
SORBONNE UNIVERSITÉ
LIP6 Laboratory

ALLIANCE CHECK TOOLKIT
Jean-Paul CHAPUTJean-Paul.Chaput@lip6.fr

This work is licensed under aCreative Commons Attribution-NonCommercial-ShareALike 4.0 International License.Creative Commons License creativecommons.org/licenses/by-nc-sa/4.0/

mailto:Jean-Paul.Chaput@lip6.fr
https://creativecommons.org/licenses/by-nc-sa/4.0/

Coriolis Documentation November 12, 2020

Contents
Toolkit Purpose . 3Release Notes . 3August 30, 2019 . 3Toolkit Contents . 4Toolkit Layout . 5Benchmark Makefiles . 6Setting Up the User’s Environement . 9CORIOLIS Configuration Files . 9CORIOLIS and Clock Tree Generation. 9
RHEL6 and Clones. 9Yosys Wrapper Script yosys.py . 10Benchmarks Special Notes . 10
alliance-run . 10
AM2901 standard cells . 10Libraries Makefiles . 11Checking Procedure . 11Synopsys Liberty .lib Generation . 11Helpers Scripts . 12Macro-Blocks Makefiles . 12Calling the Generator . 13Scaling the Cell Library . 13Tools & Scripts. 14One script to run them all: go.sh. 14Command Line cgt: doChip.py . 14Blif Netlist Converter . 14Pad Layout Converter px2mpx.py . 14CADENCE Support . 15Technologies. 16

LIP6/CIAN www-soc.lip6.fr/en/team-cian 2

https://www-soc.lip6.fr/en/team-cian/

Coriolis Documentation November 12, 2020

Toolkit Purpose
This toolkit has been created to allow developpers to share through git a set of benchmarksto validate their changes in ALLIANCE & CORIOLIS before commiting and pushing them in theircentral repositories. A change will be considered as validated when all the developpers can runsuccessfully all the benchs in their respective environments.As a consequence, this repository is likely to be very unstable and the commits not welldocumenteds as they will be quick corrections made by the developpers.
Release Notes
August 30, 2019
KATANA is now used as the default router. It can now manage a complete chip design with I/Opads. As a consequence, the Makefile are all modificated, the variable USE_KATANA=Yes ischanged to USE_KITE=No (see Benchmark Makefiles).Designs with I/O pads are also modificated to be processed by KATANA as it uses a differentapproach.

LIP6/CIAN www-soc.lip6.fr/en/team-cian 3

https://www-soc.lip6.fr/en/team-cian/

Coriolis Documentation November 12, 2020

Toolkit Contents
The toolkit provides:

• OK Status. A set of eight benchmark designs that are used as regression tests (see go.sh).Benchmarks with multiple target technologies still count as one.
• KO Status. Examples that currently fails due to incomplete or poorly implemenentedfeatures of CORIOLIS.
• Unchecked. Non-fonctional examples, or really too long to run for a regression test.

Design Technology Cell Libraries Status
adder MOSIS nsxlib, mpxlib, msplib Unchecked
AM2901 (standard cells) Symbolic cmos sxlib, pxlib OK
AM2901 (datapath) Symbolic cmos sxlib, dp_sxlib, pxlib OK
alliance-run(AM2901) Symbolic cmos sxlib, dp_sxlib, padlib Unchecked
RingOscillator Symbolic cmos sxlib OK
CPU MOSIS nsxlib, mpxlib, msplib OK
SNX
SNX / Alliance Symbolic cmos sclib Unchecked
SNX / sxlib2M Symbolic cmos 2M sxlib OK
SNX / cmos Symbolic cmos sxlib, pxlib OK
SNX / cmos45 Symbolic cmos 45 nsxlib, mpxlib OK
SNX / FreePDK_45 FreePDK 45 gscl45 OK
SNX / c35b4 AMS 350nm c35b4 corelib KO
6502
6502 / cmos45 Symbolic cmos 45 nsxlib OK
ARLET6502 / cmos350 Symbolic cmos 45 nsxlib OK
MIPS
MIPS (micropro-grammed) Symbolic cmos sxlib, dp_sxlib, rf2lib OK
MIPS (pipeline) Symbolic cmos sxlib, dp_sxlib, rf2lib OK
MIPS (pipeline+chip) Symbolic cmos sxlib, dp_sxlib, rf2lib,

pxlib
Unchecked

Miscellaneous
FPGA (Moc4x4_L4C12) Symbolic cmos sxlib KO
ISPD05 (bigblue1) None Generated on the fly Unchecked
ARMV2A Symbolic cmos sxlib, pxlib OK
Vex RISC-V
VEXRISCV / cmos Symbolic cmos sxlib, pxlib OK
VEXRISCV / cmos45 Symbolic cmos 45 nsxlib, mpxlib OK
VEXRISCV / FreePDK_45 FreePDK 45 gscl45 KO
VEXRISCV / c35b4 AMS 350nm c35b4 corelib KO
nMigen basic ALU example
ALU / scn6m_deep_09 MOSIS nsxlib Unchecked

LIP6/CIAN www-soc.lip6.fr/en/team-cian 4

https://www-soc.lip6.fr/en/team-cian/

Coriolis Documentation November 12, 2020

• The NMIGEN design is the basic ALU taken from the distribution to perform integration testin the design flow. The target technology is the MOSIS 180nm (scn6m_deep).
• The ARLET6502 is taken from Arlet’s MOS 6502 core and is routed using the four metalsymbolic technology (so the router has three availables).
• Three cell libraries.
All thoses libraries are for use with MOSIS and FREEPDK45 technologies. We provides themas part of the toolkit as we are still in the process of validating that technology, and wemay have to perform quick fixes on them. The design are configured to use them insteadof those supplied by the ALLIANCE installation.
1. nsxlib : Standard Cell library, compliant with MOSIS.
2. mpxlib : Pad library, compliant with CORIOLIS.
3. msplib : Pad library, compliant with ALLIANCE / ring. Cells in this library arewrappers around their counterpart in mpxlib, they provides an outer layoutshell that is usable by ring.

• The RDS files for MOSIS (scn6m_deep_09.rds) and FREEPDK45 technologies, for the samereason as the cell libraries.
• Miscellenous helper scripts.

Toolkit Layout
The files are organized as follow :
Directory Contents
./etc/ Configuration files
./etc/mk/ Makefiles rules to build benchmarks. This direc-tory must be symbolic linked into each benchmarkdirectory
./etc/mk/users.d/ Directory holding the configuration for each user
./bin/ Additionnal scripts
./cells/<LIBDIR> Standard cells libraries.
./benchs/<BENCH>/<techno>/ Benchmark directories
./doc/ This documentation directory

LIP6/CIAN www-soc.lip6.fr/en/team-cian 5

https://github.com/Arlet/verilog-6502
https://www-soc.lip6.fr/en/team-cian/

Coriolis Documentation November 12, 2020

Benchmark Makefiles
A benchmark Makefile is build by setting up variables USE_<FEATURE>=Yes/No then includ-ing the set of rules ./mk/design-flow.mk. The directory alliance-check-toolkit/etc/mk/must be symlinked in the directory where the Makefile resides.The Makefile provides some or all of the following targets. If the place and route stage ofa benchmark has multiple target technology, one directory is created for each.

CORIOLIS

blif Synthetize the netlist with Yosys.
layout The complete symbolic layout of the design (P&R).
gds Generate the real layout (GDSII)
druc Symbolic layout checking
lvx Perform LVS.
graal Launch graal in the Makefile ’s environement
dreal Launch dreal in the Makefile ’s environement, andload the gds file of the design.
view Launch cgt and load the design (chip)
cgt Launch cgt in the Makefile ’s environement

A top Makefile in a bench directory must looks like:
LOGICAL_SYNTHESIS = Yosys

PHYSICAL_SYNTHESIS = Coriolis
DESIGN_KIT = nsxlib45

USE_CLOCKTREE = No
USE_DEBUG = No
USE_KITE = No

NETLISTS = VexRiscv

include ./mk/design-flow.mk

blif: VexRiscv.blif
layout: vexriscv_r.ap
gds: vexriscv_r.gds

lvx: lvx-vst-vexriscv
drc: druc-vexriscv_r

LIP6/CIAN www-soc.lip6.fr/en/team-cian 6

https://www-soc.lip6.fr/en/team-cian/

Coriolis Documentation November 12, 2020

Where variables have the following meaning:
Variable Usage
LOGICAL_SYNTHESIS Tells what synthesis tool to use between Alliance or Yosys.Netlists must be pre-generated if this variable is empty or notpresent
PHYSICAL_SYNTHESIS Tells what place & route tools to use between Alliance (i.e.

ocp, nero & ring) and Coriolis
DESIGN_KIT The target technology and the standard cell libraries to use, forthe supported values see below.
NETLISTS The list of netlists that are requireds to perform the place androute stage. See the complete explanation below
VST_FLAGS Flags to be passed to the tools driving vst files. Due to somenon-standard syntax in the ALLIANCE format, if you have a hi-erarchical design, please set it to --vst-use-concat
USE_CLOCKTREE Adds a clock-tree to the design (CORIOLIS)
USE_DEBUG Use the debugger enabled version of cgt
USE_KITE Use the old KITE (digital only) router
Detailed semantic of the NETLISTS variable:
• Netlists name must be given without file extensions. Those are guessed according to theselected synthesis tool.
• According to the value of LOGICAL_SYNTHESIS they are user supplied or generated. Inthe later case, be aware that calling the clean target will remove the generated files.
• In case the logical synthesis stage is needed, the file holding the behavioral description isthe first of the item list. In certain contexts, it will also be considered as the chip’s core.
• If the behavioral description is hierarchical, each submodelmust be added to the NETLISTSvariable (after the top level one). In case of YOSYS synthesis, blif2vst.py will generatea vst file for each model of the hierarchy. We add them to the list so a make cleanwill remove not only the top level vst (and associated ap after placement), but the wholehierarchy.
A slightly more complex example is below. The behavioral description that will be syn-thetised must be in alu_hier (in fact alu_hier.il or alu_hier.v as we are using YOSYS).Two sub-model are generated by the synthesis, add and sub, so we add them in tail of the

NETLISTS variable.
LOGICAL_SYNTHESIS = Yosys

PHYSICAL_SYNTHESIS = Coriolis
DESIGN_KIT = nsxlib

YOSYS_FLATTEN = No
VST_FLAGS = --vst-use-concat

USE_CLOCKTREE = No
USE_DEBUG = No
USE_KITE = No

NETLISTS = alu_hier \
add \
sub

LIP6/CIAN www-soc.lip6.fr/en/team-cian 7

https://www-soc.lip6.fr/en/team-cian/

Coriolis Documentation November 12, 2020

include ./mk/design-flow.mk

blif: alu_hier.blif
vst: alu_hier.vst
layout: alu_hier_r.ap
gds: alu_hier_r.gds

lvx: lvx-alu_hier_r
druc: druc-alu_hier_r
view: cgt-alu_hier_r
graal: graal-alu_hier_r

Availables design kits (to set DESIGN_KIT):
Value Design kit
sxlib The default ALLIANCE symbolic technology. Use the sxlib and

pxlib libraries.
nsxlib Symbolic technology fitted for MOSIS 180nm, 6 metal layers

SCN6M_DEEP
nsxlib45 The symbolic technology fitted for 180nm and below. Used forFREEPDK45 in symbolic mode.
FreePDK_45 Direct use of the real technology FREEPDK45.
c35b4 AMS 350nm c35b4 real technology.

LIP6/CIAN www-soc.lip6.fr/en/team-cian 8

https://www-soc.lip6.fr/en/team-cian/

Coriolis Documentation November 12, 2020

Setting Up the User’s Environement
Before running the benchmarks, you must create a configuration file to tell where all the soft-wares are installeds. The file is to be created in the directory:

alliance-check-toolkit/etc/mk/users.d/

The file itself must be named from your username, if mine is jpc:
alliance-check-toolkit/etc/mk/users.d/user-jpc.mk

Example of file contents:
Where Jean-Paul Chaput gets his tools installeds.

export NDA_TOP = ${HOME}/crypted/soc/techno
export AMS_C35B4 = ${NDA_TOP}/AMS/035hv-4.10
export FreePDK_45 = ${HOME}/coriolis-2.x/work/DKs/FreePDK45
export CORIOLIS_TOP = $(HOME)/coriolis-2.x/$(BUILD_VARIANT)$(LIB_SUFFIX_)/$(BUILD_TYPE_DIR)/install
export ALLIANCE_TOP = $(HOME)/alliance/$(BUILD_VARIANT)$(LIB_SUFFIX_)/install
export CHECK_TOOLKIT = $(HOME)/coriolis-2.x/src/alliance-check-toolkit
export AVERTEC_TOP = /dsk/l1/tasyag/Linux.el7_64/install
export YOSYS_TOP = /usr

All the variable names and values are more or less self explanatory...
CORIOLIS Configuration Files
Unlike ALLIANCE which is entirely configured through environement variables or system-wideconfiguration file, CORIOLIS uses configuration files in the current directory. They are present foreach bench:

• <cwd>/coriolis2/__init__.py : Just to tell PYTHON that this directory contains amodule and be able to import it.
• <cwd>/coriolis2/settings.py : Override system configuration, and setup technol-ogy.

CORIOLIS and Clock Tree Generation
When CORIOLIS is used, it create a clock tree which modificate the original netlist. The newnetlist, with a clock tree, has a postfix of _clocked.

Note
Trans-hierarchical Clock-Tree. As CORIOLIS do not flatten the designs it creates, not onlythe top-level netlist is modificated. All the sub-blocks connected to the master clock arealso duplicateds, whith the relevant part of the clock-tree included.

RHEL6 and Clones
Under RHEL6 the developpement version of CORIOLIS needs the devtoolset-2. os.mk tries,based on uname to switch it on or off.

LIP6/CIAN www-soc.lip6.fr/en/team-cian 9

https://www-soc.lip6.fr/en/team-cian/

Coriolis Documentation November 12, 2020

Yosys Wrapper Script yosys.py
As far as I understand, yosys do not allow it’s scripts to be parametriseds. The yosys.py scriptis a simple wrapper around yosys that generate a custom tailored TCL script then call yosysitself. It can manage two input file formats, VERILOG and RTLIL and produce a blif netlist.

ego@home:VexRiscv/cmos350$../../../bin/yosys.py \
--input-lang=Verilog \
--design=VexRiscv \
--top=VexRiscv \
--liberty=../../../cells/nsxlib/nsxlib.lib

Here is an example of generated TCL script: VexRiscv.ys:
set verilog_file VexRiscv.v
set verilog_top VexRiscv
set liberty_file .../alliance-check-toolkit/cells/nsxlib/nsxlib.lib
yosys read_verilog $verilog_file
yosys hierarchy -check -top $verilog_top
yosys synth -top $verilog_top
yosys dfflibmap -liberty $liberty_file
yosys abc -liberty $liberty_file
yosys clean
yosys write_blif VexRiscv.blif

Benchmarks Special Notes
alliance-run

This benchmark comesmostly with it’s own rules and do not uses the ones supplieds by rules.mk.It uses only the top-level configuration variables.It a sligtly modified copy of the alliance-run found in the ALLIANCE package (modificationare all in the Makefile). It build an AM2901, but it is splitted in a control and an operative part(data-path). This is to also check the data-path features of ALLIANCE.And lastly, it provides a check for the CORIOLIS encapsulation of ALLIANCE through PYTHONwrappers. The support is still incomplete and should be used only by very experienced users.See the demo* rules.
AM2901 standard cells
This benchmark can be run in loop to check slight variations. The clock tree generator modifythe netlist trans-hierarchically then saves the new netlist. But, when there’s a block without aclock (say an ALU for instance) it is not modificated yet saved. So the vst file got rewritten. Andwhile the netlist is rewritten in a deterministic way (from how it was parsed), it is not done thesame way due to instance and terminal re-ordering. So, from run to run, we get identical netlistsbut different files inducing slight variations in how the design is placed and routed. We use thisdefect to generate deterministic series of random variation that helps check the router. All runsare saved in a ./runs sub-directory.The script to perform a serie of run is ./doRun.sh.To reset the serie to a specific run (for debug), you may use ./setRun.sh.

LIP6/CIAN www-soc.lip6.fr/en/team-cian 10

https://www-soc.lip6.fr/en/team-cian/

Coriolis Documentation November 12, 2020

Libraries Makefiles
Note
For those part to work, you need to get hitas & yagle:HiTas -- Static Timing Analyser

The bench/etc/mk/check-library.mk provides rules to perform the check of a libraryas a whole or cell by cell. To avoid too much clutter in the library directory, all the intermediatefiles generated by the verification tools are kept in a ./check/ subdirectory. Once a cell hasbeen validated, a ./check/<cell>.ok is generated too prevent it to be checked again insubsequent run. If you want to force the recheck of the cell, do not forget to remove this file.Checking Procedure
• DRC with druc.
• Formal proof between the layout and the behavioral description. This is a somewhat longchain of tools:

1. cougar, extract the spice netlist (.spi).
2. yagle, rebuild a behavioral description (.vhd) from the spice netlist.
3. vasy, convert the .vhd into a .vbe (Alliance VHDL subset for behavioral de-scriptions).
4. proof, perform the formal proof between the refence .vbe and the extractedone.

Rule or File Action
check-lib Validate every cell of the library
clean-lib-tmp Remove all intermediate files in the ./check subdirectoryexcept for the *.ok ones. That is, cells validated will notbe rechecked.
clean-lib Remove all files in ./check, including *.ok
./check/<cell>.ok Use this rule to perform the individual check of <cell>. Ifthe cell is validated, a file of the same namewill be created,preventing the cell to be checked again.

Synopsys Liberty .lib Generation
The generation of the liberty file is only half-automated. hitas / yagle build the base file, thenwe manually perform the two modifications (see below).The rule to call to generate the liberty file is: <libname>-dot-lib where <libname> isthe name of the library. To avoid erasing the previous one (and presumably hand patched), thisrule create a <libname>.lib.new.

1. Run the ./bin/cellsArea.py script which will setup the areas of the cells (insquare um). Work on <libname>.lib.new.
2. For the synchronous flip-flop, add the functional description to their timing descrip-tions:

cell (sff1_x4) {
pin (ck) {

direction : input ;
clock : true ;
/* Timing informations ... */

}

LIP6/CIAN www-soc.lip6.fr/en/team-cian 11

https://soc-extras.lip6.fr/en/tasyag-abstract-en/
https://www-soc.lip6.fr/en/team-cian/

Coriolis Documentation November 12, 2020

pin (q) {
direction : output ;
function : "IQ" ;
/* Timing informations ... */

}
ff(IQ,IQN) {

next_state : "i" ;
clocked_on : "ck" ;

}
}

cell (sff2_x4) {
pin (ck) {

direction : input ;
clock : true ;
/* Timing informations ... */

}
pin (q) {

direction : output ;
function : "IQ" ;
/* Timing informations ... */

}
ff(IQ,IQN) {

next_state : "(cmd * i1) + (cmd’ * i0)" ;
clocked_on : "ck" ;

}
}

Note
The tristate cells ts_ and nts_ are not included in the .lib.

Helpers Scripts
TCL scripts for avt_shell related to cell validation and characterization, in ./benchs/bin,are:

• extractCell.tcl, read a spice file and generate a VHDL behavioral description (using
yagle). This file needs to be processed further by vasy to become an Alliance behavioralfile (vbe). It takes two arguments: the technology file and the cell spice file. Cell whichname starts by sff will be treated as D flip-flop.

• buildLib.tcl, process all cells in a directory to buil a liberty file. Takes two arguments,the technology file and the name of the liberty file to generate. The collection of charac-terized cells will be determined by the .spi files found in the current directory.
Macro-Blocks Makefiles
The bench/etc/mk/check-generator.mk provides rules to perform the check of a macroblock generator. As one library cell may be used to build multiple macro-blocks, one Makefileper macro must be provided. The dot extension of a Makefile is expected to be the name ofthemacro-block. Here is a small example for the register file generator, Makefile.block_rf2:

TK_RTOP = ../..
export MBK_CATA_LIB = $(TOOLKIT_CELLS_TOP)/nrf2lib

include $(TK_RTOP)/etc/mk/alliance.mk

LIP6/CIAN www-soc.lip6.fr/en/team-cian 12

https://www-soc.lip6.fr/en/team-cian/

Coriolis Documentation November 12, 2020

include $(TK_RTOP)/etc/mk/mosis.mk
include $(TK_RTOP)/etc/mk/check-generator.mk

check-gen: ./check/block_rf2_p_b_4_p_w_6.ok \
./check/block_rf2_p_b_2_p_w_32.ok \
./check/block_rf2_p_b_64_p_w_6.ok \
./check/block_rf2_p_b_16_p_w_32.ok \
./check/block_rf2_p_b_32_p_w_32.ok

Note
In the check-gen rule, the name of the block must match the dot extension of the
Makefile, here: block_rf2.

Macro-block generators are parametrized. We uses a special naming convention to passparameters names and values trough the rule name. To declare a parameter, add _p_, then thename of the parameter and it’s value separated by a _.
String in Rule Name Call to the generator
_p_b_16_p_w_32 -b 16 -w 32

Whenmultiple flavor of a generator could be built upon the same cell library, one Makefileper flavor is provided. To run them all at once, a makeAll.sh script is also available.The check-gen rule only perform a DRC and a LVS to check that their router as correctlyconnected the cells of a macro-block. It doesn’t perform any functional verification.To perform a functional abstraction with yagle you may use the following command:
ego@home:nrf2lib> make -f Makefile.block_rf2 block_rf2_b_4_p_w_6_kite.vhd

Even if the resulting VHDL cannot be used it is always good to look in the report file block_rf2_b_4_p_w_6_kite.repfor any error or warning, particularly any disconnected transistor.
Calling the Generator
A script ./check/generator.pymust be written in order to call the generator in standalonemode. This script is quite straigthforward, what changes between generators is the commandline options and the stratus.buildModel() call.After the generator call, we get a netlist and placement, but it is not finished until it is routedwith the CORIOLIS router.

Note
Currently all macro-block generators are part of the STRATUS netlist capture language toolfrom CORIOLIS.

Scaling the Cell Library
This operation has to be done once, when the cell library is initially ported. The result is put inthe git repository, so there’s no need to run it again on a provided library.The script is ./check/scaleCell.py. It is very sensitive on the way the library pathes areset in .coriolis2/settings.py. It must have the target cell library setup as the WORKING_LIBRARYand the source cell library in the SYSTEM_LIBRARY. The technology must be set to the targetone. And, of course, the script must be run the directory where .coriolis2/ is located.The heart of the script is the scaleCell() function, which work on the original cell invariable sourceCell (argument) and scaledCell, the converted one. Although the scriptis configured to use the scaled technology, this do not affect the values of the coordinates ofthe cells we read, whatever their origin. This means that when we read the sourceCell, thecoordinates of it’s components keeps the value they have under SxLib. It is when we duplicate

LIP6/CIAN www-soc.lip6.fr/en/team-cian 13

https://www-soc.lip6.fr/en/team-cian/

Coriolis Documentation November 12, 2020

them into the scaledCell that we perform the scaling (i.e. multiply by two) and do whateveradjustments we need. So when we have an adjustment to do on a specific segment, say slihgtlyshift a NDIF, the coordinates must be expressed as in SxLib (once more: before scaling).
Note
There is a safety in ./check/scaleCell.py, it will not run until the target library hasnot been emptied of it’s cells.

The script contains a getDeltas() function which provide a table on how to resize somelayers (width and extension).As the scaling operations is very specific to each macro-block, this script is not shared, butcustomized for each one.
Tools & Scripts
One script to run them all: go.sh
To call all the bench’s Makefile sequentially and execute one or more rules on each, the smallscript utility go.sh is available. Here are some examples:

ego@home:bench$./bin/go.sh clean
ego@home:bench$./bin/go.sh lvx

Command Line cgt: doChip.py
As a alternative to cgt, the small helper script doChip.py allows to perform all the P&R tasks,on an stand-alone block or a whole chip.
Blif Netlist Converter
The blif2vst.py script convert a .blif netlist into an ALLIANCE one (vst). This is a verystraightforward encapsulation of CORIOLIS. It could have been included in doChip.py, but thenthe make rules would have been much more complicateds.
Pad Layout Converter px2mpx.py
The px2mpx.py script convert pad layout from the pxlib (ALLIANCE dummy technology) into
mpxlib (MOSIS compliant symbolic technology).Basically it multiplies all the coordinate by two as the source technology is 1µ type and thetarget one a 2µ. In addition it performs some adjustement on the wire extension and minimalwidth and the blockage sizes.As it is a one time script, it is heavily hardwired, so before using it do not forget to edit it tosuit your needs.The whole conversion process is quite tricky as we are cheating with the normal use of thesoftware. The steps are as follow:

1. Using the ALLIANCE dummy technology and in an empty directory, run the script. Thelayouts of the converted pads (*_mpx.ap) will be created.
2. In a second directory, this time configured for the MOSIS technology (see .coriolis2_techno.conf)copy the converted layouts. In addition to the layouts, this directorymust also con-tain the behavioral description of the pads (.vbe). Otherwise, you will not be ableto see the proper layout.
3. When you are satisfied with the new layout of the pads, you can copy them back inthe official pad cell library.

LIP6/CIAN www-soc.lip6.fr/en/team-cian 14

https://www-soc.lip6.fr/en/team-cian/

Coriolis Documentation November 12, 2020

Note
HowCoriolis Load Cells. Unlike in ALLIANCE, CORIOLISmaintain amuch tighter relationshipbetween physical and logical (structural or behavioral) views. The loading process of a celltry first to load the logical view, and if found, keep tab of the directory it was in. Second ittries to load the physical view from the same directory the logical view was in. If no logicalview is found, only the physical is loaded.Conversely, when saving a cell, the directory it was loaded from is kept, so that the cell willbe overwritten, and not duplicated in the working directory as it was in ALLIANCE.This explains why the behavioral view of the pad is needed in the directory the layouts areput into. Otherwise you would only see the pads of the system library (if any).

CADENCE Support
To perform comparisons with CADENCE EDI tools (i.e. encounter NANOROUTE), some bench-marks have a sub-directory encounter holding all the necessary files. Here is an example forthe design named <fpga>.
encounter directory
File Name Contents
fpga_export.lef Technology & standard cells for the design
fpga_export.def The design itself, flattened to the standard cells.
fpga_nano.def The placed and routed result.
fpga.tcl The TCL script to be run by encounter
The LEF/DEF file exported or imported by Coriolis are not true physical files. They are pseudo-real, in the sense that all the dimensions are directly taken from the symbolic with the simplerule 1 lambda = 1 micron.

Note
LEF/DEF files: Coriolis is able to import/export in those formats only if it has been com-piled against the SI2 relevant libraries that are subjects to specific license agreements. Soin case we don’t have access to thoses we supplies the generated LEF/DEF files.

The encounter directory contains the LEF/DEF files and the TCL script to be run by encounter:
ego@home:encounter> . ../../etc/EDI1324.sh
ego@home:encounter> encounter -init ./fpga.tcl

Example of TCL script for encounter:
set_global _enable_mmmc_by_default_flow $CTE::mmmc_default
suppressMessage ENCEXT-2799
win
loadLefFile fpga_export.lef
loadDefFile fpga_export.def
floorPlan -site core -r 0.998676319592 0.95 0.0 0.0 0.0 0.0
getIoFlowFlag
fit
setDrawView place
setPlaceMode -fp false
placeDesign
generateTracks
generateVias
setNanoRouteMode -quiet -drouteFixAntenna 0

LIP6/CIAN www-soc.lip6.fr/en/team-cian 15

https://www-soc.lip6.fr/en/team-cian/

Coriolis Documentation November 12, 2020

setNanoRouteMode -quiet -drouteStartIteration 0
setNanoRouteMode -quiet -routeTopRoutingLayer 5
setNanoRouteMode -quiet -routeBottomRoutingLayer 2
setNanoRouteMode -quiet -drouteEndIteration 0
setNanoRouteMode -quiet -routeWithTimingDriven false
setNanoRouteMode -quiet -routeWithSiDriven false
routeDesign -globalDetail
global dbgLefDefOutVersion
set dbgLefDefOutVersion 5.7
defOut -floorplan -netlist -routing fpga_nano.def

Technologies
We provides configuration files for the publicly available MOSIS technology SCN6M_DEEP.

• ./bench/etc/scn6m_deep_09.rds, RDS rules for symbolic to real transformation.
• ./bench/etc/scn6m_deep.hsp, transistor spice models for yagle.
References:
• MOSIS Scalable CMOS (SCMOS)
• MOSIS Wafer Acceptance Tests

LIP6/CIAN www-soc.lip6.fr/en/team-cian 16

https://www.mosis.com/files/scmos/scmos.pdf
ftp://ftp.mosis.com/pub/mosis/vendors/tsmc-018/t92y_mm_non_epi_thk_mtl-params.txt
https://www-soc.lip6.fr/en/team-cian/

	Contents
	Toolkit Purpose
	Release Notes
	August 30, 2019

	Toolkit Contents
	Toolkit Layout
	Benchmark Makefiles
	Setting Up the User's Environement
	Coriolis Configuration Files
	Coriolis and Clock Tree Generation
	rhel6 and Clones
	Yosys Wrapper Script yosys.py

	Benchmarks Special Notes
	alliance-run
	am2901 standard cells

	Libraries Makefiles
	Checking Procedure
	Synopsys Liberty .lib Generation
	Helpers Scripts

	Macro-Blocks Makefiles
	Calling the Generator
	Scaling the Cell Library

	Tools & Scripts
	One script to run them all: go.sh
	Command Line cgt: doChip.py
	Blif Netlist Converter
	Pad Layout Converter px2mpx.py

	Cadence Support
	Technologies

