Previously, the relevant NetBuilder and routing strategies where
directly guessed from the RoutingGauge traits. This is no longer
doable as the combinations increases. Now to configure both the
global and detailed router we need three "parameters" :
1. The routing gauge itself (tells which layers are in which
directions) and how to make the VIAs.
2. The NetBuilder to use, they are identified by strings.
Currently we support:
* "HV,3RL+", for all SxLib derived standard cells.
* "VH,2RL", for hybrid routing (over the cell, but terminals
are also in the first RL).
* "2RL-", for strict channel routing.
* "VH,3RL+", an attempt for FreePDK 45, not optimized enough
to be considered as usable.
3. The routing style, mostly affect the way the GCell grid will be
built.
* VH : first RL is V.
* HV : first RL is H.
* OTH : Run in full over-the-cell mode (needs at least 3RL).
* Channel : Run in *strict* channel routing mode (no routing over
the standard cells).
* Hybrid : Create channels, but can use H tracks over the
standard cells.
Thoses three parameters are partly overlapping and must be sets in
a consistent manner, otherwise strange results may occurs.
* New: CRL::RoutingGauge::getFirstRoutingGauge(), to get the lowest
layer available for routing (not a PinOnly, not a PowerSupply).
* Change: In CRL::RoutingGauge::isHV() and isVH(), were previously
always returning false when the gauge was 2RL only. Now, check
on the first usable RL.
* Bug: In cumulus/plugins.block.configuration._loadRoutingGauge(),
there was a bad computation of the deep RLs when the top layer
was not defined. Occured for 2RL gauges only.
* Bug: In Anabatic::RpsInRow::slacken() (LayerAssign), forgotten curly braces
in the test to skip METAL2 terminals.
* Change: In Etestian::BloatChannel::getDx(), adjust the bloating
policy to converge on Arlet6502. Always ensure that there is
a 50% ratio between terminal used V-tracks and free ones.
If there is more than 80% of terminals, add one more track.
* Bug: In AnabaticEngine & KatanaEngine, KatanaEngine is a derived
class of AnabaticEngine. They uses Anabatic::Configuration
and Katana::Configuration that also derives from each other.
I though I had made one configuration attribute in the base
class that was using the right Configuration. But no. I did
have two configurations attributes, one in AnabaticEngine and
one in KatanaEngine, the later "shadowing" the former. As a
results, parameters modified in AnabaticEngine, *after* the
initial creation of the tool *where never seen* at Katana
level (due to it's own duplicate). What a mess.
Now there is only one attribute in the *base* class Anabatic,
which is created through a new virtual function _createConfiguration()
called in _postCreate() which allocate the right Configuration
according to the dynamic type of the tool (KatanaEngine).
In KatanaEngine, access the configuration through the
attribute (_configuration) and not the accessor (getConfiguration()).
* Bug: In KatanaEngine, no longer directly use the _configuration attribute
(which is not accessible anyway) but the getConfiguration() accessor.
The accessor perform a static_cast from the Super::getConfiguration()
into Katana::Configuration.
Complete cleanup of the various configuration accessors.
* New: AnabaticEngine::setupNetBuilder(), perform an early check
of the requested NetBuilderStyle. The NetBuilderStyle is just a
string that will be matched against the (hard-coded) supported
NetBuilders. Then check the topological characteristics against
the capabilities of the gauge (HV, VH and so on).
Still a bit too hard-coded for now.
This function has been split from AnabaticEngine::_loadGrByNet().
* Change: AnabaticEngine::isChannelStyle() renamed from isChannelMode().
* New: In Anabatic::Configuration, two new attributes to select the
topology and routing style:
- _netBuilderStyle to explicitely select the NetBuilder to use.
It's a string, which is provided by each NetBuilder.
- _routingStyle to define how the overall routing will work.
It's a set of flags (StyleFlags):
* VH : first RL is V.
* HV : first RL is H.
* OTH : Run in full over-the-cell mode (needs at least 3RL).
* Channel : Run in *strict* channel routing mode (no routing over
the standard cells).
* Hybrid : Create channels, but can use H tracks over the
standard cells.
* New: In anabatic/Constants, add StyleFlags to define how the router
should operate (see above).
* Bug: In Anabatic::GCell, in CTOR, no reason to set up the HChannelGCell flag.
* Bug: In Anabatic::GCell::updateDensity(), when computing layers non contiguous
saturation, do not systematically skip RL 0, but only if it's PinOnly.
* Change: In Anabatic::NetBuilder, rename isTwoMetal by isStrictChannel.
* Change: In Anabatic::NetBuilderHV, rename doRp_AccessNorthPin() in
doRp_AccessNorthSouthPin(). More accurate.
* Bug: In NetBuilderHV::_do_1G_xM1_1PinM2(), the wires to connect the M1
terminals where created *twice*. Uterly stupid, there where placed in
overlap by the router!
* New: In AnabaticEngine, new accessors to the NetBuilderStyle and
RoutingStyle, proxies towards Configuration.
* Bug: In Manipulator::relax(), if there are two doglegs to be done, but
they are in the same GCell, only do one (the conflicting interval)
is short.
* Change: In Katana::Session, rename isChannelMode() into isChannelStyle().
* Change: In TrackSegment::isUnbreakable() and isStrap(), return false
when the base segment is a *weak global* (aligned with a global one).
* Change: In Katana::Row::createChannel(), correctly distinguish between
*strict channel* style and *hybrid* style. Tag the GCells as std cells
row or channels only in the former case.
* Update: In CRL/node600/phenitec/kite.py, update the routing gauge to
the new format. So now we can use again SxLib-2M (channel routing
SxLib for two metal technologies).
* Change: In CRL::BlifParser, if a master cell is not found in the
AllianceFramework, then try in the Blif supplied libraries.
This is used to load the zero, one and tie cells.
Add a Blif::getCell() static function to look into the Blif
supplied libraries.
* Change: In CRL::LefImport, sometimes there can be discrepencies between
the LEF ROUTING layers and the Coriolis routing gauge. Now ignore
routing layers that are *not* presents in the Coriolis gauge.
* Change: In AnabaticEngine, moved routingMode attribute from KatanaEngine,
as some setup operations needs it.
* Change: In AutoSegment::canReduce(), allow fixed segments to be reduced
if they are "jumpers" (turn+turn and top+top or bot+bot).
This case arise on the edge of routing channels for fixed wires
to connect terminals.
* Change: In AutoSegment::getTopologicalinfos(), compute differently the
(leftBound,rightBound) interval when in channel mode.
In over-the-cell mode, this interval is the one of the whole
GCells under the wire. In channel mode, for fixed wires (that is,
verticals connecteds to cells) this interval is reduced to half
the GCell height, on the connected side of said channel.
This allows Manipulator::_insertToTrack() to issue disantangling
requests (push left/push right) for fixed segments that are face
to face in the channel.
* Change: In Anabatic::Configuration CTOR, allow the cellGauge to have a
different name from the routingGauge. Now if the cell gauge that
should match the routing gauge is not found, fallback to the
name set in "anabatic.cellGauge" parameter.
Case occur when we try to match with CORE sites from LEF files.
* Change: In Etesian::Configuration CTOR, same change as in the
Anabatic configuration.
* Change: In Anabatic::GCell::updateDensity(), never set the GoStraight
flag in channel mode. This flag makes sense when there is at least
4 routing layers (so we have 2 contiguous free of blockages).
* Bug: In Anabatic::Session::_getNearestGridpoint(), sometimes the nearest on
grid point is outside the constraint box. Now force the point
to remains inside constraints even if offgrid.
* Change: In Katana::DataNegociate::update(), perpandiculars that are
either reduced or in non-preferred routing direction should not
trigger a bug message.
* Change: In KatanaEngine::_check(), do not check for fixed, horizontal
non-prefs AutoSegments in channel mode (avoid false bug display).
* Bug: In Manipulator::_forceToTrack(), slighty shrink (-1) the interval
to free. The intersection function of intervals returns true when
the two intervals *exactly* touches (1.vMax == 2.vMin). But in
this specific case, they are not *overlapping* and no action
should be taken...
* Bug: In Manipulator::_insertInTrack(), do not reject the track when
we are overlapping a fixed vertical segment in channel mode.
(Hmm, maybe already corrected by the previous one).
* Change: In Katana::NegociateOverlapCost(), in channel mode, do
not put two overlaping vertical fixed segments into infinite cost.
This happens when two cell connected verticals are face to face in
a channel. We want them negociated the track (by shrinking their
length) instead of excluding it right away.
* Change: In NegociateWindow::createTrackSegment(), in channel mode,
do not attempt to create a track segment over a fixed and reduced
AutoSegment.
Do not attempt to put a non-preferred AutoSegment on a Track
either.
* Bug: In RoutingEvent::revalidate(), the number of availables tracks
was badly computed when in the pure constraint case, when there
was only one it was reporting zero.
* Change: In TrackElements::TrackElements_Perpandicular::Locator,
do not issue a bug when an non-pref or reduced AutoSegment do not
have an associated TrackElement.
* Change: In TrackSegmentCost::update(), do not issue a bug when a
perpandicular is reduded or non-pref and do not have a TrackElement.
The decoupling of the cell gauge and the routing gauge implies that
the METAL2 & METAL3 terminals of macro blocks cannot be aligned on
the routing tracks anymore. That is, an horizontal METAL2 terminal
will not be on a track axis, but offgrid, so we no longer can use
a METAL2 horizontal segment to connect to it. Making an adjustement
between the offgrid terminal and the on-grid segment has proven
too complex and generating difficult configuration for the router.
Moreover, METLA2 terminal could be fully inside a METAL2 blockage.
So now, when the gauges are decoupled, we connect the METAL2 and
METAL3 the same way we do for METAL1: *from above* in the perpandicular
direction and using a *sliding* VIA. We assume that those kind of
terminals in upper metals are quite long.
* New: In Hurricane::Rectilinear, export the isNonRectangle() method
to the Python interface.
* New: In CRL::RoutingGauge, add function isSuperPitched() with the
associated boolean attribute. Set to true when each pitch of
each layer is independant (not low fractional multiples).
* New: In AnabaticEngine, add the ability to temporarily disable the
canonize() operation (mainly used in dogleg creation).
* New: In AutoSegment::canonize(), do nothing if the operation is
disabled by AnabaticEngine.
* Bug: In Session::_revalidateTopology(), disable the canonization
during the topology updating of a net. Too early canonization
was occuring in makeDogleg() leading to incoherencies when
performing the later canonization stage over the complete net.
Mostly occured in the initial build stage of the net.
* New: In GCell, add function postGlobalAnnotate(), if a layer
is fully blocked (above 0.9), typically, under a blockage,
add a further capacity decrease of 2 on the edges. So we may
handle a modicum of doglegs.
* Bug; In GCell::addBlockage(), removeContact(), removeHSegment()
and removeVSegment(), forgot to set the Invalidated flag.
This may have lead to innacurate densities.
* Change: In GCell::updateDensity(), more complex setting of the
GoStraight flag. This flag is now set if we don't have two
*contiguous* below 60% of density. We need free contiguous
layers to make doglegs.
* New: In NetBuilder, now manage a current state flag along
with the state flag of the *source* GCell. This flag is used
to tell if the GCell needs it's *global* routing to be done
using the upper layers (METAL4 & METAL5) instead of the
lower ones.
* New: In NetBuilder::setStartHook(), set the state flag of the
GCell to ToUpperRouting when processing a global routing
articulation and one of the base layer is obstructed
above 0.9.
In GCell with terminals, also set ToUpperRouting when there
are some in METAL2 / METAL3 and the gauge is not super-pitched.
* New: In NetBuilder, function isInsideBlockage(), to check if a
terminal is completely or partially enclosed in a blockage.
* Change: In NetBuilderHV::doRp_AutoContact(), remove support for
trying to put on grid misaligned METAL2/METAL3.
Instead systematically access them from above.
Do not cover with fixed protection terminals that are already
enclosed in blockages.
* Bug: In NetBuilderHV::doRp_AutoContact(), always add the terminal
contact in the requested GCell and not the target/source one,
in case the terminal span several GCells.
* Change: In NetBuilderHV::doRp_Access(), create the local wiring
according to the RoutingPad layer.
* Change: In NetBuilderHV::_do_xG(), _do_2G(),
create the global wiring in upper layers, according to the
ToUpperRouting flag.
* Change: In NetBuilderHV::_do_xG_xM3(), now delegate to
_do_xG_xM3_baseRouting() and _do_xG_xM3_upperRouting() if the
density at terminal level is above 0.5.
* New: NetBuilderHV::_do_xG_xM3_baseRouting() and
_do_xG_xM3_upperRouting() separated function to manage the
local routing.
* Change: In NetBuilder::_do_globalSegment(), if the currently
processed GCell or it's source is in ToUpperRouting mode,
move up the global segment. Do *not* use the moveUp() function
which would create doglegs unwanted at this stage.
* New: In KatanaEngine::annotateGlobalGraph(), call postGlobalAnnotate()
on the GCell after the blockages have been taken into accound to
add the penalty.
* Bug: In Track::getPrevious(), correctly manage the 0 value for the
index argument. Strange it didn't show earlier.
Same goes for Track::expandFreeInterval().
* New: Python/C++ API level:
* Write a new C++/template wrapper to get rid of boost::python
* The int & long Python type are now merged. So a C/C++ level,
it became "PyLong_X" (remove "PyInt_X") and at Python code
level, it became "int" (remove "long").
* Change: VLSISAPD finally defunct.
* Configuration is now integrated as a Hurricane component,
makes use of the new C++/template wrapper.
* vlsisapd is now defunct. Keep it in the source for now as
some remaining non essential code may have to be ported in
the future.
* Note: Python code (copy of the migration howto):
* New print function syntax print().
* Changed "dict.has_key(k)" for "k" in dict.
* Changed "except Exception, e" for "except Exception as e".
* The division "/" is now the floating point division, even if
both operand are integers. So 3/2 now gives 1.5 and no longer 1.
The integer division is now "//" : 1 = 3//2. So have to carefully
review the code to update. Most of the time we want to use "//".
We must never change to float for long that, in fact, represents
DbU (exposed as Python int type).
* execfile() must be replaced by exec(open("file").read()).
* iter().__next__() becomes iter(x).__next__().
* __getslice__() has been removed, integrated to __getitem__().
* The formating used for str(type(o)) has changed, so In Stratus,
have to update them ("<class 'MyClass'>" instead of "MyClass").
* the "types" module no longer supply values for default types
like str (types.StringType) or list (types.StringType).
Must use "isinstance()" where they were occuring.
* Remove the 'L' to indicate "long integer" (like "12L"), now
all Python integer are long.
* Change in bootstrap:
* Ported Coriolis builder (ccb) to Python3.
* Ported Coriolis socInstaller.py to Python3.
* Note: In PyQt4+Python3, QVariant no longer exists. Use None or
directly convert using the python syntax: bool(x), int(x), ...
By default, it is a string (str).
* Note: PyQt4 bindings & Python3 under SL7.
* In order to compile user's must upgrade to my own rebuild of
PyQt 4 & 5 bindings 4.19.21-1.el7.soc.
* Bug: In cumulus/plugins.block.htree.HTree.splitNet(), set the root
buffer of the H-Tree to the original signal (mainly: top clock).
Strangely, it was only done when working in full chip mode.
* Change: In Track::addOverlapCost(), in some configuration, we can
have two overlapping short segments that can *both* be realigned.
But they prevent that because we account their shared length on
the track.
So now, in realign mode only, do not account same-net shared
length if the segment length is less than *two perpandicular pitches*.
This helps the antenna protection by making the diode connected
directly to METAL2 long stripes, and not keeping them isolated.
* In KatanaEngine:
- Former situation:
Each RoutingEvent did store the routing stage it was in. And it
was misnamed "mode".
- New organization:
The routing stage is stored in KatanaEngine itself. It can be
accessed through a proxy in Session.
* Change: In DataNegociate::update(), when in Realign stage and computing
non-preferred perpnadicular routing *do not* expand of one pitch
outside the RoutingPad range.
When a segment is placed only once (which is to say it is nerver ripped
up) it can sometimes end-up in a non-optimal place. We now add a stage
in Katana where each segment is "re-placed" in order to maximise
alignment on it's neighbor. This is a new stage added to both
RoutingEvent and NegociateWidow. Segments are replaced *only* in free
space, they will not ripup *other* segments, except for their own
perpandiculars. We exclude from re-placement globals (unlikely to move)
and segment that have reduced perpandiculars which *must* not be elongated
and potentially raised.
Add a new katana setting to enable/disable the realign stage (enabled
by default:
- "katana.runRealignStage" ( = True )
* Change: In Katana::SegmentFsm::_slackenStrap(), make unbreakable segments
pass through the LocalVsGlobal state so when other try to ripup them
they are prioritary. Otherwise some could go through Unimplemented
directly, without allowing other to attempt to make a detour.
* Change: In Katana::NegociateWindow::NegociateOverlapCost(), when a
global, which is about to be slackened wants to use a track where there
is a segment directly connected to a terminal with a significant
ripup count, mark it as "AtRipupLimit" so it tries to avoid it.
The idea is that globals with high ripup count must avoid terminal
segments because it is likely they will be riped up again so they
better find another track. This was leading to unsolvable configuration
when two segments always want the same track. In this cas, the global
would loose.
* Bug: In Katana::TrackSegment::canSlacken(), never slacken a segments in
non-preferred direction.
* Change: In Anabatic::AutoHorizontal::_slacken(), allow slackening of
segments which perpandiculars are in non-preferred direction, and
not only directly attached to terminals.
* Change: In Anabatic::AutoSegment::canMoveUp(), re-allow segments which
perpandiculars are in non-preferred direction to be moved up.
* Bug: In Katana::Manipulator::moveUp(), when moving up, do not forget
to ripup and reschedule said segment.
* Change: In Hurricane::SharedName, replace the incremental Id by a hash key.
This is to ensure better deterministic properties. Between use cases,
additional strings may have to be allocated, shitfing the ids. Even if
hash can be duplicated, we should be able to ensure that the absolute
order in map table should be preserved. Supplemental strings are inserted
in a way that keep the previous order.
* Change: In CRL/etc/symbolic/cmos/kite.conf, add "katabatic.routingGauge"
default parameter value ("sxlib").
* Change: In CRL/etc/common/technology.conf, define minimal spacing for
symbolic layers too (added for METAL4 only for now).
* Change: In CRL::Histogram, extend support to dynamically sized histograms.
Add a text pretty print with table and pseudo-curve.
* Change: In Cumulus/plugins/ClockTreePlugin, create blockage under the
block corona corners so the global router do not draw wire under them.
This was creating deadlock for the detailed router.
When the abutment has to be computed, directly use Etesian to do it
instead of duplicating the computation in the Python plugin.
* New: In Etesian, as Coloquinte seems reluctant to evenly spread the
standard cells, we trick it by making them bigger during the placement
stage. Furthermore, we do not not uniformely increase the size of the
cells but create a "bloating profile" based on cell size, cell name
or it's density of terminals. Currently only two profiles are defined,
"disabled" which does nothing and "nsxlib" targeted on 4 metal layer
technologies (aka AMS 350nm, c35b4).
* Bug: In Knik::MatrixVertex, load the default routing gauge using the
configuration parameter "katabatic.routingGauge" as the default one
may not be the first registered one.
* New: In AnabaticEngine::setupNetDatas(), build a dynamic historgram of
the nets terminal numbers.
* Bug: In Anabatic::AutoContact::Invalidate(), always invalidate the
contact cache when topology is invalidated. In case of multiple
invalidations, if the first did not invalidate the cache, later one
that may need it where not allowed to do so. The end result was correct
nonetheless, but it did generate annoying error messages.
* Bug: In Anabatic::AutoContactTurn::updateTopology(), bad computation
of the contact's depth when delta == 2.
* Bug: In Anabatic::Gcell::getCapacity(), was always returning the west
edge capacity, even for the westermost GCell, should be the east
edge in that case.
* New: In Anabatic::AutoSegment, introduce a new measure "distance to
terminal". This is the minimal number of segments separating the
current one from the nearest RoutingPad. This replace the previous
"strong terminal" and "weak terminal" flags.
This distance is used by Katana to sort the events, we route the
segments *from* the RoutingPads *outward*. The idea being that if we
cannot event connect to the RoutingPad, there is no points continuing
as thoses segments are the more constraineds. This gives an order close
to the simple ascending metals but with better results.
* New: In Anabatic::AutoSegment, introduce a new flag "Unbreakable", disable
dogleg making on those segments. mainly intended for local segments
directly connecteds to RoutingPads (distance == 0).
* New: In Anabatic::AutoSegment, more aggressive reducing of segments.
Now the only case where a segment cannot be reduced is when it is
one horizontal branch in a HTee or a vertical on a VTee. Check if,
when not accounted the source & target VIAs are still connex, if so,
allow reducing.
* New: In Anabatic::AutoContact, new state flags CntVDogleg & CntHDogleg
mainly to prevent making doglegs twice on a turn contact. This is to
limit over-fragmentation. If one dogleg doesn't solve the problem,
making a second one will make things worse only...
* Bug: In Anabatic::Configuration::selectRpcomponent(), we were choosing
the component with the *smallest* span instead of the *bigger* one.
* New: In Anabatic::GCell, introduce a new flag "GoStraight" to tell that
no turn go be made inside those GCells. Mainly used underneath a block
corona.
* New: In AnabaticEngine::layerAssign(), new GCellRps & RpsInRow to manage
GCells with too many terminals. Slacken at least one RoutingPad access
when there is more than 8 RoutingPad in the GCell (slacken or change
a vertical METAL2 (non-preferred) into a METAL3).
* Change: In Anabatic::NetBuilderHV, allow the use of terminal connection
in non-preferred direction. That is, vertical METAL2 directly connected
to the RoutingPad (then a horizontal METAL2). This alllows for short
dogleg without clutering the METAL3 layer (critical for AMS c35b4).
Done in NetBuilderHV::doRp_Access(), with a new UseNonPref flag.
Perform some other tweaking on METAL1 access topologies, to also
minimize METAL3 use.
* New: In AnabaticEngine::computeNetConstraints(), also compute the
distance to RoutingPad for segments. Set the Unbreakable flag, based
on the distance and segment length (local, short global or long global).
New local function "propagateDistanceFromRp()".
* Change: In AnabaticEngine.h, the sorting class for NetData, SparsityOrder,
is modificated so net with a degree superior to 10 are sorted first,
whatever their sparsity. This is to work in tandem with GlobalRouting.
* New: In Katana::TrackSegmentNonPref, introduce a class to manage segment
in non-preferred routing direction. Mostly intended for small METAL2
vertical directly connected to RoutingPad. Modifications to manage
this new variant all through Katana.
* Change: In Katana::GlobalRoute, DigitalDistance honor the GoStraight flag
of the GCell. Do not make bend inside thoses GCells.
* Change: In KatanaEngine::runGlobalRouter(), high degree nets (>= 10) are
routed first and whitout the global routing estimation. There should be
few of them so they wont create saturations and we want them as straight
as possible. Detour are for long be-points.
Set the saerch halo to one GCell in the initial routing stage (before
ripup).
* Bug: In KatanaEngine & NegociateWindow, call _computeCagedconstraints()
inside NegociateWindow::run(), as segments are inserted into tracks
only at that point so we cannot make the computation earlier.
* Change: In Katana::Manipulator::repackPerpandiculars(), add a flag to
select whether to replace the perpandiculars *after* or *before* the
current segment.
* Change: In Katana::NegociateWindow::NegociateOverlapCost(), when the
segment is fully enclosed inside a global, the longest overlap cost
is set to the shortest global hoverhang (before or after).
When the cost is for a global, set an infinite cost if the overlapping
segment has a RP distance less or equal to 1 (this is an access segment).
* Bug: In Katana::PowerRailsPlane::Rail::doLayout(), correct computation of
the segments extension cap.
* New: In Katana::QueryPowerRails::addToPowerRail(), add support for Pad.
* Change: In Katana/PreProcess::protectCagedTerminals(), apply the contraints
to any turn connected to the first segment of the RoutingPad so the
perpandicular constraints got propagated to the perpandicular segment...
* Change: In RoutingEvent, cache the "distance to RP" value.
* Change: In RoutingEvent::Key::compare(), sort *first* on distance to
RoutingPad, then layer depth. If both distance to RoutingPad is null,
then sort on segment length.
* Change: In RoutingEvent::_processRepair(), try a repack perpandicular with
perpandiculars first (then with perpandicular last, then give up).
* Change: In SegmentFsm::bindToTrack() and moveToTrack(), set an axis hint
when creating the insertion event.
* Change: In SegmentFsm::_slackenStrap(), add a step through slacken between
minimize and maximum slack (wihch directly end up in unimplemented).
* Change: In Session::_addInsertEvent(), add an axis parameter needed when
the axis of the segment is not the one of the track (case of wide
segments or non-preferred direction).
* Bug: In Track::_preDestroy(), bad management of the TrackElement reference
count. Destroy the segment only when reaching zero...
* Bug: In Track::expandFreeIneterval(), forgotten to manage case when there
is a set of overlaping segments at the "end" of the track, the
EndIsTrackMax was not set.
* Change: In TrackCost::Compare, increase the cost when an overlaping
segment is at it's ripup limit. We should try *not* to rip it up if
we can. Add a dedicated flag "AtRipupLimit".
* Change: In TrackElement, add proxies for isUnbreakable(), new function
updateTrackSpan().
* New: In TrackFixedSegment CTOR, when a supply wire of METAL2 or above is
found, make the underlying GCells "GoStraight".
* New: In TrackElement::canDogleg(GCell*), check for already done perpandicular
dogleg on source/target (reject if so).
* In Katana::RoutingEvent::_processRepair(), do no reschedule perpandiculars
that are already in repair mode, they may loop with repackperpandiculars().
The short net mode degrade the routing in some cases. This will be
fixed in a next batch of commits.
* New: In Hurricane::NetRoutingProperty, added "ShortNet" flag for Nets
that are completly inside *one* GCell.
* Bug: In CRL::BlifParser::Model::staticInit(), when looking for the
output of zero and one cell, also skip the blockage net (as well as
automatic and supplies).
* New: In Anabatic::AutoSegment, added "ShortNet" flag to know if the
segment is part of a short net (fully included in *one* GCell).
Also add accessor/mutators for the _analogMode flag (was it ever
used before?).
* New: In Anabatic::NetBuilder::singleGCell(), if a RoutingPad is
vertically small, add a vertical segment to give it some slack.
* New: In Anabatic::Dijkstra::_materialize(), detect "short net" as
they have only one GCell in their source list...
* Bug: In AnabaticEngine::_loadGrbyNet(), reset the AutoSegment
"short net" and "analog mode" creation flags between two different
nets.
* New: In Katana::Configuration, added dedicated ripup for short net
segmnts.
* New: In Katana: partially implemented support for "short dogleg", that
is dogleg that are always kept in same metal because they connect
neighboring perpandicular tracks. Not finished neither activated
yet.
* New: In Katana::TreckElement and derived, export the the *short net*
support from AutoSegment.
* Bug: In Katana::RoutingEvent::_processRepair(), when a segment is
successfully inserted, re-process any perpandicular that is in
repair state, as it may have a new chance to be placed.
* New: In Katana::SegmentFsm::slackenTopology(), always reject short nets.
* Bug: In Katana::Track::check(), correctly handle wide segments instead
of issuing false check messages.
* New: In Hurricane::Entity, add an id counter limit and a memory size
limit. The two limits are checked only when a new Entity object is
created. This should help avoiding massive memory links.
* New: In CRL Core, add a "crlcore.groundName" and a "crlcore.powerName"
parameter to specify the name of the ground/power signals to be
created if they are missing in a Cell. For Alliance libraries it
would be "vss" & "vdd" (default values), but for real technologies,
it is often "gnd!" & "vdd!".
The Blif parser is modificated to make use of it.
* Bug: In AnabaticEngine::unify(), set the resulting unified segment in
the center of the GCells common side. Gcells under a segment are
found by using the edge that cover the segment axis. When we have
a "bend" GCell stack and the axis is wrong, they could be ommited.
This was causing deleted segments to be not removed from some
Edges, then core dump.
* Change: In Anabatic::AutoSegment::create(), smarter choosing of the
reference contact, select the fixed or terminal one instead of
always the source one.
* New: In Anabatic::Edge::isEnding(), new function to check if a
segment going through an Edge is starting/ending in either source
or target GCell of the edge (active only when running in channel
mode).
* New: In Anabatic::Edge::add(), a segment takes part in the occupancy
only if it is not ending in either source or target (channel mode
only). The occupancy due to terminal is pre-computed in Katana.
* New: In Anabatic::Edge::ripup(), in channel mode, never ripup a
segment which is ending in either source or target (we *have* to
access this edge to connect to the terminal).
* Bug: In Anabatic::GCell::hcut() and vcut(), force the update of
the Edge which is on the side that will get splitted by the cut.
It's capacity will be reduced to it must be updated.
* Change: In Anabatic::GCell::updateGContacts() add a flag to conditionnally
update horizontals or verticals only. We may require only a partial
update when resizing the GCell in only one direction.
This, again, related to the fact that we compute the GCells under
a segment thanks to it's axis position, so we need to be very careful
when modificating axis.
* Change: In Katana::Block::resizeChannels(), only update GContact vertical
position. Do not disturb X positions of segments.
* Bug: In Katana::GlobalRoute::DigitalDistance, in channel mode, some
Edges can have a zero capacity, but still be reachable if the net has
a terminal in either source or target. Look for this case and return
a distance of zero instead of "unreachable". This was causing the
global routing not to complete in channel mode.
For computing the edge distance, makes the vertical edges much more
long (10 times) than the horizontal ones as the vertical capacity is
very limited. Hard coded for now, should make it a parameter in the
future.
* Change: In KatanaEngine::annotateGlobalGraph(), decrease the capacity
of edges with reserveCapacity for each terminal inside a GCell.
Both north and south edges are decreased as we a terminal will
block both north and south edges.
As a counterpart, the Edge capacity is not decreased when the
global router connect to a terminal.
* Change: In Katana::RoutingEvent::revalidate(), when in repair stage,
do not expand the slack for horizontal segments in channel mode.
So they may not overlap the standard cell row.
* Bug: In Stratus documentation, do not use the french option in babel,
the documentation is in english!
* New: In Documentation, added Hurricane/Python tutorial, part for drawing
layout.
* New: In Commons, inspector support for std::pair<T,U>.
* New: In Hurricane::Layer, ContactLayer & ViaLayer, support for non
square VIAs. The hole (cut) remains square, but the various metal
extensions can now be different in X and Y. The ::getEnclosure()
method now takes a flag EnclosureH / EnclosureV.
* New: In Hurricane::DbU, inspector support for:
std::pair<DbU::Unit,DbU::Unit>
std::array<DbU::Unit,3>
Must be defined here as DbU do not exists yet in Commons.h
* Bug: In Hurricane::Interval::getSize(), when the interval is "full span",
do not return the difference between min and max, but directly DbU::Max.
(the previous result was -1 !)
* New: In CRL Core Python/Technology.py, support for non square VIAs in
the configuration files. Applied to FreePDK 45.
* New: In CRL::RoutingGauge, added a "symbolic" flag to tell if a gauge
is for symbolic layout or not. Exported to Python.
* New: In Anabatic::AutoHorizontal::updatePosition(), differentiated
computation for soure or target taking account of the VIA extension
in the right segment metal (due to non-square VIAs).
* Change: In Anabatic::AutoHorizontal::_makeDogleg(), the dogleg is
UP for HV gauges and DOWN for VH.
* New: In Anabatic::AutoSegment::_initialize(), create a cache of the
various extension length for each layer (viaToTop, viaToBottom,
viaToSame).
New implementation of getExtensionCap() using the previous cached
extension table. See updatePositions().
New static functions to access the extension cache in the header:
getViaTotopCap() ...
* Change: In Anabatic::AutoSegment, in various update methods, updateOrient()
must always be called *before* updatePositions() as extensions are
dependant on source/target.
* New: In Anabatic::AutoSegment::getEndAxes() compute the position of the
first source and last target position (center/axes) on an *aligned*
set of segments.
* New: In Anabatic::AutoSegment, add a new state flag SegAxisFixed to
signal segments that can be put on only one track. Specific case
to VH gauge for a M1 vertical terminal with a M2 vertical segment.
The M2 is effectively bound to the M1 axis position.
* Bug: In Anabatic::NetBuilderVH::_do_xG_xM1_xM3(), in case of E/W global
and only one RoutingPad the connexion to the RoutingPad was duplicated.
It was valid, but totally stupid.
* Bug: In Anabatic::Session::_canonize(), for an aligned segment set,
intersect the user constraints from all segments instead of only
considering the canonical one.
Issue a warning about too tight constraints only for symbolic
gauges. It may be correct for the real ones.
* New: In Katata::DataNegociate::update(), more accurate computation
of the perpandicular free interval. Use segment extension cap
calculation. Create a special case for fixed axis segments allowing
them to find alternative free interval, try under source and under
target as they are likely to be draggable segments.
* Change: In Katana::Manipulator::relax(), use the extension cap value
to compute the axis of the perpandicular segemnts.
* Change: In Katana::Manipulator::moveUp(), now move up the whole set
of aligned segments instead of just the canonical one.
* Change: In Katana::NegociateWindow::loadRoutingPads(), more accurate
TrackMarkers insertions for fixed terminals.
* New: In Katana::RoutingEvent::Key::Compare::operator(), segments with
fixed axis are processed prior to any others.
* New: In Katana::RoutingEventLoop, store segment pointers instead of
ids to generate more accurate error messages.
* Change: In Katana::RoutingPlane::create(), perform local track
assignment only for HV gauges.
* Change: In Katana::SegmentFsm::_slackenLocal(), add a "dragMinimize"
step in the automaton. Mutliple states transitions can occurs in
a row if an action fails.
* New: In Katana::Session::_toIntervalAxis(), normalize interval
bounds so they are on track positions (by shrinking the interval).
* Bug: In Katana::TrackMarker CTOR, the weigh computation was wrong.
* New: In Anabatic::AutoContact and the derived classes, manages wide
wires. The contact self dimension itself according to the segments
it is connected to. Special case for the AutoContactTerminal which
also read the size of the component it is anchored upon.
New refresh method "updateSize()" and flag CntInvalidatedWidth.
to compute the size.
In AutoContactTerminal, compute the constraint box according to
the width of the segment.
* New: In Anabatic::AutoSegment, flags are now implemented as "static const"
attributes of the class. The flags are stored into a uint64_t as
they are more than 32.
Added new flag "SegWide" and associated predicates.
* Change: In GCellTopology::_doHChannel() and GCellTopology::_doVChannel(),
uses the simpler overload of AutoSegment::create() in order to detect
the wire width automatically.
* New: In Katana::Manipulator, split insertToTrack() and forceToTrack()
into a one-track method and a segment level method that iterate over
the track span of the segment.
* New: In Katana::SegmentFsm, for each cost in the table, now allow access
to a specific track. So the base functions have now two parameters:
"icost" and "itrack" (has a cost can have multiple tracks in the case
of wide segments).
* Change: In Katana::TrackElement, remove the index of the element inside
it's track, as for a wide segment it will not be meaningful for the
non-base track. This means that we have to use the Track::find()
method each time instead.
Remove the wide flag, as it is a duplicate of the one in AutoSegment.
Added a getTrackCount() method to tell the number of track the
segment is inserted into. Needed in the Track destroy step to delete
a segment only when the last track that refers it is destroyed.
Added getSymmetricAxis() to correct the computation of the symmetric
base track in case of wide segment as the base track is not centered
but the the leftmost one.
* Change: In Track::insert() insert wide segments in their whole track span.
* Change: In TrackCost, create an array of costs according to the segment
track span.
* Change: In TrackSegment::create(), now activate the factory and create
wide segments.
* Bug: In Katana::AutoSegments_Perpandicular, correct the debug indentation
problem (ever shifting to the right).
* New: In Katana::TrackCost, the TrackElement and it's optional
symmetric are now kept as attribute of a TrackCost. The cost
is completly computed inside the constructor.
TrackCost now support any mix of symmetric event and wide
segments.
The cost is now computed by adding directly to the current
one instead of creating secondaries that are merged afterwards.
As a consequence, remove all copy construction and merge
capabilities.
All the various methods used to compute the cost are renamed
"addOverlapcost()" in all the various related objects.
As a reminder, the overal cost method call is as follow:
1. TrackCost constructor on a TrackElement.
2. Call TrackElement::addOverlapcost()
3. For all Track under the TrackElement, call
Track::addOverlapCost()
4. For all other TrackElement intersecting with
the overlap interval call:
TrackElement::incOverlapCost()
5. The callback overlap function for segments
is called (defined in NegociateWidow).
Don't confuse:
- TrackElement::addOverlapCost(), which compute the cost of
inserting the segment inside a track (or a set of).
- TrackElement::incOverlapCost(), which compute the cost of
overlaping with this already inserted segment. It is the
other way around of the previous one.
* Change: In Katana::SegmentFsm, use a vector of pointer to TrackCost
instead of an object to avoid copy construction.
* Bug: In Anabatic::Dijsktra, correct the indentation in cdebug calls
(lots of them causing a big shift right).
* New: In Anabatic::TrackSegment, new helper structure SideStack to
manage a set of aligned GCells and their various sides sizes.
* Change: In Anabatic::TrackSegment::computeOptimal(), more accurate
computation of attractors from global segments and variable size
GCells using SideStack.
* Change: In Katana::DataSymmetric::checkPairing(), increase the tolerance
for misaligned symmetrics from 2 to 5 tracks (should be enough for our
narrow channel routing).
* New: In Katana::TrackSegment, add a first flag to enable locking of
priority. If it is set, calls to either "computePriority()" or
"forcePriority()" will have no effect. Added the uint32_t flags
paraphernalia.
* New: In ::computeNetPriority(), overall function to control the call
of TrackSegment::computeAlignedPriority(). The call is done from
NegociateWindow::run().
* New: Katana::TrackSegment::computeAlignedPriority(), order the
TrackSegments aligneds through doglegs to the one with the highest
priority is routed first and others progressively from him. Done by
forcing an ever decreasing priority on the aligneds ones.
The amount of decrease is small so the aligned segments got routed
(ordered) in close, if not contiguous, sequence. Priority is locked
for the order to remain.
* Bug: In Katana::TrackSegment::computePriority(), correct computation
of the priority when there is more than 10 free tracks
(a DbU::toLambda() call was missing, leading to very big priorities).
* Change: In katana::TrackCost CTOR, do not compute a distance to fixed
in the case of analog segments, this is backfiring.
Slight change of the compare function when delta differs. Seems
to improve a little.
* In Katana::AutoSegments_Aligneds, allow the the caller to select
if we are propagating through source or target only (or both).
Note that if no flag is given, it is assumed that we want to
propagate the old way on both source and target.
* In Katana::TrackElement, Katana::TrackSegment and Katana::RoutingEvent,
move the event priority from RoutingEvent to TrackSegment.
Add accessor and mutators associated in TrackElement (virtual
methods).
* Bug: In Hurricane::Interval, the ::getSize() method was returning a negative
length when the Interval was empty. Now return zero. This was causing
slight cost functions side effect when computing the overlap of a segment
with another one belonging to the same net (i.e. shareDelta)
* Bug: In Katana::AutoSegment::computeOptimal(), checks that the optimal
position for the axis is indeed inside the GCell interval.
* Bug: In Katana::DataSymmetric::getSymmetrical(Interval&), reverse the shrink
applied to GCells sides. Interval are of the type [min:max[ so after
symmetric transformation they become ]smax:smin]. Apply a correction so
that they are [smax:smin[ and could be merged with the paired interval
(the one without symmetry applied).
* Bug: In katana::TrackCost::consolidate(), the overlap (now) always positive,
and must be *substracted* to the "delta" (not *added*).
* Bug: In Katana::_computeNetOptimals(), now skip the already processeds
AutoSegments instead of re-processing them.
* New: In Katana::AutoSegment::computeOptimal(), improved computation of
the axis hint:
- For analog net, propagate through the simple doglegs to find
attractors.
- Restrict the allowed interval to the union of GCell sides and
segments constraints that are terminals.
- Consider a local as "long" if it's length exceed 20 the P-pitch.
(maybe make that a tool parameter).
* New: In Anabatic_AutoSegments collection, added a Flag to the constructors
to allow different behavior between digital and analog modes.
For "Aligneds" and "Perpandiculars" collections, now manage a new
Flag WithDoglegs to follow aligned globals through local doglegs
(for analog nets).
Adjust the log level of collections to 144 (formerly 145).
* New: In Anabatic::AutoSegment, new flag SegAnalog for segments that are
part of an analog net.
Note that with this flag, we reach the 32 bits limit...
* Change: In Anabatic::Constants, Flags are now declared as BaseFlags
objects and *not* uint64_t. This avoids overload resolution problems with
arithmetical overload of the operators.
The BaseFlags/Flags types are now completly "isolated" from the
uint64_t, it has the advantage of showing where unwanted previous implicit
conversions where occuring.
* Change: In Katana::Constants, Flags values are now of BaseFlags type instead
of uint64_t.
* Change: In Anabatic::Dijkstra, lots of log cleanup.
* Change: In Anabatic::GCell::getSide(), make the "shrink" parameter visible
to allow to substract the topmost and rightmost track for axis span
computation in AutoSegment::computeOptimal(). Used for analog mode.
* Change: In NetRoutingState, added a flag for analog mode. Use uint32_t
for the flags type.
* New: In Isobar, export the NetRoutingState and NetRoutingExtension objects.
* Change: In Anabatic::AutoSegments collections, change the type of all
the flags that where in "unsigned int" (32 bits) to Flags (uint64_t)
as there is now more than 32 flags for functions.
* New: In Ababatic::Constants, added new flag Flags::WithPerpands, which
makes the number of flags tip over 32 bits, thus making mandatory
to uses Flags and not unsigned int.
* New: In Anabatic::AutoSegments_Perpandiculars, manage a new flag
Flags::WithDoglegs to allow to propagate through global segments that
are connecteds via doglegs on local segments. Meaning that there is
a good chance that they could be aligned.
Slighly change the way we propagate on aligned segments: no longer
check for VTee or HTee, but only for same direction and layer as
master.
* New: In Anabatic & Katana, replace all the "int", "long" and their
variants by the less implementation ambiguous "int32_t", "int64_t"
(and variant). This should help to better detect bit trucation in
flags.
Use the type to give a hint about the flags kind:
- Type "Flags", for flags shared among Anabatic & Katana
functions/methods (may also appear in some objects states).
- Type "uint32_t" for flags belonging to an object internal
state of from Hurricane functions flags (those should be
grouped in a Flag subclass in a perfect world).
* Change: In all top CMakeLists.txt, force the use of Python 2.7 as
we do not compile against 3.x flavors. Do not use the "EXACT"
flags as it will not recognize 2.7.x versions.
* Change: In Katana::RoutingEvent::Key::Compare(), preliminary
experiments shows that the best sorting order is:
- Lower layer first (i.e. M2 -> M3 -> M4 -> ... )
- Longer segments first.
The later seems to be counter-intuitive. Guess is that placing
the small ones first generate a more important fragmentation of
the big ones. They are placed too early and are difficult to move
afterwards.
Another feature to test is *not* inserting pushed left/right
segments if they are not *already* routed.
* Change: In PyKatanaEngine.runNegociate() now takes a flag argument,
provided through the new PyKatanaFlags exported object.
(doChip.py must be changed accordingly)
* New: In Katana::Configuration, added "katana.profileEventCosts" to
triggers the event's profiling.
* New: In Katana::NegociateWindow::_negociate(), save a profiling
trace of all the events and their priority, separated by metal,
for later analysis (see doChip.py in alliance-check-toolkit).
* New: In Katana::RoutingEvent::Key::Compare(), start implementing
new segment freedom degree functions.
* Change: In Hurricane::Net::_getString(), put a more complete
information about the Net instead of just only it's name.
* Bug: In Katana, reorder the various stages so that they are
executed in the exact same sequence as in "doChip.py" so now
routing in graphic mode and text mode gives exactly the same
results.
* Bug: In Katana::PyKatanaEngine, runGlobalRouter do not take any
argument.
* New: In Katana::SegmentFsm, the object is now able to handle two events
at the same time. The master and it's symmetric. When there is no
symmetric, the corresponing data is just left blank. This makes a
bigger object, but as there is only one when running, it is not an
issue.
Candidates tracks are now an vector of array<2> (pairs), the
TrackCost::Compare() functor has to be wrapped through CompareCostArray.
The compined TrackCost of the two tracks is accumulated into the first
element.
Everything related to events gets duplicated: _event is now _event1
and _event2, and so on.
As there can be now two Manipulator actions done with SegmentFsm,
this class now completly hide the Manipulator level from the
RoutingEvent processing.
New function ::bindToTrack() to perform the track insertion.
* New: In Katana::TrackCost, add a new ::merge() function.
* New: In Katana::TrackElement and Katana::TrackSegment, add symmetric
management. Allows to know if a TrackElement has a symmetric and to
access it.
* New: In Katana::DataSymmetric, add new overload for ::getSymmetrical()
to handle DbU::Unit and intervals.
* Change: In Katana::RoutingEvent, remove all direct uses of Manipulator
objects. Now any change to the event associated segment must go through
call to Segment Fsm.
* Change: In Katana, adjust the debug level so internal informations are
put below level 156.
* New: In Hurricane::DbU, in ::getValueString(), special display when the
value is Min or Max (more helpful than a gigantic number).
* Change: In Anabatic::Dijkstra the _distanceCb attribute got copied
from the setDistance() argument. To be able to access the duplicated
distance (and therefore access/modify it) the function now return a
pointer to it. Done with the "target()" accessor of std::function<>.
* Change: In Katana::GlobalRouting::runGlobalRouter() use the new
Disjkstra::setDistance() to be able to call setNet() on the right
object.
* Bug: In Kite::RoutingEvent::_processNegociate(), on insertion in free
space of a reduced segment (less than one pitch) no insert event
was generated, but the axis was not set to the selected track, leaving
the segment at it's former place.
Now, generate an insert event, but in Kite::Session::_revalidate()
filter them so that reduced segments are not inserted in tracks but
only have their axis set.
Correction also applied on Katana.
* Bug: In Kite::wipeoutRouting(), the removal was incomplete. We need to
remove anchored Contacts, but in a second stage. This is a fragile
workaround as it require that there is only one level of anchoring.
* New: In Anabatic::AutoSegment, introduce a the kind (associated to a
flag) "LongLocal". Analog GCells can be very wide, so at least some
carefuly choosen long local segments must be took into account as
attractors in the computation of the optimal axis.
* New: In Anabatic::AutoSegment::computeOptimal(), take LongLocal into
account as attractors.
* Change: In ::GCellTopology constructors compare the layers of the
RoutingPads using layer masks instead of Layer pointers. Allows to
find both "METALx" (symbolic) and "metalX" (real).
* Change: In ::GCellTopology::_doHChannel(), _doChannel(), _doStrut()
and _doDevice(), tag long locals as "LongLocal". This need to be
reviewed as it as bind done a bit too quickly.
* Change: In Anabatic::AutoSegment, due too a much bigger span of the
analogic GCells the _optimalMin & _optimalMax bitfields must use
16 bits instead of 8 (they where overflowed).
* New: In Katana, reorganisation of the initialization procedure to fit
both digital and analogic cases. Create an analogInit() method.
* Change: In Katana::RoutingEvent, the _tracksNb and _tracksFree bitfields
where too short for the Analog GCell size, now uses 16 bits instead of
6.
* Bug: In Katana::GraphicKatanEngine::drawGCell(), skip drawing of a
GCell if *both* width and height are under 150 pixels.
* New: In Katana::Session, add a new isOpen() method.
* Change: In Anabatic::Autocontact, replace getMinDepth() and
getMaxDepth() by getDepthSpan().
* New: In Anabatic::AutoSegment::canMoveUp(), add an optional check of
low up density (Flags::CheckLowUpDensity). Allows to move up a
segment if the up density is (very) low, and in this case it's more
efficient than breaking it to fit in the lower layer.
canMoveUp() is now able to perform the same work as canPivotUp()
if *not* supplied the flag Flags::IgnoreContacts.
* New: In Katana, in GlobalRouting::DigitalDistance() now take into
account the cost of a VIA (currently set to 2.5). Need to known the
Net currently routed in the DigitalDistance object itself.
* Change: In Katana::Track::Element::canPivotUp(), now also takes a flag
parameter.
* Change: In Katana::Manipulator, new flag IgnoreContacts to mirror the
one of Anabatic.
* Change: In Katana::SegmentFsm, allocate once a Manipulator object instead
of many times on the fly.
In SegmentFsm::_slackenGlobal(), in the slacken state, if the up
density is (very) low, bypass to move up instead of slackening.
This solve better the routing of the control part of the register file.
The register file having a pathological case of terminal placement:
many punctual terminals aligneds in METAL2 *and* a grid of METAL2 and
METAL3 blockages near below...
* Bug: In Katana::Session::_revalidate(), after removing the zero-length
segments, forgot to re-order the track, leading to many stranges effects
as the indexes where no longer coherent in the Track.
* Bug: In Anabatic, in AutoHorizontal & AutoVertical, native constraints
must use GCell::getConstraintsUMax().
* Bug: In Anabatic::GCell, correct terribly bad implementation of
both getConstraintUmax().
In getSide(), use getConstraintUMax().
* Bug: In Anabatic::AutoContact, setCBUMax() must be set using the GCell
getContraintUMax().
* Bug: In Hurricane, in StaticObservable::getObserver(), if the slot
pointer is NULL, do not try to access the owner. Returns NULL, so
the caller can be aware of the situation...
* Change: In Hurricane, in BreakpointWidget & ExceptionWidget some
cosmetic changes (fonts and window sizes).
* Bug: In Anabatic, In AutoHorizontal::getConstraints(), take into account
the constraints from the source AutoContact, as it holds the constraints
transmitted by the RoutingPads and sets up by propageConstraintsFromRp().
It is likely to be a bug affecting the original Katabatic as well.
* Change: In Anabatic, in RawGCellsUnder(), check that the segment is not
completly oustside the cell abutment box and truncate the coordinates
to the part that is inside. Use the "shrink" if we reach the east/north
border.
* Change: In Anabatic, in Configuration, no more decorator because we will
use a true derived relationship. Katana *derives* from *Anabatic* and do
not *decorate* it, so the Configuration can do the same. It also implies
that we directly create a Katana engine, not an Anabatic one.
* Change: In Anabatic, in Session, do not allow the opening of the Session
in a standalone fashion (with a static method). Instead it must be opened
using the relevant method of the Anabatic/Katana engine. This ensure we
are opening the right Session type.
* Change: In Anabatic, in AutoSegment_Aligneds() collection the seed segment
is not part of the collection by default, but will be included if the
Flags::WithSelf is set.
* Change: In Configuration, all the flags value are now defined in two steps.
Declared in the header and initialized in the module. This is to prevent
the fact that on some cases, in relation with the Python "extern C" part
modules, we need a true allocated variable. It was causing weird linking
problems.
A side effect is that they can no longer be used as entry is switches,
have to replace them by if/else.
* New: In Anabatic, new GCell::getNeighborAt() utility function.
* Bug: In Anabatic, in GCell::doGrid(), tag all the GCells of the grid with
the grid type... Back annote all the edges capacity (north & east) with
the reserved local capacity.
* New: Complete portage of Kite over Anabatic. The new engine is christened
"Katana" for Kite-Analogic. When it's capabilities and performances
will be on a part with Kite, it is to completly replace it (and take
back the "Kite" name). Preliminary tests seems to show that, contrary
to intuition (because built on a more complex/slower grid), it is even
slightly faster than Kite 8-).