Commit Graph

9 Commits

Author SHA1 Message Date
Jean-Paul Chaput 68d957fe3a Prevent wires part of a diode cluster to be moved up.
Protections diodes may not be able to play their role if they are
separated from their cluster by upper level layers (METAL4/METAL5).
This seems not to diminish the total number of diodes.

* New: In Anabatic::NetData, add a set of non move up segments in
    the object. To tag global wires that are part of a cluster.
* New: In Anabatic::AutoSegment, add support for a SegNoMoveUp
    flag. This flag is propagated through _makeDogleg()	.
      Used in ::canMoveUp() and ::canPivotUp().
* New: In Anabatic::NetBuilder, add NetData to the attributes so
    we can extract the NoMoveUp infomation given by the antenna
    protect stage.
* New: In NetBuilderHV::_do_globalSegment(), lookup NoMoveUp
    information from NetData to put it in AutoSegment.
* New: In AntennaProtect(Net*), flags the RoutingPad clusters wires
    as non movable up.
* New: In AnabaticEngine::breatAt(GCell*), propagate the SegNoMoveUp
    flags. Based on NetData.
2021-06-18 19:17:24 +02:00
Jean-Paul Chaput dd49a185af Compensate diodes between RP clusters & wire clusters.
In Anabatic::AntennaProtect, when we cannot insert enough diodes
under a wire cluster. Which makes it likely very long and over an
area where diodes cannot be inserted (chip border close to I/O pads
or over a macro-block). Request extra diode insertion on it's
connecting RoutingPad clusters.

* New: In Anabatic::DiodeCluster, add a "forced diode" counter for
    extra diodes inertions. Only used in the DiodeRps derived class.
* New: In Anabatic::DiodeCluster, add support for a cluster to know
    it's neighbors. Stored as indexes of the table being built in
    Anabatic::antennaProtect(Net*).
* New: In Anabatic::antennaProtect(Net*), when builing the WireCluster,
    also find it's neigbors. Store the index of the cluster a segment
    belongs to in clusterSegments.
2021-06-08 12:19:40 +02:00
Jean-Paul Chaput 205a6877db More generic H-Tree support to accomodate the LS180 PLL internal clock.
The H-Tree support is now allowed for any net, not only the clocks and
not only top-level nets. This allow to better management of the LS180
internal clock signal.

* New: In Cell::flattenNets(Instance*,set<string>,uint64_t) new overload
    of the function to allow the user to select nets that will *not*
    be flattened. This makes the NoClockFlatten flag effectively obsolete,
    we keep it for backward compatibility.
      The net names can be of non top level ones. In that case, they must
    use the name an HyperNet will get (the Occurrence name). For example:
         "instance1.instance2.deep_net_name".
* New: In PyCell, update the wrapper for the new parameter of flattenNets(),
    new utility function pyListToStringSet() to translate a Python list into
    a C++ set of names.
* New: In EtesianEngine, add support for a list of nets to be excluded
    from the flattening procedure. Those excluded nets will also be
    excludeds from the Coloquinte nets *and* HFNS synthesis, as they
    are likely to be manageds by a H-Tree.
* Change: In AnabaticEngine::_loadGrByNet(), now also skip nets that are
    flagged as manually detailed route.
* New: In AnabaticEngine::antennaProtect(), do not try to insert diodes
    on nets that are already fixed or detaled route. This replace the
    clock exclusion.
* New: In cumulus/plugins.{block,htree,chip}, replace the concept
    of clock-tree by the more generic H-Tree. That is, we can ask the P&R
    to create H-Tree on any net of the design, not only the ones matcheds
    as clock. The net does not even need to be top-level.
      This is to manage the PLL internal clock generated by the PLL in
    the LS180 chip.
      Start to change all reference to "clock" into "H-Tree".
* Bug: In cumulus/plugins.chip.powerplanes.Builder._connectHTree(),
    there was an inversion of the H & V routing gauges to compute the
    track into which put the H-Tree center to corona edge wiring.
      This was causing tracks to be used twice, seen in the ao68000 test
    bench.
2021-05-31 00:02:23 +02:00
Jean-Paul Chaput d4c3cf7dbb More accurate antenna management in Anabatic.
* New: In Anabatic::DiodeWire, use "antennaDiodeMaxWL" to compute the number
    of diodes to insert in a wire only cluster. Use boxes instead of segments
    to define the area as segments can be splitted by the diodes inserteds
    at the DiodeRps stage.
* New: In DiodeWire::createDiodes(), specific diode insertion method.
    Try to instert first in long horizontal wires.
2021-05-22 15:14:32 +02:00
Jean-Paul Chaput 8ce16add53 Add a "forced halo" to diode clusters.
When a long *horizontal* wire connect to a cluster, an antenna effect
may be created *before* the METAL3 is deposited, if the cluster's diode
is not *directly* connected to the gate through *only* METAL2. So, we
add a "forced halo" where the long horizontal connecting wires will be
broken by a diode *near* the gate. This problem do not occur for long
connecting METAL3, as the diode will be connected by then. Note that
we are hard-coding the gauge routing direction in the algorithm.
  With that modification, only one antenna effect remains in LibreSOC
LS180. May be corrected by post-treatement.

* New: In Anabatic::DiodeCluster::mergeForcedhalo() add specific secondary
    areas where diode must be insterted in addition to the one of the
    RroutingPad cluster. To "isolate" the cluster from long horizontal
    wires.
2021-05-13 12:20:28 +02:00
Jean-Paul Chaput c80e99c0a1 Create clusters for wire only chunks and add diodes if they are too long.
Protecting clusters of sinks is not enough. There can be very long
wires that far exceed the protection capacity of one diode. Instead
of putting a bunch of diodes near the sinks, we choose to put them
regularly along the interconncting wires.
  With this approach we are down to 7 antenna violations on LibreSOC
LS180 test chip.
  This will get less good results on arlet6502 & ao6800 because of the
core being a long way from the I/O pads. Should create jumpers on thoses,
but it is for later.
2021-05-11 14:30:38 +02:00
Jean-Paul Chaput bb5c99247a Complete rewrite of the diode insertion algorithm.
First part of the antenna effect protection : diode insertions.
Anabatic::antennaProtect(Net*) and it's supporting infrastructure
has been rewritten & simplificated. Must be used in conjuction
with the "Flexlib" bloat model of Etesian. A cursory description
of the algorithm has been added in the source file.

* New: GCell::hasNet() to tell if net is going through a GCell,
    either as a straigth wire or has a local GContact (turn,
    branch, terminal).
* New: Etesian::BloatFlexib class (tagged "Flexlib") suited for
    flexlib uses. It is derived from "nsxlib".
      To have enough space to insert all the wanted diodes, we
    enlarge "mx2_x2" & "mx3_x2" of resp. 1 and 2 pitches.
      This is an empiric finding, Yosys seems very fond of thoses
    gates and we often see them underneath area where no space
    was available to put a diode... May need some more fine grained
    analysis.
2021-05-04 19:31:12 +02:00
Jean-Paul Chaput 2140737e10 In Anabatic::antennaProtect(), error in computing the diode GCell location. 2021-03-29 19:03:26 +02:00
Jean-Paul Chaput 5649a3b984 Second version of the antenna effect protection.
* Change: In EtesianEngine::globalPlace(), disable the call to
    antennaProtect(). First reason is that, after all, Coloquinte
    do not handle so well the resizing of the cells "on the fly",
    it overspill the boundaries sometimes. Second reason is that
    as we cannot know the routing tree at this stage, we will not
    be able to choose the correct points for diode insertions.
    We only have a Steiner tree wich may not be the same as a
    density driven Dijkstra.
* Change: In Etesian::Area, the Occurrence to the Instances where
    not stored in a uniform way. Some where starting from the
    placed sub-block, some where starting from the top level
    (corona), making their processing (and remembering it) tricky.
    Now, they are all expressed from the top cell (corona).
    The coordinate system is now systematically the one of the
    top block (*not* the block).
      Create various overloaded functions EtesianEngine::toCell()
    and EtesianEngine::toBlock() to ease Occurrence & coordinate
    translations.
* New: In Etesian::Slice::createDiodeUnder(), add a X position hint.
    Search is done by going through the whole slice range and
    minimizing the distance to the hint. If it starts to be too
    slow, we may optimize.
* Bug: In EtesianEngine::toColoquinte(), the placement of the top
    level external pins was not taken into account (this at last
    explain their weird positioning).
* New: AnabaticEngine::antennaProtect(), new algorithm to avoid
    antenna effect. This step must be done *after* global routing
    and *before* detailed routing. This way we have access to the
    real routing and can mend it (along with the netlist) to
    insert diodes at the rigth points.
      From the global routing we build clusters (DiodeCluster) of
    RoutingPads connected through a set of wire whose total length
    is below the antenna effect threshold. Long wires connecting the
    clusters are also tagged because we need to put a diode between
    them and the first RoutingPad of the cluster. This is to avoid
    a long METAL2 wire connecting to the RoutingPad before the diode is
    connected through METAL3 (in case of misalignment).
      This protection is not even enough. For *very long* wires, we
    needs to put *more* than one diode (this is to be implemented).
2021-01-27 11:38:00 +01:00