typename TR, typename... TArgs
, typename std::enable_if<std::is_pointer<TR>::value,bool>::type = true >
inline PyObject* _callMethodReturn ( TR(TC::* method)(TArgs...), TC* cppObject, TArgs... args )
{
TR pvalue = (cppObject->*method)( args... );
return objectLink( pvalue );
}
// Flavor for "return void".
template< typename TC, typename TR, typename... TArgs
, typename std::enable_if<std::is_void<TR>::value,bool>::type = true >
inline PyObject* _callMethodReturn ( TR(TC::* method)(TArgs...), TC* cppObject, TArgs... args )
{
(cppObject->*method)( args... );
Py_RETURN_NONE;
}
// Function without argument.
template< typename TC, typename TR >
inline PyObject* _callMethod ( TR(TC::* method)(), TC* cppObject, std::tuple<> )
{ return _callMethodReturn<TC,TR>( method, cppObject ); }
// Function with one argument.
template< typename TC, typename TR, typename TA0 >
inline PyObject* _callMethod ( TR(TC::* method)(TA0), TC* cppObject, std::tuple<TA0> args )
{ return _callMethodReturn( method, cppObject, std::get<0>(args) ); }
// Function with two arguments.
template< typename TC, typename TR, typename TA0, typename TA1 >
PyObject* _callMethod ( TR(TC::* method)(TA0,TA1), TC* cppObject, std::tuple<TA0,TA1> args )
{ return _callMethodReturn( method, cppObject, std::get<0>(args), std::get<1>(args) ); }
The complete work of translating the Python tuple into a std::tuple<> and error handling is done with a dedicated template class PyMethodWrapper and it's call() method.
As a class template cannot guess the template parameters, we wrap them into a function template which can perform the guess. The callMethod<> template function.
In the end, what the user can write is simply:
static PyObject* PyParameter_addValue ( PyVoidPointer* self, PyObject* args )
{ return callMethod("Parameter.addValue",&Parameter::addValue,self,args); }
PyMethodDef PyParameter_Methods[] =
{ { "isFile" , (PyCFunction)PyParameter_isFile , METH_NOARGS
, "Tells if this parameter (string) holds a file name." }
, { "addValue", (PyCFunction)PyParameter_addValue, METH_VARARGS
, "Add a new value to parameter of enumerated type." }
// ...
, {NULL, NULL, 0, NULL} /* sentinel */
};
This apply to both overloaded functions and functions with arguments values.
In that case, the only solution is to create a set of different functions with differents arguments to expose all the various signature of the function. We then create a function wrapper that calls them in decreasing number of parameters order.
Note
If something goes wrong in a callMethod(), it returns NULL and sets an error exception. If, say, the setString3() variant fails, but setString2() succeed, it will clear the error and sets rvalue to something non-NULL.
You may also notice that the signature of an un-overloaded function is that of a normal function, not a class method, with the object (aka C++ this passed as the first argument). So callMethod() and PyMethodWrapper support both case (through different constructors).
static bool setString1 ( Parameter* self, std::string value )
{ return self->setString(value); }
static bool setString2 ( Parameter* self, std::string value, unsigned int flags )
{ return self->setString(value,Configuration::getDefaultPriority(),flags); }
static bool setString3 ( Parameter* self
, std::string value
, unsigned int flags
, Parameter::Priority pri )
{ return self->setString(value,pri,flags); }
static PyObject* PyParameter_setString ( PyVoidPointer* self, PyObject* args )
{
PyObject* rvalue = callMethod("Parameter.setString",&setString3,self,args);
if (not rvalue) rvalue = callMethod("Parameter.setString",&setString2,self,args);
if (not rvalue) rvalue = callMethod("Parameter.setString",&setString1,self,args);
return rvalue;
}
PyMethodDef PyParameter_Methods[] =
{ { "isFile" , (PyCFunction)PyParameter_isFile , METH_NOARGS
, "Tells if this parameter (string) holds a file name." }
, { "setString", (PyCFunction)PyParameter_setString, METH_VARARGS
, "Set the parameter value as a string." }
// ...
, {NULL, NULL, 0, NULL} /* sentinel */
};
The same mechanic as for the object methods has been built for ordinary functions. The top level wrapper beeing callFunction<>() ...
static PyObject* PyCfg_hasParameter ( PyObject* module, PyObject* args )
{ return callFunction("hasParameter",&hasParameter,args); }
static PyMethodDef PyCfg_Methods[] =
{ { "hasParameter", (PyCFunction)PyCfg_hasParameter, METH_VARARGS
, "Tells if a parameter exists already in the DB." }
// ...
, {NULL, NULL, 0, NULL} /* sentinel */
};
By defining specialization of the pyTypePostModuleinit<>() function template, you can add any post-treatment to a Python type object. Like adding sub-classes or constants values.
In the following code, we add Priority as a sub-object of Parameter then set some constant values in Priority. This was we emulate the behavior of the Priority enum.
template<>
inline void pyTypePostModuleInit<Cfg::Parameter> ( PyTypeObject* typeObject )
{
PyTypeManagerNonDBo<Cfg::Parameter::Priority>::create( (PyObject*)typeObject
, Cfg::PyParameterPriority_Methods
, NULL
, PyTypeManager::NoCppDelete );
}
template<>
inline void pyTypePostModuleInit<Cfg::Parameter::Priority> ( PyTypeObject* typeObject )
{
// Parameter::Priority enum.
addConstant( typeObject, "UseDefault" , Cfg::Parameter::UseDefault );
addConstant( typeObject, "ApplicationBuiltin", Cfg::Parameter::ApplicationBuiltin );
addConstant( typeObject, "ConfigurationFile" , Cfg::Parameter::ConfigurationFile );
addConstant( typeObject, "UserFile" , Cfg::Parameter::UserFile );
addConstant( typeObject, "CommandLine" , Cfg::Parameter::CommandLine );
addConstant( typeObject, "Interactive" , Cfg::Parameter::Interactive );
}