
0pt0.6pt

1

Patterns Module User’s Manual

Roselyne Chotin-Avot

1 Description

The patterns module of Stratus is a set of Python classes and methods that allows a pro-
cedural description of input pattern file for the logic simulator. The Stratus Pattern
method produces a pattern description file as output. The file generated by Pattern

method is in pat format, so IT IS STRONGLY RECOMMENDED TO SEE pat(5) manual
BEFORE TO USE IT.

2 Syntax

From a user point of view, Pattern method is a pattern description language using
all standard Python facilities. Here follows the description of the Pattern method.
A pat format file can be divided in two parts : declaration and description part.
The declaration part is the list of inputs, outputs, internal signals and registers. Inputs
are to be forced to a certain value and all the others are to be observed during simula-
tion.
The description part is a set of patterns, where each pattern defines the value of inputs
and outputs. The pattern number represents actually the absolute time for the simula-
tor.
Similarly, a Pattern method can be divided in two parts : declaration and description
part. Methods related to the declaration must be called before any function related to
the description part.

2.1 Declaration part

The first thing you should do in this part is to instantiate the class Patwrite to have
access to all patterns declaration and description methods. The constructor of this class
take as parameters the name of pattern output file and the Stratus cell that is described
(see PatWrite 3.1).
Then, this part allows you to declare the inputs, the outputs, and internal observing
points (see declar3.4 and declar_interface 3.3).

2

2.2 Description part

After all signals are declared, you can begin the description part (see pattern_begin
3.9). In this part you have to define input values which are to be applied to the inputs of
the circuit or output values which are to be compare with the values produced during
the simulation. (see affect ??, affect_any 3.7, affect_int 3.5 and affect_fix

3.6). Pattern method describes the stimulus by event : only signal transitions are
described. After each event there is a new input in the pattern file (see addpat 3.8).
Last thing you should do in this part is to generate the output file (see pattern_end
3.10).

3 Methods

3.1 PatWrite

This class is used to create patterns for Stratus models. Currently it only supports
Alliance ".pat" pattern format. Patterns time stamps are in the "absolute date" format,
"relative date" isn’t allowed. Legal time unit are ps (default), ns, us and ms. The
constructor takes as parameters the pattern output filename and an optional reference
to Stratus cell.

3.2 declar

Adds a connector from a Stratus model to the pattern interface. Writes the correspond-
ing connector declaration in the pattern file with name, arity and direction automati-
cally extracted from the connector properties.
Supported Stratus connectors are:

• SignalIn,

• SignalOut (only supported if used as an output),

• VddIn,

• VssIn,

• CkIn,

• SignalInOut,

• TriState (always an output),

• Signals.

3

3.2.1 Parameters

• connector : can either be a reference to a stratus net or a string containing the
name of the stratus net.

• format : optional format for the connectors values into the pattern file, accepted
values are :

– ’B’: binary (default),

– ’X’: hexadecimal,

– ’O’: octal.

3.3 declar_interface

Adds all the connectors from a Stratus model to the pattern interface. Write the
corresponding connector declaration in the pattern file with name, arity and direction
directly taken from the connector proprieties.

3.3.1 Parameters

• cell : the tested Stratus model reference. Optional if a reference to the tested
Stratus model was given during instanciation3.1.

• format : optional format for the connectors values into the pattern file, accepted
values are :

– ’B’: binary (default),

– ’X’: hexadecimal,

– ’O’: octal.

3.4 declar

Affect a string value to a connector.

3.4.1 Parameters

• connector : Stratus connector

• value : string to affect to connector

4

3.5 affect_int

Affect an integer (CA2) value to a connector. Convert the 2’s complement value to the
corresponding binary value. The binary size is taken from the connector arity. If the
connector is an output, the binary value is preceded by "?".

3.5.1 Parameters

• connector : Stratus connector.

• value : 2’s complement value to affect to the connector.

3.6 affect_fix

Affect a fixed point value to a connector. Convert the floating point input value
to the corresponding fixed point value with word_length=connector.arity() and inte-
ger_word_length=iwl. If the connector is an output, the binary value is preceded by
"?".

3.6.1 Parameters

• connector : Stratus connector.

• value : floating point value to convert and asign to connector.

• iwl : integer word length

3.7 affect_any

Disable comparison between this connector value and the one calculated during sim-
ulation.

3.7.1 Parameters

• connector : Stratus connector.

3.8 addpat

Adds a pattern in the pattern file.

3.9 pattern_begin

Mark the end of the interface declaration and the beginning of the test vectors.

5

3.10 pattern_end

Mark the end of the test vectors and of the patterns file.

4 Example

Pattern method for an addaccu

def Pattern(self):

initialisation

pat = PatWrite(self._name+’.pat’,self)

declaration of ports

pat.declar(self.ck, ’B’)

pat.declar(self.load, ’B’)

pat.declar(self.input, ’X’)

pat.declar(self.output, ’X’)

pat.declar(self.vdd, ’B’)

pat.declar(self.vss, ’B’)

use of pat.declar_interface(self) has the same effect

description beginning

pat.pattern_begin()

affect vdd and vss values

pat.affect_int(self.vdd,1)

pat.affect_int(self.vss,0)

first pattern : load an initial value

pat.affect_int(self.input,5)

pat.affect_int(self.load,1)

pat.affect_int(self.ck,0)

add the pattern in the pattern file

pat.addpat()

compute next event

pat.affect_int(self.ck,1)

pat.addpat()

compute 22 cycle of accumulation

pat.affect_int(self.load,0)

6

for i in range(1,22):

pat.affect_int(self.ck,0)

pat.addpat()

pat.affect_int(self.ck,1)

pat.affect_int(self.output,i+5)

pat.addpat()

end of the description

pat.pattern_end()

7

	Description
	Syntax
	Declaration part
	Description part

	Methods
	PatWrite
	declar
	Parameters

	declar_interface
	Parameters

	declar
	Parameters

	affect_int
	Parameters

	affect_fix
	Parameters

	affect_any
	Parameters

	addpat
	pattern_begin
	pattern_end

	Example

