
Documentation SoC March 2015

Coriolis User’s Guide
Contents
Coriolis User’s Guide . 1Credits & License . 2Release Notes . 3Release 1.0.1475 . 3Release 1.0.1963 . 3Release 1.0.2049 . 3Release v2.0.1 . 4Release v2.1 . 4Release v2.2 . 4Installation . 5Fixed Directory Tree . 6Building Coriolis . 7Packaging Coriolis . 8Hooking up into ALLIANCE . 8Setting up the Environment (coriolisEnv.py) . 8Documentation. 9General Software Architecture . 9Coriolis Configuration & Initialisation . 9First Stage: Symbolic Technology Selection . 10Second Stage: Technology Configuration Loading . 10Configuration Helpers. 10Hacking the Configuration Files. 13CGT - The Graphical Interface . 14Viewer & Tools . 15STRATUS Netlist Capture . 15The HURRICANE Data-Base . 15Synthetizing and loading a design . 16Etesian -- Placer . 16Knik -- Global Router . 18Kite -- Detailed Router. 18Executing Python Scripts in Cgt . 20Printing & Snapshots . 21Memento of Shortcuts in Graphic Mode . 21Cgt Command Line Options . 22Miscellaneous Settings . 23The Controller . 25The Look Tab . 25The Filter Tab . 25The Layers&Go Tab . 26The Netlist Tab. 27The Selection Tab . 28The Inspector Tab . 29The Settings Tab . 31Python Interface for HURRICANE/ CORIOLIS . 32Plugins . 33Chip Placement . 33Clock Tree . 35Recursive-Save (RSave) . 36A Simple Example: AM2901 . 36

UPMC/LIP6/SoC 1

Documentation SoC March 2015

Credits & License
HURRICANE . Rémy ESCASSUT & Christian MASSONETESIAN .Gabriel GOUVINESTRATUS . Sophie BELLOEILKNIK . Damien DUPUISKITE, UNICORN . Jean-Paul CHAPUT

The HURRICANE data-base is copyright© BULL 2000-2016 and is released under the terms ofthe LGPL license. All other tools are copyright© UPMC 2008-2016 and released under the GPLlicense.Others important contributors to CORIOLIS are Christophe ALEXANDRE, Hugo CLEMENT, MarekSROKA and Wu YIFEI.The KNIK router makes use of the FLUTE software, which is copyright© Chris C. N. CHU fromthe Iowa State University (http://home.eng.iastate.edu/~cnchu/).

UPMC/LIP6/SoC 2

http://home.eng.iastate.edu/~cnchu/

Documentation SoC March 2015

Release Notes
Release 1.0.1475
This is the first preliminary release of the CORIOLIS 2 framework.This release mainly ships the global router KNIK and the detailed router KITE. Together theyaim to replace the ALLIANCE NERO router. Unlike NERO, KITE is based on an innovating routingmodeling and ad-hoc algorithm. Although it is released under GPL license, the source code willbe avalaible later.
Contents of this release:

1. A graphical user interface (viewer only).
2. The KNIK global router.
3. The KITE detailed router.

Supported input/output formats:
• ALLIANCE vst (netlist) & ap (physical) formats.
• Even if there are some references to the CADENCE LEFDEF format, its support is not includedbecause it depends on a library only available to SI2 affiliated members.

Release 1.0.1963
Release 1963 is alpha. All the tools from CORIOLIS 1 have been ported into this release.Contents of this release:

1. The STRATUS netlist capture language (GENLIB replacement).
2. The MAUKA placer (still contains bugs).
3. A graphical user interface (viewer only).
4. The KNIK global router.
5. The KITE detailed router.
6. Partially implemented python support for configuration files (alternative to XML).
7. A documentation (imcomplete/obsoleted in HURRICANE’s case).

Release 1.0.2049
Release 2049 is Alpha.Changes of this release:

1. The HURRICANE documentation is now accurate. Documentation for the Cell viewerand CRLCORE has been added.
2. More extensive Python support for all the components of CORIOLIS.
3. Configuration is now completly migrated under Python. XML loaders can still beuseds for compatibilty.
4. The cgtmain has been rewritten in Python.

UPMC/LIP6/SoC 3

Documentation SoC March 2015

Release v2.0.1
1. Migrated the repository from svn to git, and release complete sources. As a conse-quence, we drop the distribution packaging support and give public read-only accessto the repository.
2. Deep rewrite of the KATABATIC database and KITE detailed router, achieve a speedupfactor greater than 20...

Release v2.1
1. Replace the old simulated annealing placer MAUKA by the analytical placer ETESIANand its legalization and detailed placement tools.
2. Added a Blif format parser to process circuits generated by the Yosys and ABC logicsynthetizers.
3. The multiples user defined configuration files are now grouped under a commonhidden (dot) directory .coriolis2 and the file extension is back from .conf to

.py.
Release v2.2

1. Added JSON import/export of the whole Hurricane DataBase. Two save mode aresupported: Cell mode (standalone) or Blob mode, which dump the whole designdown and including the standard cells.

UPMC/LIP6/SoC 4

Documentation SoC March 2015

Installation
Note
As the sources are being released, the binary packaging is dropped. You still mayfind older version here: http://asim.lip6.fr/pub/coriolis/2.0 .

In a nutshell, building source consist in pulling the git repository then running the ccbinstaller.Main building prerequisites:
• cmake
• C++11-capable compiler
• RapidJSON
• python2.7
• boost
• libxml2
• bzip2
• yacc & lex
• Qt 4 or Qt 5
Building documentation prerequisites:
• doxygen
• latex
• latex2html
• python-docutils (for reStructuredText)
Optional libraries:
• LEF/DEF (from SI2)
For other distributions, refer to their own packaging system.

UPMC/LIP6/SoC 5

http://asim.lip6.fr/pub/coriolis/2.0
http://miloyip.github.io/rapidjson/
https://www.si2.org/

Documentation SoC March 2015

Fixed Directory Tree
In order to simplificate the work of the ccb installer, the source, build and installation treeis fixed. To successfully compile CORIOLIS you must follow it exactly. The tree is relative to the
home directory of the user building it (noted ~/ or $HOME/). Only the source directory needsto be manually created by the user, all others will be automatically created either by ccb or thebuild system.
Sources
Sources root
under git

~/coriolis-2.x/src
~/coriolis-2.x/src/coriolis

Architecture Dependant Build
Linux, SL 7, 64 bits
Linux, SL 6, 32 bits
Linux, SL 6, 64 bits
Linux, Fedora, 64 bits
Linux, Fedora, 32 bits
FreeBSD 8, 32 bits
FreeBSD 8, 64 bits
Windows 7, 32 bits
Windows 7, 64 bits
Windows 8.x, 32 bits
Windows 8.x, 64 bits

~/coriolis-2.x/Linux.el7_64/Release.Shared/build/<tool>
~/coriolis-2.x/Linux.slsoc6x/Release.Shared/build/<tool>
~/coriolis-2.x/Linux.slsoc6x_64/Release.Shared/build/<tool>
~/coriolis-2.x/Linux.fc_64/Release.Shared/build/<tool>
~/coriolis-2.x/Linux.fc/Release.Shared/build/<tool>
~/coriolis-2.x/FreeBSD.8x.i386/Release.Shared/build/<tool>
~/coriolis-2.x/FreeBSD.8x.amd64/Release.Shared/build/<tool>
~/coriolis-2.x/Cygwin.W7/Release.Shared/build/<tool>
~/coriolis-2.x/Cygwin.W7_64/Release.Shared/build/<tool>
~/coriolis-2.x/Cygwin.W8/Release.Shared/build/<tool>
~/coriolis-2.x/Cygwin.W8_64/Release.Shared/build/<tool>

Architecture Dependant Install
Linux, SL 6, 32 bits ~/coriolis-2.x/Linux.slsoc6x/Release.Shared/install/
FHS Compliant Structure under Install
Binaries
Libraries (Python)
Include by tool
Configuration files
Doc, by tool

.../install/bin

.../install/lib

.../install/include/coriolis2/<project>/<tool>

.../install/etc/coriolis2/

.../install/share/doc/coriolis2/en/html/<tool>

Note
Alternate build types: the Release.Shared means an optimized build withshared libraries. But there are also available Static instead of Shared and
Debug instead of Release and any combination of them.
Static do not work because I don’t know yet to mix statically linked binaries andPython modules (which must be dynamic).

UPMC/LIP6/SoC 6

Documentation SoC March 2015

Building Coriolis
First step is to install the prerequisites. Currently, only RapidJSON. As RapidJSON is evolving fast,if you encounter compatibility problems, the exact version we compiled against is given below.

dummy@lepka:~$ mkdir -p ~/coriolis-2.x/src/support
dummy@lepka:~$ cd ~/coriolis-2.x/src/support
dummy@lepka:~$ git clone http://github.com/miloyip/rapidjson
dummy@lepka:~$ git checkout ec322005072076ef53984462fb4a1075c27c7dfd

The second step is to create the source directory and pull the git repository:
dummy@lepka:~$ mkdir -p ~/coriolis-2.x/src
dummy@lepka:~$ cd ~/coriolis-2.x/src
dummy@lepka:~$ git clone https://www-soc.lip6.fr/git/coriolis.git

Third and final step, build & install:
dummy@lepka:src$./bootstrap/ccb.py --project=support \

--project=coriolis \
--make="-j4 install"

dummy@lepka:src$./bootstrap/ccb.py --project=support \
--project=coriolis \
--doc --make="-j1 install"

We need to separate to perform a separate installation of the documentation because it donot support to be generated with a parallel build. So we compile & install in a first stage in -j4(or whatever) then we generate the documentation in -j1Under RHEL6 or clones, you must build using the devtoolset2:
dummy@lepka:src$./bootstrap/ccb.py --project=coriolis \

--devtoolset-2 --make="-j4 install"

If you want to uses Qt 5 instead of Qt 4, you may add the --qt5 argument.The complete list of ccb functionalities can be accessed with the --help argument. It alsomay be run in graphical mode (--gui).
Building the Devel Branch In the CORIOLIS git repository, two branches are present:

• The master branch, which contains the latest stable version. This is the one used bydefault if you follow the above instructions.
• The devel branch, which obviously contains the latest commits from the developmentteam. To use it instead of the master one, do the following command just after the firststep:

dummy@lepka:~$ git checkout devel
dummy@lepka:src$./bootstrap/ccb.py --project=coriolis \

--make="-j4 install" --debug

Be aware that it may requires newer versions of the dependencies and may introduceincompatibilites with the stable version.
In the (unlikely) event of a crash of cgt, as it is a PYTHON script, the right command to run
gdb on it is:

dummy@lepka:work$ gdb python core.XXXX

UPMC/LIP6/SoC 7

http://miloyip.github.io/rapidjson/

Documentation SoC March 2015

Additionnal Requirement under MACOS CORIOLISmake uses of the boost::pythonmod-ule, but the MACPORTS boost seems unable to work with the PYTHON bundled with MACOS. Soyou have to install both of them from MACPORTS:
dummy@macos:~$ port install boost +python27
dummy@macos:~$ port select python python27
dummy@macos:-$ export DYLD_FRAMEWORK_PATH=/opt/local/Library/Frameworks

The last two lines tell MACOS to use the PYTHON from MACPORTS and not from the system.Then proceed with the generic install instructions.
Packaging Coriolis
Packager should not uses ccb, instead bootstrap/Makefile.package is provided to em-ulate a top-level autotool makefile. Just copy it in the root of the CORIOLIS git repository(~/corriolis-2.x/src/coriolis/) and build.Sligthly outaded packaging configuration files can also be found under bootstrap/:

• bootstrap/coriolis2.spec.in for rpm based distributions.
• bootstrap/debian for DEBIAN based distributions.

Hooking up into ALLIANCE
CORIOLIS relies on ALLIANCE for the cell libraries. So after installing or packaging, you must con-figure it so that it can found those libraries.This is done by editing the one variable cellsTop in the ALLIANCE helper (see AllianceHelper). This variable must point to the directory of the cells libraries. In a typical installation,this is generally /usr/share/alliance/cells.
Setting up the Environment (coriolisEnv.py)
To simplify the tedious task of configuring your environment, a helper is provided in the bootstrapsource directory (also installed in the directory .../install/etc/coriolis2/) :

~/coriolis-2.x/src/coriolis/bootstrap/coriolisEnv.py

Use it like this:
dummy@lepka:~> eval ‘~/coriolis-2.x/src/coriolis/bootstrap/coriolisEnv.py‘

Note
Do not call that script in your environement initialisation. When used under
RHEL6 or clones, it needs to be run in the devtoolset2 environement. The scriptthen launch a new shell, which may cause an infinite loop if it’s called again in, say
~/.bashrc.Instead you may want to create an alias:

alias c2r=’eval "‘~/coriolis-2.x/src/coriolis/bootstrap/coriolisEnv.py‘"’

UPMC/LIP6/SoC 8

Documentation SoC March 2015

Documentation
The general index of the documentation for the various parts of Coriolis are avalaibles hereCoriolis Tools Documentation.

Note
Python Documentation: Most of the documentation is related to the C++ APIand implemetation of the tools. However, the PYTHON bindings have been cre-ated so they mimic as closely as possible the C++ interface, so the documentationapplies to both languages with only minor syntactic changes.

General Software Architecture
CORIOLIS has been build with respect of the classical paradigm that the computational instensiveparts have been written in C++, and almost everything else in PYTHON. To build the PYTHONinterface we used two methods:

• For self-contained modules boost::python (mainly in vlsisapd).
• For all modules based on HURRICANE, we created our own wrappers due to very spe-cific requirements such as shared functions between modules or C++/PYTHON secure bi-directional object deletion.

CRL Core PyCRL

cg
tPyUnicornUnicorn

Kite PyKite

Knik PyKnik

PyEtesianEtesian

P
yt

h
o

n

S
tr

at
u

s

P
lu

g
in

Hurricane Isobar

Coriolis Configuration & Initialisation
All configuration & initialization files are Python scripts, despite their .conf extention. From asyntactic point of view, there is no difference between the system-wide configuration files andthe user’s configuration, they may use the same Python helpers.

Configuration is done in two stages:
1. Selecting the symbolic technology.
2. Loading the complete configuration for the given technology.

UPMC/LIP6/SoC 9

https://www-soc.lip6.fr/sesi-docs/coriolis2-docs/coriolis2/

Documentation SoC March 2015

First Stage: Symbolic Technology Selection
The initialization process is done by executing, in order, the following file(s):
Order Meaning File
1 The system setting /etc/coriolis2/techno.conf

2 The user’s global setting ${HOME}/.coriolis2/techno.py

3 The user’s local setting <CWD>/.coriolis2/techno.py

Thoses files must provides only two variables, the name of the symbolic technology and theone of the real technology. For example:
-*- Mode:Python -*-

symbolicTechno = ’cmos’
realTechno = ’hcmos9’

Second Stage: Technology Configuration Loading
The TECHNO variable is set by the first stage and it’s the name of the symbolic technology. Adirectory of that name, with all the configuration files, must exists in the configuration directory.In addition to the technology-specific directories, a common/ directory is there to provides atrunk for all the identical datas across the various technologies. The initialization process isdone by executing, in order, the following file(s):
Order Meaning File
1 The system initialization /etc/coriolis2/<TECHNO>/<TOOL>.conf

2 The user’s global initialization ${HOME}/.coriolis2/settings.py

3 The user’s local initialization <CWD>/.coriolis2/settings.py

Note
The loading policy is not hard-coded. It is implemented at Python level in
/etc/coriolis2/coriolisInit.py, and thus may be easily be amended towhatever site policy.The truly mandatory requirement is the existence of coriolisInit.py whichmust contain a coriolisConfigure() function with no argument.

Configuration Helpers
To ease the writing of configuration files, a set of small helpers is available. They allow to setupthe configuration parameters through simple assembly of tuples. The helpers are installed un-der the directory:

<install>/etc/coriolis2/

Where <install>/ is the root of the installation.

UPMC/LIP6/SoC 10

Documentation SoC March 2015

ALLIANCE Helper The configuration file must provide a allianceConfig tuple of the form:
cellsTop = ’/usr/share/alliance/cells/’

allianceConfig = \
((’SYMBOLIC_TECHNOLOGY’, helpers.sysConfDir+’/technology.symbolic.xml’)
, (’REAL_TECHNOLOGY’ , helpers.sysConfDir+’/technology.cmos130.s2r.xml’)
, (’DISPLAY’ , helpers.sysConfDir+’/display.xml’)
, (’CATALOG’ , ’CATAL’)
, (’WORKING_LIBRARY’ , ’.’)
, (’SYSTEM_LIBRARY’ , ((cellsTop+’sxlib’ , Environment.Append)

, (cellsTop+’dp_sxlib’, Environment.Append)
, (cellsTop+’ramlib’ , Environment.Append)
, (cellsTop+’romlib’ , Environment.Append)
, (cellsTop+’rflib’ , Environment.Append)
, (cellsTop+’rf2lib’ , Environment.Append)
, (cellsTop+’pxlib’ , Environment.Append)))

, (’SCALE_X’ , 100)
, (’IN_LO’ , ’vst’)
, (’IN_PH’ , ’ap’)
, (’OUT_LO’ , ’vst’)
, (’OUT_PH’ , ’ap’)
, (’POWER’ , ’vdd’)
, (’GROUND’ , ’vss’)
, (’CLOCK’ , ’^ck.*’)
, (’BLOCKAGE’ , ’^blockageNet*’)
)

The example above shows the system configuration file, with all the available settings. Someimportant remarks about thoses settings:
• In it’s configuration file, the user do not need to redefine all the settings, just the one hewants to change. In most of the cases, the SYSTEM_LIBRARY, the WORKING_LIBRARYand the special net names (at this point there is not much alternatives for the otherssettings).
• SYSTEM_LIBRARY setting: Setting up the library search path. Each library entry in thetuple will be added to the search path according to the second parameter:

• Environment::Append: append to the search path.
• Environment::Prepend: insert in head of the search path.
• Environment::Replace: look for a library of the same name and replace it, whithoutchanging the search path order. If no library of that name already exists, it is ap-pended.

A library is identified by it’s name, this name is the last component of the path name. Forinstance: /soc/alliance/sxlib will be named sxlib. Implementing the ALLIANCEspecification, when looking for a Cell name, the system will browse sequentially troughtthe library list and returns the first Cell whose name match.
• For POWER, GROUND, CLOCK and BLOCKAGE net names, a regular expression (GNU regexp)is expected.
• The helpers.sysConfDir variable is supplied by the helpers, it is the directory in whichthe system-wide configuration files are locateds. For a standard installation it would be:
/soc/coriolis2.

A typical user’s configuration file would be:
UPMC/LIP6/SoC 11

Documentation SoC March 2015

import os

homeDir = os.getenv(’HOME’)

allianceConfig = \
((’WORKING_LIBRARY’ , homeDir+’/worklib’)
, (’SYSTEM_LIBRARY’ , ((homeDir+’/mylib’, Environment.Append)))
, (’POWER’ , ’vdd.*’)
, (’GROUND’ , ’vss.*’)
)

Tools Configuration Helpers All the tools uses the same helper to load their configuration(a.k.a. Configuration Helper). Currently the following configuration system-wide configurationfiles are defined:
• misc.conf: commons settings or not belonging specifically to a tool.
• etesian.conf: for the ETESIAN tool.
• kite.conf: for the KITE tool.
• stratus1.conf: for the STRATUS1 tool.
Here is the contents of etesian.conf:
Etesian parameters.
parametersTable = \

((’etesian.aspectRatio’ , TypePercentage, 100 , { ’min’:10, ’max’:1000 })
, (’etesian.spaceMargin’ , TypePercentage, 5)
, (’etesian.uniformDensity’ , TypeBool , False)
, (’etesian.routingDriven’ , TypeBool , False)
, ("etesian.effort" , TypeEnumerate , 2
, { ’values’:(("Fast" , 1)

, ("Standard", 2)
, ("High" , 3)
, ("Extreme" , 4)) }

)
, ("etesian.graphics" , TypeEnumerate , 2
, { ’values’:(("Show every step" , 1)

, ("Show lower bound" , 2)
, ("Show result only" , 3)) }

)
)

layoutTable = \
((TypeTab , ’Etesian’, ’etesian’)

, (TypeTitle , ’Placement area’)
, (TypeOption, "etesian.aspectRatio" , "Aspect Ratio, X/Y (%)", 0)
, (TypeOption, "etesian.spaceMargin" , "Space Margin" , 1)
, (TypeRule ,)
, (TypeTitle , ’Etesian - Placer’)
, (TypeOption, "etesian.uniformDensity", "Uniform density" , 0)
, (TypeOption, "etesian.routingDriven" , "Routing driven" , 0)
, (TypeOption, "etesian.effort" , "Placement effort" , 1)
, (TypeOption, "etesian.graphics" , "Placement view" , 1)
, (TypeRule ,)
)

UPMC/LIP6/SoC 12

Documentation SoC March 2015

Taxonomy of the file:
• It must contains, at least, the two tables:

• parametersTable, defines & initialise the configuration variables.
• layoutTables, defines how the various parameters will be displayed in the config-uration window (The Settings Tab).

• The parametersTable, is a tuple (list) of tuples. Each entry in the list describe a config-uration parameter. In it’s simplest form, it’s a quadruplet (TypeOption, ’paramId’,
ParameterType, DefaultValue) with:

1. TypeOption, tells that this tuple describe a parameter.
2. paramId, the identifier of the parameter. Identifiers are defined by the tools.The list of parameters is detailed in each tool section.
3. ParameterType, the kind of parameter. Could be:

• TypeBool, boolean.
• TypeInt, signed integer.
• TypeEnumerate, enumerated type, needs extra entry.
• TypePercentage, percentage, expressed between 0 and 100.
• TypeDouble, float.
• TypeString, character string.

4. DefaultValue, the default value for that parameter.
Hacking the Configuration Files
Asides from the symbols that gets used by the configuration helpers like allianceConfig or
parametersTable, you can put prettymuch anything in <CWD>/.coriolis2/settings.py(that is, written in PYTHON).For example:

-*- Mode:Python -*-

defaultStyle = ’Alliance.Classic [black]’

Regular Coriolis configuration.
parametersTable = \

((’misc.catchCore’ , TypeBool , False)
, (’misc.info’ , TypeBool , False)
, (’misc.paranoid’ , TypeBool , False)
, (’misc.bug’ , TypeBool , False)
, (’misc.logMode’ , TypeBool , True)
, (’misc.verboseLevel1’ , TypeBool , False)
, (’misc.verboseLevel2’ , TypeBool , True)
, (’misc.minTraceLevel’ , TypeInt , 0)
, (’misc.maxTraceLevel’ , TypeInt , 0)
)

Some ordinary Python script...
import os

print ’ o Cleaning up ClockTree previous run.’
for fileName in os.listdir(’.’):
if fileName.endswith(’.ap’) or (fileName.find(’_clocked.’) >= 0):

print ’ - <%s>’ % fileName
os.unlink(fileName)

See Python Interface to Coriolis for more details those capabilities.
UPMC/LIP6/SoC 13

Documentation SoC March 2015

CGT - The Graphical Interface
The CORIOLIS graphical interface is split up into two windows.

• The Viewer, with the following features:
• Basic load/save capabilities.
• Display the current working cell. Could be empty if the design is not yet placed.
• Execute Stratus Scripts.
• Menu to run the tools (placement, routage).

Features are detailed in Viewer & Tools.

• The Controller, which allows:
• Tweak what is displayer by the Viewer. Through the Look, Filter and Layers&Gos tabs.
• Browse the netlist with eponym tab.
• Show the list of selected objects (if any) with selection
• Walk through the Database, the Cell or the Selection with Inspector. This is an ad-vanced feature, reserved for experimented users.
• The tab Settings which give access to all the settings. They are closely related to Con-figuration & Initialisation.

UPMC/LIP6/SoC 14

Documentation SoC March 2015

Viewer & Tools
STRATUS Netlist Capture
STRATUS is the replacement for GENLIB procedural netlist capture language. It is designed as aset of PYTHON classes, and comes with it’s own documentation (Stratus Documentation)
The HURRICANE Data-Base
The ALLIANCE flow is based on the MBK data-base, which has one data-structure for each view.That is, Lofig for the logical view and Phfig for the physical view. The place and route toolswere responsible for maintaining (or not) the coherency between views. Reflecting this weakcoupling between views, each one was stored in a separate file with a specific format. Thelogical view is stored in a vst file in VHDL format and the physical in an ap file in an ad-hocformat.The CORIOLIS flow is based on the HURRICANE data-base, which has a unified structure for log-ical and physical view. That data structure is the Cell object. The Cell can have any state betweenpure netlist and completly placed and routed design. Although the memory representation ofthe views has deeply changed we still use the ALLIANCE files format, but they now really repre-sent views of the same object. The point is that one must be very careful about view coherencywhen going to and from CORIOLIS.As for the second release, CORIOLIS can be used only for three purposes :

• Placing a design, in which case the netlist view must be present.
• Routing a design, in that case the netlist view and the layout view must be present andlayout view must contain a placement. Both views must have the same name. Whensaving the routed design, it is advised to change the design name otherwise the originalunrouted placement in the layout view will be overwritten.
• Viewing a design, the netlist view must be present, if a layout view is present it still musthave the same name but it can be in any state.

UPMC/LIP6/SoC 15

https://www-soc.lip6.fr/sesi-docs/coriolis2-docs/coriolis2/en/html/stratus/index.html

Documentation SoC March 2015

Synthetizing and loading a design
CORIOLIS supports several file formats. It can load all file format from the ALLIANCE toolchain(.ap for layout, behavioural and structural vhdl .vbe and .vst), BLIF netlist format as well asbenchmark formats from the ISPD contests.It can be compiled with LEF/DEF support, although it requires acceptance of the SI2 licenseand may not be compiled in your version of the software.
Synthesis under Yosys You can create a BLIF file from the YOSYS synthetizer, which can beimported under Coriolis. Most libraries are specified as a .lib liberty file and a .lef LEF file. YOSYSopensmost .lib files with minor modifications, but LEF support in Coriolis relies on SI2. If Coriolishasn’t been compiled against it, the library is given in ALLIANCE .ap format. Some free librariesalready provide both .ap and .lib files.Once you have installed a common library under YOSYS and Coriolis, just synthetize your de-sign with YOSYS and import it (as Blif without the extension) under Coriolis to perform place&route.
Synthesis under Alliance ALLIANCE is an older toolchain but has been extensively used foryears. Coriolis can import and write Alliance designs and libraries directly.
Etesian -- Placer
The ETESIAN placer is a state of the art (as of 2015) analytical placer. It is within 5% of otherplacers’ solutions, but is normally a bit worse than ePlace. This CORIOLIS tool is actually anencapsulation of COLOQUINTE which is the placer.

Note
Instance Uniquification Unsupported: a same logical instance cannot have twodifferent placements. So, either you manually make a clone of it or you sup-ply a placement for it. We need to implement uniquification in the HURRICANEdatabase.

Hierarchical PlacementThe placement area is defined by the top cell abutment box.When placing a complete hierarchy, the abutment boxes of the cells (models) other than thetop cell are sets identical to the one of the top cell and their instances are all placed at position
(0,0,ID). That is, all the abutments boxes, whatever the hierarchical level, defines the samearea (they are exactly superposed).We choose this scheme because the placer will see all the instances as virtually flattened, sothey can be placed anywhere inside the top-cell abutment box.

UPMC/LIP6/SoC 16

http://vlsitechnology.org

Documentation SoC March 2015

Instancei_name

m_name Cell (Model)

alu accu ram muxs

coeur
ialu
iaccu
iram

coeur

ialu
(0,0,ID)

iaccu
(0,0,ID)

iram
(0,0,ID)

imuxs
(0,0,ID)

Computing the Placement AreaThe placement area is computed using the etesian.aspectRatio and etesian.spaceMarginparameters only if the top-cell has an empty abutment box. If the top-cell abutment box has tobe set, then it is propagated to all the instances models recursively.Reseting the PlacementOnce a placement has been done, the placer cannot reset it (will be implemented later). Toperform a new placement, you must restart cgt. In addition, if you have saved the placementon disk, you must erase any .ap file, which are automatically reloaded along with the netlist(.vst).LimitationsEtesian supports standard cells and fixed macros. As for the Coriolis 2.1 version, it doesn’tsupport movable macros, and you must place every macro beforehand. Timing and routabilityanalysis are not included either, and the returned placement may be unroutable.

UPMC/LIP6/SoC 17

Documentation SoC March 2015

Etesian Configuration Parameters
Parameter Identifier Type Default
Etesian Parameters
etesian.aspectRatio

TypePercentage 100
Define the height on width H/W aspect ratio, can becomprised between 10 and 1000

etesian.spaceMargin
TypePercentage 5
The extra white space added to the total area of thestandard cells

etesian.uniformDensity
TypeBool False
Whether the cells will be spread envenly across thearea or allowed to form denser clusters

etesian.effort
TypeInt 2
Sets the balance between the speed of the placerand the solution quality

etesian.routingDriven
TypeBool False
Whether the tool will try routing iterations andwhitespace allocation to improve routability; to beimplemented

etesian.graphics
TypeInt 2
How often the display will be refreshed More re-freshing slows the placer.

• 1 shows both upper and lower bounds
• 2 only shows lower bound results
• 3 only shows the final results

Knik -- Global Router
The quality of KNIK global routing solutions are equivalent to those of FGR 1.0. For an in-depthdescription of KNIK algorithms, you may download the thesis of D. DUPUIS avalaible from here~:Knik Thesis.The global router is (not yet) deterministic. To circumvent this limitation, a global routingsolution can be saved to disk and reloaded for later uses.A global routing is saved into a file with the same name as the design and a kgr extention.It is in Box Router output format.Menus:

• P&R → Step by Step → Save Global Routing .
• P&R → Step by Step → Load Global Routing .

Kite -- Detailed Router
KITE no longer suffers from the limitations of NERO. It can route big designs as its runtime andmemory footprint is almost linear (with respect to the number of gates). It has successfullyrouted design of more than 150K gates.
However, this first release comes with the temporary the following restrictions:

• Works only with SXLIB standard cell gauge.

UPMC/LIP6/SoC 18

http://vlsicad.eecs.umich.edu/BK/FGR/
http://www-soc.lip6.fr/en/users/damiendupuis/PhD/
http://www.cerc.utexas.edu/~thyeros/boxrouter/boxrouter.htm

Documentation SoC March 2015

• Works always with 4 routing metal layers (M2 through M5).
• Do not allow (take into account) pre-routed wires on signals other than POWER or GROUND.

Note
Slow Layer Assignment. Most of the time, the layer assignment stage is fast(less than a dozen seconds), but in some instances it can take more than a dozenminutes. This is a known bug and will be corrected in later releases.

After each run, KITE displays a set of completion ratios which must all be equal to 100% ifthe detailed routing has been successfull. In the event of a failure, on a saturated design, youmay decrease the edge saturation ratio (argument --edge) to balance more evenly the designsaturation. That is, the maximum saturation decrease at the price of a wider saturated areaand increased wirelength. This is the saturation of the global router KNIK, and you may in-crease/decrease by steps of 5%, which represent one track. The maximum capacity of the SXLIBgauge is 10 tracks in two layers, that makes 20 tracks by KNIK edge.Routing a design is done in four ordered steps:
1. Detailed pre-route P&R → Step by Step → Detailed Pre-Route .
2. Global routing P&R → Step by Step → Global Route .
3. Detailed routing P&R → Step by Step → Detailed Route .
4. Finalize routing P&R → Step by Step → Finalize Route .
It is possible to supply to the router a complete wiring for some nets that the user’s wantsto be routed according to a specific topology. The supplied topology must respect the buildingrules of the KATABATIC database (contacts must be, terminals, turns, h-tee & v-tee only). During

the first step Detailed Pre-Route the router will solve overlaps between the segments,without making any dogleg. If no pre-routed topologies are present, this step may be ommited.Any net routed at this step is then fixed and become unmovable for the later stages.After the detailed routing step the KITE data-structure is still active (the Hurricane wiringis decorated). The finalize step performs the removal of the KITE data-structure, and it is notadvisable to save the design before that step.You may visualize the density (saturation) of either KNIK (on edges) or KITE (on GCells) untilthe routing is finalized. Special layers appears to that effect in the The Layers&Go Tab.
Kite Configuration Parameters As KNIK is only called through KITE, it’s parameters also havethe kite. prefix.The KATABATIC parameters control the layer assignment step.All the defaults value given below are from the default ALLIANCE technology (cmos and
SxLib cell gauge/routing gauge).
Parameter Identifier Type Default
Katabatic Parameters
katabatic.topRoutingLayer

TypeString METAL5
Define the highest metal layer that will be used forrouting (inclusive).

katabatic.globalLengthThresholdTypeInt 1450
This parameter is used by a layer assignmentmethod which is no longer used (did not give goodresults)

... continued on next page
UPMC/LIP6/SoC 19

Documentation SoC March 2015

Parameter Identifier Type Default
katabatic.saturateRatio

TypePercentage 80
If M(x) density is above this ratio, move upfeedthru global segments up from depth x to x+2

katabatic.saturateRp
TypeInt 8
If a GCell contains more terminals (RoutingPad)than that number, force a move up of the connect-ing segments to those in excess

Knik Parameters
kite.hTracksReservedLocal

TypeInt 3
To take account the tracks needed inside a GCell tobuild the local routing, decrease the capacity of theedges of the global router. Horizontal and verticallocally reserved capacity can be distinguished formore accuracy.

kite.vTracksReservedLocal
TypeInt 3
cf. kite.hTracksReservedLocal

Kite Parameters
kite.eventsLimit

TypeInt 4000002
The maximum number of segment displacements,this is a last ditch safety against infinite loop. It’sperhaps a little too low for big designs

kite.ripupCost
TypeInt 3
Differential introduced between two ripup cost toavoid a loop between two ripped up segments

kite.strapRipupLimit
TypeInt 16
Maximum number of ripup for strap segments

kite.localRipupLimit
TypeInt 9
Maximum number of ripup for local segments

kite.globalRipupLimit
TypeInt 5
Maximum number of ripup for global segments,when this limit is reached, triggers topologic mod-ification

kite.longGlobalRipupLimit
TypeInt 5
Maximum number of ripup for long global seg-ments, when this limit is reached, triggers topologi-cal modification

Executing Python Scripts in Cgt
Python/Stratus scripts can be executed either in text or graphical mode.

Note
How Cgt Locates Python Scripts: cgt uses the Python import mechanism toload Python scripts. So you must give the name of your script whitout .py ex-tention and it must be reachable through the PYTHONPATH. You may uses thedotted module notation.

A Python/Stratus script must contains a function called ScriptMain() with one optionalargument, the graphical editor into which it may be running (will be set to None in text mode).The Python interface to the editor (type: CellViewer) is limited to basic capabilities only.

UPMC/LIP6/SoC 20

Documentation SoC March 2015

Any script given on the command line will be run immediatly after the initializations andbefore any other argument is processed.For more explanation on Python scripts see Python Interface to Coriolis.
Printing & Snapshots
Printing or saving into a PDF is fairly simple, just uses the File -> Print menu or the CTRL+Pshortcut to open the dialog box.The print functionality uses exactly the same rendering mechanism as for the screen, beeingalmostWYSIWYG. Thus, to obtain the best results it is advisable to select the Coriolis.Printerlook (in the Controller), which uses a white background and much suited for high resolutions
32x32 pixels patternsThere is also two mode of printing selectable through the Controller Settings -> Misc ->Printer/Snapshot Mode:
Mode DPI (approx.) Intended Usage
Cell Mode 150 For single Cell printing or very small designs. Patternswill be bigger and more readable.
Design Mode 300 For designs (mostly commposed of wires and cells out-lines).

Note
The pdf file size Be aware that the generated PDF files are indeed only pixmaps. Sothey can grew very large if you select paper format above A2 or similar.

Saving into an image is subject to the same remarks as for PDF.
Memento of Shortcuts in Graphic Mode
The main application binary is cgt.
Category Keys Action
Moves

Up , Down
Left , Right

Shift the view in the according direction

Fit f Fit to the Cell abutment box
Refresh CTRL+L Triggers a complete display redraw
Goto g apperture is the minimum side of the area displayedaround the point to go to. It’s an alternative way of set-ting the zoom level
Zoom z , m Respectively zoom by a 2 factor and unzoom by a 2 factor

Area Zoom

You can perform a zoom to an area. Define the zoomarea by holding down the left mouse button while movingthe mouse.

... continued on next page

UPMC/LIP6/SoC 21

Documentation SoC March 2015

Category Keys Action
Selection

Area Selection

You can select displayed objects under an area. Definethe selection area by holding down the right mouse buttonwhile moving the mouse.

Toggle Selection

You can toggle the selection of one object under themouse position by pressing CTRL and pressing downthe right mouse button. A popup list of what’s under theposition shows up into which you can toggle the selec-tion state of one item.
S Toggle the selection visibility

Controller CTRL+I Show/hide the controller window.It’s the Swiss Army Knife of the viewer. From it, you canfine-control the display and inspect almost everything inyour design.
Rulers k , ESC One stroke on k enters the ruler mode, in which youcan draw one ruler. You can exit the ruler mode bypressing ESC . Once in ruler mode, the first click onthe left mouse button sets the ruler’s starting point andthe second click the ruler’s end point. The second clickexits automatically the ruler mode.

K Clears all the drawn rulers
Print CTRL+P Currently rather crude. It’s a direct copy of what’s dis-played in pixels. So the resulting picture will be a littleblurred due to anti-aliasing mechanism.
Open/Close CTRL+O Opens a new design. The design name must be givenwithout path or extention.

CTRL+W Close the current viewer window, but do not quit theapplication.
CTRL+Q CTRL+Q quit the application (closing all windows).

Hierarchy CTRL+Down Go one hierarchy level down. That is, if there is an in-stance under the cursor position, load it’s model Cell inplace of the current one.
CTRL+Up Go one hierarchy level up. if we have entered the cur-rent model through CTRL+Down reload the previousmodel (the one in which this model is instanciated).

Cgt Command Line Options
Appart from the obvious --text options, all can be used for text and graphical mode.
Arguments Meaning
-t|--text Instruct cgt to run in text mode.
-L|--log-mode Disable the uses of ANSI escape sequence on the tty.Useful when the output is redirected to a file.
-c <cell>|--cell=<cell> The name of the design to load, without leading pathor extention.

... continued on next page

UPMC/LIP6/SoC 22

Documentation SoC March 2015

Arguments Meaning
-g|--load-global Reload a global routing solution from disk. The file con-taining the solution must be named <cell>.kgr.
--save-global Save the global routing solution, into a file named <de-sign>.kgr.
-e <ratio>|--edge=<ratio> Change the edge capacity for the global router, be-tween 0 and 1 (KNIK).
-G|--global-route Run the global router (KNIK).
-R|--detailed-route Run the detailed router (KITE).
-s|--save-design=<routed> The design into which the routed layout will be saved.It is strongly recommanded to choose a different namefrom the source (unrouted) design.
--events-limit=<count> The maximal number of events after which the routerwill stops. This is mainly a failsafe against looping. Thelimit is sets to 4 millions of iteration which should suf-fice to any design of 100K. gates. For bigger designs youmay wants to increase this limit.
--stratus-script=<module> Run the Python/Stratus script module. See PythonScripts in Cgt.
Some Examples :
• Run both global and detailed router, then save the routed design :

> cgt -v -t -G -R --cell=design --save-design=design_kite

• Load a previous global solution, run the detailed router, then save the routed design :
> cgt -v -t --load-global -R --cell=design --save-design=design_kite

• Run the global router, then save the global routing solution :
> cgt -v -t -G --save-global --cell=design

Miscellaneous Settings
Parameter Identifier Type Default
Verbosity/Log Parameters
misc.info

TypeBool False
Enable display of info level message (cinfostream)

misc.bug
TypeBool False
Enable display of bug level message (cbugstream), messages can be a little scarry

misc.logMode
TypeBool False
If enabled, assume that the output device is not a
tty and suppress any escaped sequences

misc.verboseLevel1
TypeBool True
First level of verbosity, disable level 2

misc.verboseLevel2
TypeBool False
Second level of verbosity

... continued on next page

UPMC/LIP6/SoC 23

Documentation SoC March 2015

Parameter Identifier Type Default
Development/Debug Parameters
misc.minTraceLevel TypeInt 0

misc.maxTraceLevel
TypeInt 0
Display trace information between those two lev-els (cdebug stream)

misc.catchCore
TypeBool False
By default, cgt do not dump core. To generateone set this flag to True

UPMC/LIP6/SoC 24

Documentation SoC March 2015

The Controller
The Controller window is composed of seven tabs:

1. The Look Tab to select the display style.
2. The Filter Tab the hierarchical levels to be displayed, the look of rubbers and thedimension units.
3. The Layers&Go Tab to selectively hide/display layers.
4. The Netlist Tab to browse through the netlist. Works in association with the Selectiontab.
5. The Selection Tab allow to view all the currently selected elements.
6. The Inspector Tab browse through either the DataBase, the Cell or the current selec-tion.
7. The Settings Tab access all the tool’s configuration settings.

The Look Tab
You can select how the layout will be displayed. There is a special one Printer.Coriolisspecifically designed for Printing & Snapshots. You should select it prior to calling the print orsnapshot dialog boxes.

The Filter Tab
The filter tab let you select what hierarchical levels of your design will be displayed. Hierarchylevel are numbered top-down: the level 0 correspond to the top-level cell, the level one to theinstances of the top-level Cell and so on.There are also check boxes to enable/disable the processing of Terminal Cell, Master Cellsand Compnents. The processing of Terminal Cell (hierarchy leaf cells) is disabled by defaultwhen you load a hierarchical design and enabled when you load a single Cell.
UPMC/LIP6/SoC 25

Documentation SoC March 2015

You can choose what kind of form to give to the rubbers and the type of unit used to displaycoordinates.
Note
What are Rubbers: HURRICANE uses Rubbers to materialize physical gaps in nettopology. That is, if some wires are missing to connect two or more parts of net,a rubber will be drawn between them to signal the gap.For example, after the detailed routing no rubbers should remains. They havebeen made very visibles as big violet lines...

The Layers&Go Tab
Control the individual display of all layers and Gos.

• Layers correspond to a true physical layer. From a HURRICANE point of view they are all theBasicLayers (could be matched to GDSII).
• Gos stands from Graphical Objects, they are drawings that have no physical existence butare added by the various tools to display extra information. One good exemple is thedensity map of the detailed router, to easily locate congested areas.
For each layer/Go there are two check boxes:
• The normal one triggers the display.
• The red-outlined allows objects of that layer to be selectable or not.

UPMC/LIP6/SoC 26

Documentation SoC March 2015

The Netlist Tab
The Netlist tab shows the list of nets... By default the tab is not synched with the displayed Cell.To see the nets you must check the Sync Netlist checkbox. You can narrow the set of displayednets by using the filter pattern (supports regular expressions).An very useful feature is to enable the Sync Selection, which will automatically select all thecomponents of the selected net(s). You can select multiple nets. In the figure the net auxsc35is selected and is highlited in the Viewer.

UPMC/LIP6/SoC 27

Documentation SoC March 2015

The Selection Tab
The Selection tab list all the components currently selecteds. They can be filtered thanks to thefilter pattern.Used in conjunction with the Netlist Sync Selection you will all see all the components partof net.

UPMC/LIP6/SoC 28

Documentation SoC March 2015

In this list, you can toggle individually the selection of component by pressing the t key.When unselected in this way a component is not removed from the the selection list but insteaddisplayed in red italic. To see where a component is you may make it blink by repeatedly pressthe t key...

The Inspector Tab
This tab is very useful, but mostly for CORIOLIS developpers. It allows to browse through the liveDataBase. The Inspector provide three entry points:

• DataBase: Starts from the whole HURRICANE DataBase.
• Cell: Inspect the currently loaded Cell.
• Selection: Inspect the object currently highlited in the Selection tab.
Once an entry point has been activated, you may recursively expore all it’s fields using theright/left arrows.

Note
Do not put your fingers in the socket: when inspecting anything, do not modify theDataBase. If any object under inspection is deleted, you will crash the applica-tion...
Note
Implementation Detail: the inspector support is done with Slot, Record and
getString().

UPMC/LIP6/SoC 29

Documentation SoC March 2015

UPMC/LIP6/SoC 30

Documentation SoC March 2015

The Settings Tab
Here comes the description of the Settings tab.

UPMC/LIP6/SoC 31

Documentation SoC March 2015

Python Interface for HURRICANE / CORIOLIS
The (almost) complete interface of HURRICANE is exported as a PYTHON module and some partof the other components of CORIOLIS (each one in a separate module). The interface has beenmade to mirror as closely as possible the C++ one, so the C++ doxygen documentation could beused to write code with either languages.Summary of the C++ DocumentationA script could be run directly in text mode from the command line or through the graphicalinterface (see Python Scripts in Cgt).Asides for this requirement, the python script can contain anything valid in PYTHON, so don’thesitate to use any package or extention.Small example of Python/Stratus script:

from Hurricane import *
from Stratus import *

def doSomething ():
...
return

def ScriptMain (**kw):
editor = None
if kw.has_key(’editor’) and kw[’editor’]:

editor = kw[’editor’]
stratus.setEditor(editor)

doSomething()
return

if __name__ == "__main__" :
kw = {}
success = ScriptMain(**kw)
shellSuccess = 0
if not success: shellSuccess = 1

sys.exit(shellSuccess)
ScriptMain ()

This typical script can be executed in two ways:
1. Run directly as a PYTHON script, thanks to the

if __name__ == "__main__" :

part (this is standart PYTHON). It is a simple adapter that will calls ScriptMain().
2. Through cgt, either in text or graphical mode. In that case, the ScriptMain()is directly called trough a sub-interpreter. The arguments of the script are passedthrough the **kw dictionnary.

**kw Dictionnary
ParameterKey/Name Contents type
’cell’ A Hurricane cell on which to work. Dependingon the context, it may be None. For example,when run from cgt, it the cell currently loadedin the viewer, if any.

... continued on next page
UPMC/LIP6/SoC 32

file:../../../index.html

Documentation SoC March 2015

**kw Dictionnary
ParameterKey/Name Contents type
’editor’ The viewer from which the script is run, whenlauched through cgt.

Plugins
Plugins are PYTHON scripts specially crafted to integrate with cgt. Their entry point is a ScriptMain()method as described in Python Interface to Coriolis. They can be called by user scripts throughthis method.
Chip Placement
Automatically perform the placement of a complete chip. This plugin, as well as the other P&Rtools expect a specific top-level hierarchy for the design. The top-level hierarchy must containsthe instances of all the I/O pads and exactly one instance of the chip’s core model.

p
v
d
d
e
c
k
_
p
x

p
v
s
s
e
c
k
_
p
x

pvssick_px

pvddick_px

pvddeck_px

pvsseck_px

pck_px

p
v
d
d
i
c
k
_
p
x

p
v
s
s
i
c
k
_
p
x

pck_px

Cell (Model)

Instance

pi_px po_px

p_a0 p_ovr p_ng p_ck core

i_name

m_name

coeur

amd2901

coeur

The designer must provide a configuration file that define the rules for the placement of thetop-level hierarchy (that is, the pads and the core). This filemust be named after the chip’s name,by appending _chip.py (obviously, it is a PYTHON file). For instance if the chip netlist file iscalled amd2901_crl.vst, then the configuration filemust be named amd2901_crl_chip.vst.Example of chip placement configuration file (for AM2901):
chip = \
{ ’pads.south’ : [’p_a3’ , ’p_a2’ , ’p_a1’ , ’p_r0’

, ’p_vddick0’, ’p_vssick0’, ’p_a0’ , ’p_i6’
, ’p_i8’ , ’p_i7’ , ’p_r3’]

, ’pads.east’ : [’p_zero’ , ’p_i0’ , ’p_i1’ , ’p_i2’
, ’p_vddeck0’, ’p_vsseck0’, ’p_q3’ , ’p_b0’
, ’p_b1’ , ’p_b2’ , ’p_b3’]

, ’pads.north’ : [’p_noe’ , ’p_y3’ , ’p_y2’ , ’p_y1’
, ’p_y0’ , ’p_vddeck1’, ’p_vsseck1’, ’p_np’
, ’p_ovr’ , ’p_cout’ , ’p_ng’]

, ’pads.west’ : [’p_cin’ , ’p_i4’ , ’p_i5’ , ’p_i3’
, ’p_ck’ , ’p_d0’ , ’p_d1’ , ’p_d2’
, ’p_d3’ , ’p_q0’ , ’p_f3’]

, ’core.size’ : (1500, 1500)
, ’chip.size’ : (3000, 3000)
, ’chip.clockTree’ : True
}

UPMC/LIP6/SoC 33

Documentation SoC March 2015

The file must contain one dictionnary named chip.
Chip Dictionnary
Parameter Key/Name Value/Contents type
’pad.south’ Ordered list (left to right) of pad instances names to put on thesouth side of the chip
’pad.east’ Ordered list (down to up) of pad instances names to put on theeast side of the chip
’pad.north’ Ordered list (left to right) of pad instances names to put on thenorth side of the chip
’pad.west’ Ordered list (down to up) of pad instances names to put on thewest side of the chip
’core.size’ The size of the core (to be used by the placer)
’chip.size’ The size of the whole chip. The sides must be great enough toaccomodate all the pads
’chip.clockTree’ Whether to generate a clock tree or not. This calls the Clock-Tree plugin
Configuration parameters, defaults are defined in etc/coriolis2/<STECHNO>/plugins.conf.

Parameter Identifier Type Default
Chip Plugin Parameters
chip.block.rails.count

TypeInt 5
The minimum number of rails around the coreblock. Must be odd and suppérior to 5. One rail forthe clock and at least two pairs of power/grounds

chip.block.rails.hWidth
TypeInt 12
The horizontal with of the rails

chip.block.rails.vWidth
TypeInt 12
The vertical with of the rails

chip.block.rails.hSpacing
TypeInt 6
The spacing, edge to edge of two adjacent horizontalrails

chip.block.rails.vSpacing
TypeInt 6
The spacing, edge to edge of two adjacent verticalrails

chip.pad.pck
TypeString pck_px
The model name of the pad connected to the chipexternal clock

chip.pad.pvddeck
TypeString pvddeck_px
The model name of the pad connected to the vdde(external power) and suppling it to the core

chip.pad.pvsseck
TypeString pvsseck_px
The model name of the pad connected to the vsse(external ground) and suppling it to the core

chip.pad.pvddick
TypeString pvddick_px
The model name of the pad connected to the vddi(internal power) and suppling it to the core

chip.pad.pvssick
TypeString pvssick_px

... continued on next page
UPMC/LIP6/SoC 34

Documentation SoC March 2015

Parameter Identifier Type Default
The model name of the pad connected to the vssi(internal ground) and suppling it to the core

Note
If no clock tree is generated, then the clock rail is not created. So even if therequested number of rails chip.block.rails.count is, say 5, only four rails(2* power, 2* ground) will be generateds.

Clock Tree
Insert a clock tree into a block. The clock tree uses the H strategy. The clock net is splitted intosub-nets, one for each branch of the tree.

• On chips design, the sub-nets are createds in the model of the core block (then trans-hierarchically flattened to be shown at chip level).
• On blocks, the sub nets are created directly in the top block.
• The sub-nets are named according to a simple geometrical scheme. A common prefix
ck_htree, then one postfix by level telling on which quarter of plane the sub-clock islocated:

1. _bl: bottom left plane quarter.
2. _br: bottom right plane quarter.
3. _tl: top left plane quarter.
4. _tr: top right plane quarter.

We can have ck_htree_bl, ck_htree_bl_bl, ch_htree_bl_tl and so on.
The clock tree plugin works in four steps:
1. Build the clock tree: creates the top-block abutment box, compute the levels of Htree neededs and place the clock buffers.
2. Once the clock buffers are placed, calls the placer (ETESIAN) to place the ordinarystandart cells, whithout disturbing clock H-tree buffers.
3. At this point we know the exact positions of all the DFFs, so we can connect them tothe nearest H-tree leaf clock signal.
4. Leaf clock signals that are not connecteds to any DFFs are removed.
Netlist reorganisation:
• Obviously the top block or chip core model netlist is modificated to contains all the clocksub-nets. The interface is not changed.
• If the top block contains instances of other models and those models contains DFFs thatget re-connecteds to the clock sub-nets (from the top level). Change both themodel netlistand interface to propagate the relevant clock sub-nets to the instanciated model. The newmodel with the added clock signal is renamed with a _clocked suffix. For example, thesub-block model ram.vst will become ram_clocked.vst.

Note
If you are to re-run the clock tree plugin on a netlist, be careful toerase any previously generated _clocked file (both netlist and layout: rm

*.clocked.{ap,vst}). And restart cgt to clear it’s memory cache.
Configuration parameters, defaults are defined in etc/coriolis2/<STECHNO>/plugins.conf.

UPMC/LIP6/SoC 35

Documentation SoC March 2015

Parameter Identifier Type Default
ClockTree Plugin Parameters
clockTree.minimumSide

TypeInt 300
The minimum size below which the clock tree willstop to perform quadri-partitions

clockTree.buffer
TypeString buf_x2
The buffer model to use to drive sub-nets

clockTree.placerEngine
TypeString Etesian
The placer to use. Other value is Mauka the simu-lated annealing placer which will go into retirementvery soon

Recursive-Save (RSave)
Perform a recursive top down save of all the models from the top cell loaded in cgt. Force awrite of any non-terminal model. This plugin is used by the clock tree plugin after the netlistclock sub-nets creation.
A Simple Example: AM2901
To illustrate the capabilities of CORIOLIS tools and PYTHON scripting, a small example, derivedfrom the ALLIANCE AM2901 is supplied.This example contains only the synthetized netlists and the doChip.py script which per-form the whole P&R of the design.You can generate the chip using one of the following method:

1. Command line mode: directly run the script:
dummy@lepka:AM2901$./doChip -V --cell=amd2901

2. Graphic mode: launch cgt, load chip netlist amd2901 (the top cell) then run thePYTHON script doChip.py.
Note
Between two consecutive run, be sure to erase the netlist/layout generateds:

dummy@lepka:AM2901$ rm *_clocked*.vst *.ap

UPMC/LIP6/SoC 36

	Coriolis User's Guide
	Contents
	Credits & License
	Release Notes
	Release 1.0.1475
	Release 1.0.1963
	Release 1.0.2049
	Release v2.0.1
	Release v2.1
	Release v2.2

	Installation
	Fixed Directory Tree
	Building Coriolis
	Packaging Coriolis
	Hooking up into Alliance
	Setting up the Environment (coriolisEnv.py)

	Documentation
	General Software Architecture

	Coriolis Configuration & Initialisation
	First Stage: Symbolic Technology Selection
	Second Stage: Technology Configuration Loading
	Configuration Helpers
	Hacking the Configuration Files

	CGT - The Graphical Interface
	Viewer & Tools
	Stratus Netlist Capture
	The Hurricane Data-Base
	Synthetizing and loading a design
	Etesian -- Placer
	Knik -- Global Router
	Kite -- Detailed Router
	Executing Python Scripts in Cgt
	Printing & Snapshots
	Memento of Shortcuts in Graphic Mode
	Cgt Command Line Options
	Miscellaneous Settings

	The Controller
	The Look Tab
	The Filter Tab
	The Layers&Go Tab
	The Netlist Tab
	The Selection Tab
	The Inspector Tab
	The Settings Tab

	Python Interface for Hurricane / Coriolis
	Plugins
	Chip Placement
	Clock Tree
	Recursive-Save (RSave)

	A Simple Example: AM2901

