
Documentation SoC March 2014

Coriolis User’s Guide

Contents

Coriolis User’s Guide . 1

Credits & License . 2

Release Notes . 3

Release 1.0.1475 . 3

Release 1.0.1963 . 3

Release 1.0.2049 . 3

Release v2.0.1 . 3

Installation . 4

Fixed Directory Tree . 4

Building Coriolis . 5

Packaging Coriolis . 5

Hooking up into Alliance . 6

Environment Helper. 6

Documentation. 7

General Software Architecture . 7

Coriolis Configuration & Initialisation . 7

First Stage: Symbolic Technology Selection . 8

Second Stage: Technology Configuration Loading . 8

Configuration Helpers. 8

Hacking the Configuration Files. 11

CGT - The Graphical Interface . 12

Viewer & Tools . 13

Stratus Netlist Capture . 13

The Hurricane Data-Base . 13

Mauka -- Placer . 14

Knik -- Global Router . 14

Kite -- Detailed Router. 14

Executing Python Scripts in Cgt . 17

Printing & Snapshots . 17

Memento of Shortcuts in Graphic Mode . 18

Cgt Command Line Options . 19

Miscellaneous Settings . 20

The Controller . 20

The Look Tab . 21

The Filter Tab . 21

The Layers&Go Tab . 22

The Netlist Tab. 23

The Selection Tab . 24

The Inspector Tab . 25

The Settings Tab . 27

Python Interface for Hurricane / Coriolis . 28

A Simple Example: AM2901 . 28

UPMC/LIP6/SoC 1

Documentation SoC March 2014

Credits & License

HURRICANE . Rémy ESCASSUT & Christian

MAUKA . Christophe ALEXANDRE

STRATUS . Sophie BELLOEIL

KNIK . Damien DUPUIS

KITE, UNICORN . Jean-Paul CHAPUT

The HURRICANE data-base is copyright c© BULL 2000-2014 and is released under the terms of

the LGPL license. All other tools are copyright c© UPMC 2008-2014 and released under the GPL

license.

The KNIK router makes use of the FLUTE software, which is copyright c© Chris C. N. CHU from

the Iowa State University (http://home.eng.iastate.edu/~cnchu/).

UPMC/LIP6/SoC 2

http://home.eng.iastate.edu/~cnchu/

Documentation SoC March 2014

Release Notes

Release 1.0.1475

This is the first preliminary release of the CORIOLIS 2 framework.

This release mainly ships the global router KNIK and the detailed router KITE. Together they

aim to replace the ALLIANCE NERO router. Unlike NERO, KITE is based on an innovating routing

modeling and ad-hoc algorithm. Although it is released under GPL license, the source code will

be avalaible later.

Contents of this release:

1. A graphical user interface (viewer only).

2. The KNIK global router.

3. The KITE detailed router.

Supported input/output formats:

• ALLIANCE vst (netlist) & ap (physical) formats.

• Even if there are some references to the CADENCE LEFDEF format, its support is not included

because it depends on a library only available to SI2 affiliated members.

Release 1.0.1963

Release 1963 is alpha. All the tools from CORIOLIS 1 have been ported into this release.

Contents of this release:

1. The STRATUS netlist capture language (GENLIB replacement).

2. The MAUKA placer (still contains bugs).

3. A graphical user interface (viewer only).

4. The KNIK global router.

5. The KITE detailed router.

6. Partially implemented python support for configuration files (alternative to XML).

7. A documentation (imcomplete/obsoleted in HURRICANE’s case).

Release 1.0.2049

Release 2049 is Alpha.

Changes of this release:

1. The HURRICANE documentation is now accurate. Documentation for the Cell viewer

and CRLCORE has been added.

2. More extensive Python support for all the components of CORIOLIS.

3. Configuration is now completly migrated under Python. XML loaders can still be

useds for compatibilty.

4. The cgt main has been rewritten in Python.

Release v2.0.1

1. Migrated the repository from svn to git, and release complete sources. As a conse-

quence, we drop the distribution packaging support and give public read-only access

to the repository.

2. Deep rewrite of the KATABATIC database and KITE detailed router, achieve a speedup

factor greater than 20...

UPMC/LIP6/SoC 3

Documentation SoC March 2014

Installation

Note

As the sources are being released, the binary packaging is dropped. You still may

find older version here: http://asim.lip6.fr/pub/coriolis/2.0 .

In a nutshell, building source consist in pulling the git repository then running the ccb in-

staller.

Main building prerequisites:

• cmake

• g++

• boost

• libxml2

• yacc & lex.

• Qt 4

• LEF/DEF (optional).

• hMetis (optional).

• doxygen.

• latex

• latex2html.

• python-docutils (for reStructuredText).

Fixed Directory Tree

In order to simplificate the work of the ccb installer, the source, build and installation tree is

fixed. To successfully compile CORIOLIS you must follow it exactly. The tree is relative to the

home directory of the user building it (noted ~/ or $HOME/). Only the source directory needs

to be manually created by the user, all others will be automatically created either by ccb or the

build system.

Sources

Sources root

under git

~/coriolis-2.x/src

~/coriolis-2.x/src/coriolis

Architecture Dependant Build

Linux, SL 6, 32 bits

Linux, SL 6, 64 bits

FreeBSD 8, 32 bits

FreeBSD 8, 64 bits

~/coriolis-2.x/Linux.slsoc6x/Release.Shared/build/<tool>

~/coriolis-2.x/Linux.slsoc6x_64/Release.Shared/build/<tool>

~/coriolis-2.x/FreeBSD.8x.i386/Release.Shared/build/<tool>

~/coriolis-2.x/FreeBSD.8x.amd64/Release.Shared/build/<tool>

Architecture Dependant Install

Linux, SL 6, 32 bits ~/coriolis-2.x/Linux.slsoc6x/Release.Shared/install/

UPMC/LIP6/SoC 4

http://asim.lip6.fr/pub/coriolis/2.0

Documentation SoC March 2014

FHS Compliant Structure under Install

Binaries

Libraries (Python)

Include by tool

Configuration files

Doc, by tool

.../install/bin

.../install/lib

.../install/include/coriolis2/<project>/<tool>

.../install/etc/coriolis2/

.../install/share/doc/coriolis2/en/html/<tool>

Note

Alternate build types: the Release.Shared means an optimized build with shared

libraries. But there are also available Static instead of Shared and Debug instead

of Release and any combination of them.

Static do not work because I don’t know yet to mix statically linked binaries and

Python modules (which must be dynamic).

Building Coriolis

The first step is to create the source directory and pull the git repository:

dummy@lepka:~$ mkdir -p ~/coriolis-2.x/src

dummy@lepka:~$ cd ~/coriolis-2.x/src

dummy@lepka:~$ git clone https://www-soc.lip6.fr/git/coriolis.git

dummy@lepka:~$ cd coriolis

Second and final step, build & install:

dummy@lepka:src$./bootstrap/ccp.py --project=coriolis --make="-j4 install"

dummy@lepka:src$./bootstrap/ccb.py --project=coriolis --doc --make="-j1 install"

We need two steps because the documentation do not support to be generated with a par-

allel build. So we compile & install in a first step in -j4 (or whatever) then we generate the

documentation in -j1

The complete list of ccb functionalities can be accessed with the --help argument. It also

may be run in graphical mode (--gui).

Additionnal Requirement under MACOS CORIOLIS make uses of the boost::pythonmodule,

but the MACPORTS boost seems unable to work with the PYTHON bundled with MACOS. So you

have to install both of them from MACPORTS:

dummy@macos:~$ port install boost +python27

dummy@macos:~$ port select python python27

Then proceed with the generic install instructions.

Packaging Coriolis

Packager should not uses ccb, instead bootstrap/Makefile.package is provided to emulate a

top-level autotoolmakefile. Just copy it in the root of the CORIOLIS git repository (~/corriolis-2.x/src/coriolis/)

and build.

Sligthly outaded packaging configuration files can also be found under bootstrap/:

• bootstrap/coriolis2.spec.in for rpm based distributions.

• bootstrap/debian for DEBIAN based distributions.

UPMC/LIP6/SoC 5

Documentation SoC March 2014

Hooking up into ALLIANCE

CORIOLIS relies on ALLIANCE for the cell libraries. So after installing or packaging, you must con-

figure it so that it can found those libraries.

This is done by editing the one variable cellsTop in the ALLIANCE helper (see Alliance Helper).

This variable must point to the directory of the cells libraries. In a typical installation, this is

generally /usr/share/alliance/cells.

Environment Helper

To simplify the tedious task of configuring your environment, a helper is provided in the bootstrap

source directory:

~/coriolis-2.x/src/bootstrap/coriolisEnv.py

Use it like this:

dummy@lepka:~> eval ‘~/coriolis-2.x/src/bootstrap/coriolisEnv.py‘

UPMC/LIP6/SoC 6

Documentation SoC March 2014

Documentation

The general index of the documentation for the various parts of Coriolis are avalaibles here

Coriolis Tools Documentation.

Note

Python Documentation: Most of the documentation is related to the C++ API

and implemetation of the tools. However, the PYTHON bindings have been cre-

ated so they mimic as closely as possible the C++ interface, so the documentation

applies to both languages with only minor syntactic changes.

General Software Architecture

CORIOLIS has been build with respect of the classical paradigm that the computational instensive

parts have been written in C++, and almost everything else in PYTHON. To build the PYTHON

interface we used two methods:

• For self-contained modules boost::python (mainly in vlsisapd).

• For all modules based on HURRICANE, we created our own wrappers due to very spe-

cific requirements such as shared functions between modules or C++/PYTHON secure bi-

directional object deletion.

Hurricane Isobar

PyMaukaMauka

Knik PyKnik

Kite PyKite

PyUnicornUnicorn

St
ra

tu
s

P
lu

gi
n

CRL Core PyCRL

P
yt

ho
n

cg
t

Coriolis Configuration & Initialisation

All configuration & initialization files are Python scripts, despite their .conf extention. From a

syntactic point of view, there is no difference between the system-wide configuration files and

the user’s configuration, they may use the same Python helpers.

Configuration is done in two stages:

1. Selecting the symbolic technology.

2. Loading the complete configuration for the given technology.

UPMC/LIP6/SoC 7

https://www-soc.lip6.fr/sesi-docs/coriolis2-docs/coriolis2/

Documentation SoC March 2014

First Stage: Symbolic Technology Selection

The initialization process is done by executing, in order, the following file(s):

Order Meaning File

1 The system setting /etc/coriolis2/coriolis2_techno.conf

2 The user’s global setting ${HOME}/.coriolis2_techno.conf

3 The user’s local setting <CWD>/.coriolis2_techno.conf

Thoses files must provides only two variables, the name of the symbolic technology and the

one of the real technology. For example:

-*- Mode:Python -*-

symbolicTechno = ’cmos’

realTechno = ’hcmos9’

Second Stage: Technology Configuration Loading

The TECHNO variable is set by the first stage and it’s the name of the symbolic technology. A

directory of that name, with all the configuration files, must exists in the configuration directory.

In addition to the technology-specific directories, a common/ directory is there to provides a trunk

for all the identical datas across the various technologies. The initialization process is done by

executing, in order, the following file(s):

Order Meaning File

1 The system initialization /etc/coriolis2/<TECHNO>/<TOOL>.conf

2 The user’s global initialization ${HOME}/.coriolis2.conf

3 The user’s local initialization <CWD>/.coriolis2.conf

Note

The loading policy is not hard-coded. It is implemented at Python level in

/etc/coriolis2/coriolisInit.py, and thus may be easyly be amended to

whatever site policy.

The truly mandatory requirement is the existence of coriolisInit.py which

must contain a coriolisConfigure() function with no argument.

Configuration Helpers

To ease the writing of configuration files, a set of small helpers is available. They allow to setup

the configuration parameters through simple assembly of tuples. The helpers are installed un-

der the directory:

<install>/etc/coriolis2/

Where <install>/ is the root of the installation.

ALLIANCE Helper The configuration file must provide a allianceConfig tuple of the form:

cellsTop = ’/usr/share/alliance/cells/’

allianceConfig = \

((’SYMBOLIC_TECHNOLOGY’, helpers.sysConfDir+’/technology.symbolic.xml’)

UPMC/LIP6/SoC 8

Documentation SoC March 2014

, (’REAL_TECHNOLOGY’ , helpers.sysConfDir+’/technology.cmos130.s2r.xml’)

, (’DISPLAY’ , helpers.sysConfDir+’/display.xml’)

, (’CATALOG’ , ’CATAL’)

, (’WORKING_LIBRARY’ , ’.’)

, (’SYSTEM_LIBRARY’ , ((cellsTop+’sxlib’ , Environment.Append)

, (cellsTop+’dp_sxlib’, Environment.Append)

, (cellsTop+’ramlib’ , Environment.Append)

, (cellsTop+’romlib’ , Environment.Append)

, (cellsTop+’rflib’ , Environment.Append)

, (cellsTop+’rf2lib’ , Environment.Append)

, (cellsTop+’pxlib’ , Environment.Append)))

, (’SCALE_X’ , 100)

, (’IN_LO’ , ’vst’)

, (’IN_PH’ , ’ap’)

, (’OUT_LO’ , ’vst’)

, (’OUT_PH’ , ’ap’)

, (’POWER’ , ’vdd’)

, (’GROUND’ , ’vss’)

, (’CLOCK’ , ’^ck.*’)

, (’BLOCKAGE’ , ’^blockageNet*’)

)

The example above shows the system configuration file, with all the available settings. Some

important remarks about thoses settings:

• In it’s configuration file, the user do not need to redefine all the settings, just the one he

wants to change. In most of the cases, the SYSTEM_LIBRARY, the WORKING_LIBRARY and

the special net names (at this point there is not much alternatives for the others settings).

• SYSTEM_LIBRARY setting: Setting up the library search path. Each library entry in the tuple

will be added to the search path according to the second parameter:

• Environment::Append: append to the search path.

• Environment::Prepend: insert in head of the search path.

• Environment::Replace: look for a library of the same name and replace it, whithout

changing the search path order. If no library of that name already exists, it is ap-

pended.

A library is identified by it’s name, this name is the last component of the path name.

For instance: /soc/alliance/sxlib will be named sxlib. Implementing the ALLIANCE

specification, when looking for a Cell name, the system will browse sequentially trought the

library list and returns the first Cell whose name match.

• For POWER, GROUND, CLOCK and BLOCKAGE net names, a regular expression (GNU regexp) is

expected.

• The helpers.sysConfDir variable is supplied by the helpers, it is the directory in which

the system-wide configuration files are locateds. For a standard installation it would be:

/soc/coriolis2.

• Trick and naming convention about SYMBOLIC_TECHNOLOGY, REAL_TECHNOLOGY and DISPLAY.

In the previous releases, thoses files where to read by XML parsers, and still do if you trig-

gers the XML compatibility mode. But now, they have Python conterparts. In the configu-

ration files, you still have to name them as XML files, the Python file name will be deduced

from this one with thoses two translation rules:

1. In the filename, all dots, except for the last (the file extention), are replaced by

underscores.

UPMC/LIP6/SoC 9

Documentation SoC March 2014

2. The .xml extention is substituted by a .conf.

For the symbolic technology, it would give:

/soc/coriolis2/technology.symbolic.xml

--> /soc/coriolis2/technology_symbolic.conf

A typical user’s configuration file would be:

import os

homeDir = os.getenv(’HOME’)

allianceConfig = \

((’WORKING_LIBRARY’ , homeDir+’/worklib’)

, (’SYSTEM_LIBRARY’ , ((homeDir+’/mylib’, Environment.Append)))

, (’POWER’ , ’vdd.*’)

, (’GROUND’ , ’vss.*’)

)

Tools Configuration Helpers All the tools uses the same helper to load their configuration

(a.k.a. Configuration Helper). Currently the following configuration system-wide configuration

files are defined:

• misc.conf: commons settings or not belonging specifically to a tool.

• nimbus.conf: for the NIMBUS tool.

• hMetis.conf: for the HMETIS wrapper.

• mauka.conf: for the MAUKA tool.

• kite.conf: for the KITE tool.

• stratus1.conf: for the STRATUS1 tool.

Here is the contents of mauka.conf:

Mauka parameters.

parametersTable = \

((’mauka.annealingBinMult’ , TypePercentage, 5)

, (’mauka.annealingNetMult’ , TypePercentage, 90)

, (’mauka.annealingRowMult’ , TypePercentage, 5)

, (’mauka.ignorePins’ , TypeBool , False)

, (’mauka.insertFeeds’ , TypeBool , True)

, (’mauka.plotBins’ , TypeBool , True)

, (’mauka.searchRatio’ , TypePercentage, 50)

, (’mauka.standardAnnealing’, TypeBool , False)

)

layoutTable = \

((TypeTab , ’Mauka’, ’mauka’)

Mauka part.

, (TypeOption, "mauka.standardAnnealing", "Standart Annealing" , 0)

, (TypeOption, "mauka.ignorePins" , "Ignore Pins" , 0)

, (TypeOption, "mauka.plotBins" , "Plot Bins" , 0)

, (TypeOption, "mauka.insertFeeds" , "Insert Feeds" , 0)

, (TypeOption, "mauka.searchRatio" , "Search Ratio (%)" , 1)

, (TypeOption, "mauka.annealingNetMult" , "Annealing Net Mult (%)", 1)

UPMC/LIP6/SoC 10

Documentation SoC March 2014

, (TypeOption, "mauka.annealingBinMult" , "Annealing Bin Mult (%)", 1)

, (TypeOption, "mauka.annealingRowMult" , "Annealing Row Mult (%)", 1)

, (TypeRule ,)

)

Taxonomy of the file:

• It must contains, at least, the two tables:

• parametersTable, defines & initialise the configuration variables.

• layoutTables, defines how the various parameters will be displayed in the configu-

ration window (The Settings Tab).

• The parametersTable, is a tuple (list) of tuples. Each entry in the list describe a con-

figuration parameter. In it’s simplest form, it’s a quadruplet (TypeOption, ’paramId’,

ParameterType, DefaultValue) with:

1. TypeOption, tells that this tuple describe a parameter.

2. paramId, the identifier of the parameter. Identifiers are defined by the tools.

The list of parameters is detailed in each tool section.

3. ParameterType, the kind of parameter. Could be:

• TypeBool, boolean.

• TypeInt, signed integer.

• TypeEnumerate, enumerated type, needs extra entry.

• TypePercentage, percentage, expressed between 0 and 100.

• TypeDouble, float.

• TypeString, character string.

4. DefaultValue, the default value for that parameter.

Hacking the Configuration Files

Asides from the symbols that gets used by the configuration helpers like allianceConfig or

parametersTable, you can put pretty much anything in <CWD>/.coriolis2.conf (that is, writ-

ten in PYTHON).

For example:

-*- Mode:Python -*-

defaultStyle = ’Alliance.Classic [black]’

Regular Coriolis configuration.

parametersTable = \

((’misc.catchCore’ , TypeBool , False)

, (’misc.info’ , TypeBool , False)

, (’misc.paranoid’ , TypeBool , False)

, (’misc.bug’ , TypeBool , False)

, (’misc.logMode’ , TypeBool , True)

, (’misc.verboseLevel1’ , TypeBool , False)

, (’misc.verboseLevel2’ , TypeBool , True)

, (’misc.traceLevel’ , TypeInt , 1000)

)

Some ordinary Python script...

import os

UPMC/LIP6/SoC 11

Documentation SoC March 2014

print ’ o Cleaning up ClockTree previous run.’

for fileName in os.listdir(’.’):

if fileName.endswith(’.ap’) or (fileName.find(’_clocked.’) >= 0):

print ’ - <%s>’ % fileName

os.unlink(fileName)

See Python Interface to Coriolis for more details those capabilities.

CGT - The Graphical Interface

The CORIOLIS graphical interface is split up into two windows.

• The Viewer, with the following features:

• Basic load/save capabilities.

• Display the current working cell. Could be empty if the design is not yet placed.

• Execute Stratus Scripts.

• Menu to run the tools (placement, routage).

Features are detailed in Viewer & Tools.

• The Controller, which allows:

• Tweak what is displayer by the Viewer. Through the Look, Filter and Layers&Gos tabs.

• Browse the netlist with eponym tab.

• Show the list of selected objects (if any) with selection

UPMC/LIP6/SoC 12

Documentation SoC March 2014

• Walk through the Database, the Cell or the Selection with Inspector. This is an ad-

vanced feature, reserved for experimented users.

• The tab Settings which give access to all the settings. They are closely related to Con-

figuration & Initialisation.

Viewer & Tools

STRATUS Netlist Capture

STRATUS is the replacement for GENLIB procedural netlist capture language. It is designed as a

set of PYTHON classes, and comes with it’s own documentation (Stratus Documentation)

The HURRICANE Data-Base

The ALLIANCE flow is based on the MBK data-base, which has one data-structure for each view.

That is, Lofig for the logical view and Phfig for the physical view. The place and route tools were

responsible for maintaining (or not) the coherency between views. Reflecting this weak coupling

between views, each one was stored in a separate file with a specific format. The logical view is

stored in a vst file in VHDL format and the physical in an ap file in an ad-hoc format.

The CORIOLIS flow is based on the HURRICANE data-base, which has a unified structure for log-

ical and physical view. That data structure is the Cell object. The Cell can have any state between

pure netlist and completly placed and routed design. Although the memory representation of

the views has deeply changed we still use the ALLIANCE files format, but they now really repre-

sent views of the same object. The point is that one must be very careful about view coherency

when going to and from CORIOLIS.

As for the first release, CORIOLIS can be used only for two purposes :

• Routing a design, in that case the netlist view and the layout view must be present and

layout view must contain a placement. Both views must have the same name. When

saving the routed design, it is advised to change the design name otherwise the original

unrouted placement in the layout view will be overwritten.

UPMC/LIP6/SoC 13

https://www-soc.lip6.fr/sesi-docs/coriolis2-docs/coriolis2/en/html/stratus/index.html

Documentation SoC March 2014

• Viewing a design, the netlist view must be present, if a layout view is present it still must

have the same name but it can be in any state.

Mauka -- Placer

MAUKA was originally designed to be a recursive quadri-partionner. Unfortunatly it is was based

on the hMETIS library (not METIS) which is no longer maintained (only an old binary 32 bits

version is available).

So now it is only working in simulated annealing, with performances identical to the ALLIANCE

placer ocp. In other words, it is slow...

Note

Instance Duplication Problem: a same logical instance cannot have two different

placements. So, either youmanually make a clone of it or you supply a placement

for it. This is currently a drawback of our folded hierarchy approach.

Reseting the Placement

Once a placement has been done, the placer cannot reset it (will be implemented later). To

perform a new placement, you must restart cgt. In addition, if you have saved the placement

on disk, you must erase any .ap file, which are automatically reloaded along with the netlist

(.vst).

Knik -- Global Router

The quality of KNIK global routing solutions are equivalent to those of FGR 1.0. For an in-depth

description of KNIK algorithms, you may download the thesis of D. DUPUIS avalaible from here~:

Knik Thesis.

The global router is (not yet) deterministic. To circumvent this limitation, a global routing

solution can be saved to disk and reloaded for later uses.

A global routing is saved into a file with the same name as the design and a kgr extention. It

is in Box Router output format.

Menus:

• P&R → Step by Step → Save Global Routing .

• P&R → Step by Step → Load Global Routing .

Kite -- Detailed Router

KITE no longer suffers from the limitations of NERO. It can route big designs as its runtime and

memory footprint is almost linear (with respect to the number of gates). It has successfully

routed design of more than 150K gates.

However, this first release comes with the temporary the following restrictions:

• Works only with SXLIB standard cell gauge.

• Works always with 4 routing metal layers (M2 through M5).

• Do not allow (take into account) pre-routed wires on signals other than POWER or GROUND.

Note

Slow Layer Assignment. Most of the time, the layer assignment stage is fast

(less than a dozen seconds), but in some instances it can take more than a dozen

minutes. This is a known bug and will be corrected in later releases.

UPMC/LIP6/SoC 14

http://glaros.dtc.umn.edu/gkhome/views/metis
http://vlsicad.eecs.umich.edu/BK/FGR/
http://www-soc.lip6.fr/en/users/damiendupuis/PhD/
http://www.cerc.utexas.edu/~thyeros/boxrouter/boxrouter.htm

Documentation SoC March 2014

After each run, KITE displays a set of completion ratios which must all be equal to 100% if

the detailed routing has been successfull. In the event of a failure, on a saturated design, you

may decrease the edge saturation ratio (argument --edge) to balance more evenly the design

saturation. That is, the maximum saturation decrease at the price of a wider saturated area

and increased wirelength. This is the saturation of the global router KNIK, and you may in-

crease/decrease by steps of 5%, which represent one track. The maximum capacity of the SXLIB

gauge is 10 tracks in two layers, that makes 20 tracks by KNIK edge.

UPMC/LIP6/SoC 15

Documentation SoC March 2014

Routing a design is done in three ordered steps:

1. Global routing P&R → Step by Step → Global Route .

2. Detailed routing P&R → Step by Step → Detailed Route .

3. Finalize routing P&R → Step by Step → Finalize Route .

After the detailed routing step the KITE data-structure is still active. The wiring is thus repre-

sented in a way that allows KITE to manage it but which is not completly finished. The finalize

step performs the removal of the KITE data-structure and finish/cleanup the wiring so that its

connex in the sense of HURRICANE. Do not try to save your design before that step, you would

get gaps in it.

You may visualize the density (saturation) of either KNIK (on edges) or KITE (on GCells) until

the routing is finalized. Special layers appears to that effect in the The Layers&Go Tab.

Kite Configuration Parameters As KNIK is only called through KITE, it’s parameters also have

the kite. prefix.

The KATABATIC parameters control the layer assignment step.

All the defaults value given below are from the default ALLIANCE technology (cmos and SxLib

cell gauge/routing gauge).

Parameter Identifier Type Default

Katabatic Parameters

katabatic.topRoutingLayer
TypeString METAL5

Define the highest metal layer that will be used for rout-

ing (inclusive).

katabatic.globalLengthThreshold
TypeInt 1450

This parameter is used by a layer assignment method

which is no longer used (did not give good results)

katabatic.saturateRatio
TypePercentage 80

If M(x) density is above this ratio, move up feedthru

global segments up from depth x to x+2

katabatic.saturateRp
TypeInt 8

If a GCell contains more terminals (RoutingPad) than that

number, force a move up of the connecting segments to

those in excess

Knik Parameters

kite.hTracksReservedLocal
TypeInt 3

To take account the tracks needed inside a GCell to build

the local routing, decrease the capacity of the edges of

the global router. Horizontal and vertical locally reserved

capacity can be distinguished for more accuracy.

kite.vTracksReservedLocal
TypeInt 3

cf. kite.hTracksReservedLocal

Kite Parameters

kite.eventsLimit
TypeInt 4000002

The maximum number of segment displacements, this is

a last ditch safety against infinite loop. It’s perhaps a little

too low for big designs

... continued on next page

UPMC/LIP6/SoC 16

Documentation SoC March 2014

Parameter Identifier Type Default

kite.ripupCost
TypeInt 3

Differential introduced between two ripup cost to avoid a

loop between two ripped up segments

kite.strapRipupLimit
TypeInt 16

Maximum number of ripup for strap segments

kite.localRipupLimit
TypeInt 9

Maximum number of ripup for local segments

kite.globalRipupLimit
TypeInt 5

Maximum number of ripup for global segments, when

this limit is reached, triggers topologic modification

kite.longGlobalRipupLimit
TypeInt 5

Maximum number of ripup for long global segments,

when this limit is reached, triggers topological modifica-

tion

Executing Python Scripts in Cgt

Python/Stratus scripts can be executed either in text or graphical mode.

Note

How Cgt Locates Python Scripts: cgt uses the Python import mechanism to

load Python scripts. So you must give the name of your script whitout .py exten-

tion and it must be reachable through the PYTHONPATH. You may uses the dotted

module notation.

A Python/Stratus script must contains a function called ScriptMain() with one optional ar-

gument, the graphical editor into which it may be running (will be set to None in text mode). The

Python interface to the editor (type: CellViewer) is limited to basic capabilities only.

Any script given on the command line will be run immediatly after the initializations and

before any other argument is processed.

For more explanation on Python scripts see Python Interface to Coriolis.

Printing & Snapshots

Printing or saving into a PDF is fairly simple, just uses the File -> Print menu or the CTRL + p

shortcut to open the dialog box.

The print functionality uses exactly the same rendering mechanism as for the screen, beeing

almost WYSIWYG. Thus, to obtain the best results it is advisable to select the Coriolis.Printer

look (in the Controller), which uses a white background and much suited for high resolutions

32x32 pixels patterns

There is also two mode of printing selectable through the Controller Settings -> Misc ->

Printer/Snapshot Mode:

Mode DPI (approx.) Intended Usage

Cell Mode 150 For single Cell printing or very small designs. Patterns

will be bigger and more readable.

Design Mode 300 For designs (mostly commposed of wires and cells out-

lines).

UPMC/LIP6/SoC 17

Documentation SoC March 2014

Note

The pdf file size Be aware that the generated PDF files are indeed only pixmaps. So

they can grew very large if you select paper format above A2 or similar.

Saving into an image is subject to the same remarks as for PDF.

Memento of Shortcuts in Graphic Mode

The main application binary is cgt.

Category Keys Action

Moves

Up , Down

Left , Right

Shift the view in the according direction

Fit f Fit to the Cell abutment box

Refresh CTRL + l Triggers a complete display redraw

Goto G apperture is the minimum side of the area displayed

around the point to go to. It’s an alternative way of set-

ting the zoom level

Zoom
z , m Respectively zoom by a 2 factor and unzoom by a 2 factor

Area Zoom

You can perform a zoom to an area. Define the zoom

area by holding down the left mouse button while moving

the mouse.

Selection

Area Selection

You can select displayed objects under an area. Define

the selection area by holding down the right mouse button

while moving the mouse.

Toggle Selection

You can toggle the selection of one object under the

mouse position by pressing CTRL and pressing down

the right mouse button. A popup list of what’s under the

position shows up into which you can toggle the selec-

tion state of one item.

S Toggle the selection visibility

Controller CTRL + i Show/hide the controller window.

It’s the Swiss Army Knife of the viewer. From it, you can

fine-control the display and inspect almost everything in

your design.

... continued on next page

UPMC/LIP6/SoC 18

Documentation SoC March 2014

Category Keys Action

Rulers
k , ESC One stroke on k enters the ruler mode, in which you

can draw one ruler. You can exit the ruler mode by

pressing ESC . Once in ruler mode, the first click on the

left mouse button sets the ruler’s starting point and the

second click the ruler’s end point. The second click exits

automatically the ruler mode.

K Clears all the drawn rulers

Print CTRL + p Currently rather crude. It’s a direct copy of what’s dis-

played in pixels. So the resulting picture will be a little

blurred due to anti-aliasing mechanism.

Open/Close

CTRL + o Opens a new design. The design name must be given

without path or extention.

CTRL + w Close the current viewer window, but do not quit the

application.

CTRL + q CTRL+Q quit the application (closing all windows).

Hierarchy
CTRL + Down Go one hierarchy level down. That is, if there is an in-

stance under the cursor position, load it’s model Cell in

place of the current one.

CTRL + Up Go one hierarchy level up. if we have entered the cur-

rent model through CTRL + Down , reload the previ-

ous model (the one in which this model is instanciated).

Cgt Command Line Options

Appart from the obvious --text options, all can be used for text and graphical mode.

Arguments Meaning

-t|--text Instruct cgt to run in text mode.

-L|--log-mode Disable the uses of ANSI escape sequence on the tty.

Useful when the output is redirected to a file.

-c <cell>|--cell=<cell> The name of the design to load, without leading path

or extention.

-g|--load-global Reload a global routing solution from disk. The file con-

taining the solution must be named <cell>.kgr.

--save-global Save the global routing solution, into a file named <de-

sign>.kgr.

-e <ratio>|--edge=<ratio> Change the edge capacity for the global router, be-

tween 0 and 1 (KNIK).

-G|--global-route Run the global router (KNIK).

-R|--detailed-route Run the detailed router (KITE).

-s|--save-design=<routed> The design into which the routed layout will be saved.

It is strongly recommanded to choose a different name

from the source (unrouted) design.

... continued on next page

UPMC/LIP6/SoC 19

Documentation SoC March 2014

Arguments Meaning

--events-limit=<count> The maximal number of events after which the router

will stops. This is mainly a failsafe against looping. The

limit is sets to 4 millions of iteration which should suf-

fice to any design of 100K. gates. For bigger designs you

may wants to increase this limit.

--stratus-script=<module> Run the Python/Stratus script module. See

Python Scripts in Cgt.

Some Examples :

• Run both global and detailed router, then save the routed design :

> cgt -v -t -G -R --cell=design --save-design=design_kite

• Load a previous global solution, run the detailed router, then save the routed design :

> cgt -v -t --load-global -R --cell=design --save-design=design_kite

• Run the global router, then save the global routing solution :

> cgt -v -t -G --save-global --cell=design

Miscellaneous Settings

Parameter Identifier Type Default

Verbosity/Log Parameters

misc.info
TypeBool False

Enable display of info level message (cinfo stream)

misc.bug
TypeBool False

Enable display of bug level message (cbug stream), mes-

sages can be a little scarry

misc.logMode
TypeBool False

If enabled, assume that the output device is not a tty and

suppress any escaped sequences

misc.verboseLevel1
TypeBool True

First level of verbosity, disable level 2

misc.verboseLevel2
TypeBool False

Second level of verbosity

Development/Debug Parameters

misc.traceLevel
TypeInt 0

Display trace information below that level (ltrace stream)

misc.catchCore
TypeBool False

By default, cgt do not dump core. To generate one set

this flag to True

The Controller

The Controller window is composed of seven tabs:

1. The Look Tab to select the display style.

UPMC/LIP6/SoC 20

Documentation SoC March 2014

2. The Filter Tab the hierarchical levels to be displayed, the look of rubbers and the

dimension units.

3. The Layers&Go Tab to selectively hide/display layers.

4. The Netlist Tab to browse through the netlist. Works in association with the Selection

tab.

5. The Selection Tab allow to view all the currently selected elements.

6. The Inspector Tab browse through either the DataBase, the Cell or the current selec-

tion.

7. The Settings Tab access all the tool’s configuration settings.

The Look Tab

You can select how the layout will be displayed. There is a special one Printer.Coriolis specifi-

cally designed for Printing & Snapshots. You should select it prior to calling the print or snapshot

dialog boxes.

The Filter Tab

The filter tab let you select what hierarchical levels of your design will be displayed. Hierarchy

level are numbered top-down: the level 0 correspond to the top-level cell, the level one to the

instances of the top-level Cell and so on.

There are also check boxes to enable/disable the processing of Terminal Cell, Master Cells

and Compnents. The processing of Terminal Cell (hierarchy leaf cells) is disabled by default

when you load a hierarchical design and enabled when you load a single Cell.

You can choose what kind of form to give to the rubbers and the type of unit used to display

coordinates.

UPMC/LIP6/SoC 21

Documentation SoC March 2014

Note

What are Rubbers: HURRICANE uses Rubbers to materialize physical gaps in net

topology. That is, if some wires are missing to connect two or more parts of net,

a rubber will be drawn between them to signal the gap.

For example, after the detailed routing no rubbers should remains. They have

been made very visibles as big violet lines...

The Layers&Go Tab

Control the individual display of all layers and Gos.

• Layers correspond to a true physical layer. From a HURRICANE point of view they are all the

BasicLayers (could be matched to GDSII).

• Gos stands from Graphical Objects, they are drawings that have no physical existence but

are added by the various tools to display extra information. One good exemple is the

density map of the detailed router, to easily locate congested areas.

For each layer/Go there are two check boxes:

• The normal one triggers the display.

• The red-outlined allows objects of that layer to be selectable or not.

UPMC/LIP6/SoC 22

Documentation SoC March 2014

The Netlist Tab

The Netlist tab shows the list of nets... By default the tab is not synched with the displayed Cell.

To see the nets you must check the Sync Netlist checkbox. You can narrow the set of displayed

nets by using the filter pattern (supports regular expressions).

An very useful feature is to enable the Sync Selection, which will automatically select all the

components of the selected net(s). You can select multiple nets. In the figure the net auxsc35 is

selected and is highlited in the Viewer.

UPMC/LIP6/SoC 23

Documentation SoC March 2014

The Selection Tab

The Selection tab list all the components currently selecteds. They can be filtered thanks to the

filter pattern.

Used in conjunction with the Netlist Sync Selection you will all see all the components part

of net.

UPMC/LIP6/SoC 24

Documentation SoC March 2014

In this list, you can toggle individually the selection of component by pressing the t key.

When unselected in this way a component is not removed from the the selection list but instead

displayed in red italic. To see where a component is you may make it blink by repeatedly press

the t key...

The Inspector Tab

This tab is very useful, but mostly for CORIOLIS developpers. It allows to browse through the live

DataBase. The Inspector provide three entry points:

• DataBase: Starts from the whole HURRICANE DataBase.

• Cell: Inspect the currently loaded Cell.

• Selection: Inspect the object currently highlited in the Selection tab.

Once an entry point has been activated, you may recursively expore all it’s fields using the

right/left arrows.

Note

Do not put your fingers in the socket: when inspecting anything, do not modify

the DataBase. If the any object under inspection is deleted, you will crash the

application...

Note

Implementation Detail: the inspector support is done with Slot, Record and

getString().

UPMC/LIP6/SoC 25

Documentation SoC March 2014

UPMC/LIP6/SoC 26

Documentation SoC March 2014

The Settings Tab

Here comes the description of the Settings tab.

UPMC/LIP6/SoC 27

Documentation SoC March 2014

Python Interface for HURRICANE / CORIOLIS

The (almost) complete interface of HURRICANE is exported as a PYTHON module and some part

of the other components of CORIOLIS (each one in a separate module). The interface has been

made to mirror as closely as possible the C++ one, so the C++ doxygen documentation could be

used to write code with either languages.

Summary of the C++ Documentation

A script could be run directly in text mode from the command line or through the graphical

interface (see Python Scripts in Cgt).

Asides for this requirement, the python script can contains anything valid in PYTHON, so don’t

hesitate to use any package or extention.

Small example of Python/Stratus script:

from Hurricane import *

from Stratus import *

def doSomething ():

...

return

def ScriptMain (editor=None):

if globals().has_key("__editor"): editor = __editor

if editor: setEditor(editor)

doSomething()

return

if __name__ == "__main__" :

ScriptMain ()

This script could be run directly with Python (thanks to the two last lines) or through cgt in

both text and graphical modes through the ScriptMain() function.

A Simple Example: AM2901

To illustrate the capabilities of CORIOLIS tools and PYTHON scripting, a small example, derived

from the ALLIANCE AM2901 is supplied.

This example contains only the synthetized netlists and the design.py script which perform

the whole P&R of the design. Just lanch cgt then execute design.py.

UPMC/LIP6/SoC 28

file:../../../index.html

	Coriolis User's Guide
	Contents
	Credits & License
	Release Notes
	Release 1.0.1475
	Release 1.0.1963
	Release 1.0.2049
	Release v2.0.1

	Installation
	Fixed Directory Tree
	Building Coriolis
	Packaging Coriolis
	Hooking up into Alliance
	Environment Helper

	Documentation
	General Software Architecture

	Coriolis Configuration & Initialisation
	First Stage: Symbolic Technology Selection
	Second Stage: Technology Configuration Loading
	Configuration Helpers
	Hacking the Configuration Files

	CGT - The Graphical Interface
	Viewer & Tools
	Stratus Netlist Capture
	The Hurricane Data-Base
	Mauka -- Placer
	Knik -- Global Router
	Kite -- Detailed Router
	Executing Python Scripts in Cgt
	Printing & Snapshots
	Memento of Shortcuts in Graphic Mode
	Cgt Command Line Options
	Miscellaneous Settings

	The Controller
	The Look Tab
	The Filter Tab
	The Layers&Go Tab
	The Netlist Tab
	The Selection Tab
	The Inspector Tab
	The Settings Tab

	Python Interface for Hurricane / Coriolis
	A Simple Example: AM2901

