\hypertarget{cif_cifPres}{}\section{Presentation}\label{cif_cifPres} The {\bfseries Caltech Intermediate Format (C\+IF)} consists in a limited set of graphic primitives used to describe the shapes on each layer of an integrated circuit (see \href{http://en.wikipedia.org/wiki/Caltech_Intermediate_Form}{\tt http\+://en.\+wikipedia.\+org/wiki/\+Caltech\+\_\+\+Intermediate\+\_\+\+Form} for more informations). ~\newline \hypertarget{cif_cifAutrhos}{}\subsection{Author}\label{cif_cifAutrhos} Damien Dupuis\+: damien.\+dupuis(at)lip6(.)fr\hypertarget{cif_cifLimits}{}\subsection{Limitations}\label{cif_cifLimits} Although the C\+IF format allows hierarchical description and supports several shapes, in this driver, we do not use hierarchy and only use Polygons.\hypertarget{cif_cifDB}{}\section{Stand alone database structure}\label{cif_cifDB} The database consists in two simple objects \+: \begin{DoxyItemize} \item \mbox{\hyperlink{class_c_i_f_1_1_circuit}{C\+I\+F\+::\+Circuit}} contains all C\+IF circuit informations such as the name, the unit used, the scale and the list of all Polygons. \item \mbox{\hyperlink{class_c_i_f_1_1_polygon}{C\+I\+F\+::\+Polygon}} describes a Polygon (a set of points). \end{DoxyItemize}\hypertarget{cif_cifDriver}{}\subsection{Using the driver}\label{cif_cifDriver} To drive a C\+IF file, user has to create one \mbox{\hyperlink{class_c_i_f_1_1_circuit}{C\+I\+F\+::\+Circuit}} and as many \mbox{\hyperlink{class_c_i_f_1_1_polygon}{C\+I\+F\+::\+Polygon}} as the number of shapes of the layout. The \mbox{\hyperlink{class_c_i_f_1_1_polygon}{C\+I\+F\+::\+Polygon}} objects can be created independently from for the \mbox{\hyperlink{class_c_i_f_1_1_circuit}{C\+I\+F\+::\+Circuit}} but must be finally added to the \mbox{\hyperlink{class_c_i_f_1_1_circuit}{C\+I\+F\+::\+Circuit}} using \mbox{\hyperlink{class_c_i_f_1_1_circuit_a5b37e86206e2a128ba6db4987dc09a39}{C\+I\+F\+::\+Circuit\+::add\+Polygon()}}.~\newline Once the \mbox{\hyperlink{class_c_i_f_1_1_circuit}{C\+I\+F\+::\+Circuit}} is complete, simply call the \mbox{\hyperlink{class_c_i_f_1_1_circuit_a90c823b70c4984f302c19ceca604d101}{C\+I\+F\+::\+Circuit\+::write\+To\+File()}} method to drive the database to file.\hypertarget{cif_cifExamples}{}\section{Examples}\label{cif_cifExamples} As said is the global presentation, V\+L\+SI S\+A\+PD project provides C++ libraries and Python modules for each supported format. In this section we present two simple code examples to drive a C\+IF file using C++ or Python. These two examples drive the same file {\ttfamily transistor.\+cif\+:} \begin{DoxyCodeInclude} (CIF file written on 11-Jun-2010 13:49:44 by VLSISAPD\_CIF\_DRIVER); (Units: micro - UU/DB Scale: 0.001); DS 1 1 1; 9 Transistor; L 6; P 130,290 540,290 540,690 130,690; L 17; P 305,150 365,150 365,830 305,830; DF; C 1; E \end{DoxyCodeInclude} \begin{DoxyImage} \includegraphics[width=.25\linewidth]{transistorCif} \doxyfigcaption{C\+IF example layout } \end{DoxyImage} \hypertarget{cif_cifC}{}\subsection{C++}\label{cif_cifC} Here is the C++ code ({\ttfamily drive\+Cif.\+cpp}) used to generate the transistor.\+cif file. (Source is available in examples directory). \begin{DoxyCodeInclude} \textcolor{preprocessor}{#include } \textcolor{keyword}{using namespace }\mbox{\hyperlink{namespacestd}{std}}; \textcolor{preprocessor}{#include "vlsisapd/cif/Circuit.h"} \textcolor{preprocessor}{#include "vlsisapd/cif/Polygon.h"} \textcolor{keywordtype}{int} main(\textcolor{keywordtype}{int} argc, \textcolor{keywordtype}{char} * argv[]) \{ \mbox{\hyperlink{class_c_i_f_1_1_circuit}{CIF::Circuit}}* circuit = \textcolor{keyword}{new} \mbox{\hyperlink{class_c_i_f_1_1_circuit}{CIF::Circuit}}(\textcolor{keywordtype}{string}(\textcolor{stringliteral}{"Transistor"}), \textcolor{keywordtype}{string}(\textcolor{stringliteral}{"micro"}), 0.001); \textcolor{comment}{// Layer #6 corresponds to active} \mbox{\hyperlink{class_c_i_f_1_1_polygon}{CIF::Polygon}}* poly = \textcolor{keyword}{new} \mbox{\hyperlink{class_c_i_f_1_1_polygon}{CIF::Polygon}}(6); poly->\mbox{\hyperlink{class_c_i_f_1_1_polygon_ab3047469780327f18539907e1303ea15}{addPoint}}(130, 290); poly->\mbox{\hyperlink{class_c_i_f_1_1_polygon_ab3047469780327f18539907e1303ea15}{addPoint}}(540, 290); poly->\mbox{\hyperlink{class_c_i_f_1_1_polygon_ab3047469780327f18539907e1303ea15}{addPoint}}(540, 690); poly->\mbox{\hyperlink{class_c_i_f_1_1_polygon_ab3047469780327f18539907e1303ea15}{addPoint}}(130, 690); circuit->\mbox{\hyperlink{class_c_i_f_1_1_circuit_a5b37e86206e2a128ba6db4987dc09a39}{addPolygon}}(poly); \textcolor{comment}{// Layer #17 corresponds to polysilicium} poly = \textcolor{keyword}{new} \mbox{\hyperlink{class_c_i_f_1_1_polygon}{CIF::Polygon}}(17); poly->\mbox{\hyperlink{class_c_i_f_1_1_polygon_ab3047469780327f18539907e1303ea15}{addPoint}}(305, 150); poly->\mbox{\hyperlink{class_c_i_f_1_1_polygon_ab3047469780327f18539907e1303ea15}{addPoint}}(365, 150); poly->\mbox{\hyperlink{class_c_i_f_1_1_polygon_ab3047469780327f18539907e1303ea15}{addPoint}}(365, 830); poly->\mbox{\hyperlink{class_c_i_f_1_1_polygon_ab3047469780327f18539907e1303ea15}{addPoint}}(305, 830); circuit->\mbox{\hyperlink{class_c_i_f_1_1_circuit_a5b37e86206e2a128ba6db4987dc09a39}{addPolygon}}(poly); circuit->\mbox{\hyperlink{class_c_i_f_1_1_circuit_a90c823b70c4984f302c19ceca604d101}{writeToFile}}(\textcolor{stringliteral}{"./transistor.cif"}); \textcolor{keywordflow}{return} 0; \} \end{DoxyCodeInclude} \begin{DoxyNote}{Note} In order to compile this code, a C\+Make\+Lists.\+txt file is provided. User must set the \$\+V\+L\+S\+I\+S\+A\+P\+D\+\_\+\+T\+OP variable before running these commands in the directory containing the C\+Make\+Lists.\+txt file\+: \begin{DoxyCode} %> mkdir build; cd build %> cmake .. %> make \end{DoxyCode} \end{DoxyNote} \hypertarget{cif_cifPython}{}\subsection{Python}\label{cif_cifPython} Here is the Python code ({\ttfamily drive\+Cif.\+py}) used to generate the transistor.\+cif file. (Source is available in examples directory). \begin{DoxyCodeInclude} \textcolor{keyword}{import} CIF circuit = \mbox{\hyperlink{class_c_i_f_1_1_circuit}{CIF.Circuit}}(\textcolor{stringliteral}{"Transistor"}, \textcolor{stringliteral}{"micro"}, 0.001) poly1 = \mbox{\hyperlink{class_c_i_f_1_1_polygon}{CIF.Polygon}}(6) poly1.addPoint(130, 290) poly1.addPoint(540, 290) poly1.addPoint(540, 690) poly1.addPoint(130, 690) circuit.addPolygon(poly1) poly2 = \mbox{\hyperlink{class_c_i_f_1_1_polygon}{CIF.Polygon}}(17) poly2.addPoint(305, 150); poly2.addPoint(365, 150); poly2.addPoint(365, 830); poly2.addPoint(305, 830); circuit.addPolygon(poly2) circuit.writeToFile(\textcolor{stringliteral}{"./transistor.cif"}) \end{DoxyCodeInclude} \begin{DoxyNote}{Note} In order to run the {\ttfamily drive\+Cif.\+py} script, user must ensure that \$\+P\+Y\+T\+H\+O\+N\+P\+A\+TH variable points to the directory containing C\+I\+F.\+so module. \end{DoxyNote}