* Bug: In Anabatic::Dijkstra, the degree of a vertex (the number of neighbors
belonging to the same net) was miscalculated. This was leading, in the
materialize step to some feed-through vertexes not being broken.
Leading in turn to incomplete transformation of the detailed routing.
Also in _trackback(), the degree of the first vertex we were backtracking
from was not incremented.
* Bug: In Anabatic::Dijkstra::materialize(), systematically use
GCell::breakGoThrough() on both source and target. This is needed when
we are in the ripup phase as both source and target can be go-through.
This was also leading to incomplete detailed routing transformation.
* Change: In Anabatic::Edge::ripup(), ripup one third of the segments instead
of thoses exeeding the global length threshold. This way we are sure to
desaturate an edge. Needs to be further calibrated.
* Change: In Aanabatic::GCell::breakGoThrough(), no longer return NULL.
Return existing gcontact if any. Break if it is a go-through and create
a new gcontact in last resort. Maybe rename this function.
* New: In Anabatic::Configuration, new parameters:
- anabatic.edgeHScaling, to adjust the length of the horizontal edges
relative to the vertical ones (this is a ratio).
- anabatic.globalIterations, set the maximum number of ripup passes
of the global router.
* New: In CRL/etc/*/kite.conf, added new parameters anabatic.edgeHScaling
and anabatic.globalIterations.
* New: In Katana::GlobalRoute::DigitalDistance, take into account the new
edgeHScaling factor. Must be used when the capacity of V-edges differs
greatly for H-edges (case of AMS 350nm c35b4 for instance).
* Bug: In Katana::GlobalRoute::DigitalDistance, the historic cost is
computed for an edge length of "1". Must be multiplicated by the
current edge length to have any measurable effect.
This bug is finally explaining why the ripup was producing the
same solutions over and over, the historical cost was negligible!
* New: In Commons, inspector support for std::pair<T,U>.
* New: In Hurricane::Layer, ContactLayer & ViaLayer, support for non
square VIAs. The hole (cut) remains square, but the various metal
extensions can now be different in X and Y. The ::getEnclosure()
method now takes a flag EnclosureH / EnclosureV.
* New: In Hurricane::DbU, inspector support for:
std::pair<DbU::Unit,DbU::Unit>
std::array<DbU::Unit,3>
Must be defined here as DbU do not exists yet in Commons.h
* Bug: In Hurricane::Interval::getSize(), when the interval is "full span",
do not return the difference between min and max, but directly DbU::Max.
(the previous result was -1 !)
* New: In CRL Core Python/Technology.py, support for non square VIAs in
the configuration files. Applied to FreePDK 45.
* New: In CRL::RoutingGauge, added a "symbolic" flag to tell if a gauge
is for symbolic layout or not. Exported to Python.
* New: In Anabatic::AutoHorizontal::updatePosition(), differentiated
computation for soure or target taking account of the VIA extension
in the right segment metal (due to non-square VIAs).
* Change: In Anabatic::AutoHorizontal::_makeDogleg(), the dogleg is
UP for HV gauges and DOWN for VH.
* New: In Anabatic::AutoSegment::_initialize(), create a cache of the
various extension length for each layer (viaToTop, viaToBottom,
viaToSame).
New implementation of getExtensionCap() using the previous cached
extension table. See updatePositions().
New static functions to access the extension cache in the header:
getViaTotopCap() ...
* Change: In Anabatic::AutoSegment, in various update methods, updateOrient()
must always be called *before* updatePositions() as extensions are
dependant on source/target.
* New: In Anabatic::AutoSegment::getEndAxes() compute the position of the
first source and last target position (center/axes) on an *aligned*
set of segments.
* New: In Anabatic::AutoSegment, add a new state flag SegAxisFixed to
signal segments that can be put on only one track. Specific case
to VH gauge for a M1 vertical terminal with a M2 vertical segment.
The M2 is effectively bound to the M1 axis position.
* Bug: In Anabatic::NetBuilderVH::_do_xG_xM1_xM3(), in case of E/W global
and only one RoutingPad the connexion to the RoutingPad was duplicated.
It was valid, but totally stupid.
* Bug: In Anabatic::Session::_canonize(), for an aligned segment set,
intersect the user constraints from all segments instead of only
considering the canonical one.
Issue a warning about too tight constraints only for symbolic
gauges. It may be correct for the real ones.
* New: In Katata::DataNegociate::update(), more accurate computation
of the perpandicular free interval. Use segment extension cap
calculation. Create a special case for fixed axis segments allowing
them to find alternative free interval, try under source and under
target as they are likely to be draggable segments.
* Change: In Katana::Manipulator::relax(), use the extension cap value
to compute the axis of the perpandicular segemnts.
* Change: In Katana::Manipulator::moveUp(), now move up the whole set
of aligned segments instead of just the canonical one.
* Change: In Katana::NegociateWindow::loadRoutingPads(), more accurate
TrackMarkers insertions for fixed terminals.
* New: In Katana::RoutingEvent::Key::Compare::operator(), segments with
fixed axis are processed prior to any others.
* New: In Katana::RoutingEventLoop, store segment pointers instead of
ids to generate more accurate error messages.
* Change: In Katana::RoutingPlane::create(), perform local track
assignment only for HV gauges.
* Change: In Katana::SegmentFsm::_slackenLocal(), add a "dragMinimize"
step in the automaton. Mutliple states transitions can occurs in
a row if an action fails.
* New: In Katana::Session::_toIntervalAxis(), normalize interval
bounds so they are on track positions (by shrinking the interval).
* Bug: In Katana::TrackMarker CTOR, the weigh computation was wrong.
* Change: In CRL Core, etc/, update the configuration files of real
technologies. Mostly for FreePDK 45. This work is also done for
AMS c35b4 (350nm) but in a private (SoC) git repository.
Added a new parameter 'lefImport.minTerminalwidth' for the
minimum size (width) of a metal1 terminal in standard cells.
Corrected bug of the minimum trace level which must be
initialized to a great value and *not* zero;
* Change: In CRL Core, BlifParser, detect when there is no tie low
or tie high defined, issue an error (connexion left open) but
continue.
* New: In CRL::RoutingLayerGauge, new overlad of getTrackPosition()
with the parameter set of getTrackIndex(). Used to know if a
terminal is on-grid or not.
* New: In CRL::LefImport, smarter management of metal1 pins. Adds a
_pinPostProcess() function to select the external components
among the various shapes. If the gauge is VH, all the pin rectangles
are translateds into vertical segments (even if the metal1 gauge
says the tracks are horizontals).
The _pinPostProcess() function adds as external components of
a net, only the segments of a sufficent width as given in
'lefImport.minTerminalWidth' and that are on-grid.
* Change: In Hurricane::Technology, in all the layer connexity methods
(getLayers(), getMetalAbove(), getCutAbove(), getViaBetween(), ...)
the "useWorking" parameter is replaced by a more accurate "useSymbolic".
BEHAVIOR CHANGE: formerly, if a symbolic layer was requested, and
none was found, NULL was returned. Now, if the symbolic layer is not
found, we try to return the associated real one (same layer mask,
but not flagged as symbolic, and usually with a lowercase name).
All thoses changes have been propagated to Python bindings.
* Change: In Hurricane::BasicLayer and derived classes, rename the
"isWorking" attribute into "isSymbolic" (to match the technology
renaming).
* Change: In Hurricane::Cell::flattenNets(), ignore power, ground and
blockage nets for the flatten.
* Change: In CRL Core, in coriolisInit.py and Technology.py helpers,
rename the tables describing the technology as follow:
- symbolicLayersTable --> compositeLayersTable
- workingLayersTable --> symbolicLayersTable
- symbolicRulesTable --> layersExtensionsTable
This is to give the table names a more clearer semantic after
merging real technologies configurations (testbench AMS c35b4).
In particular, we need to define a composite layer for the
real VIAs, and not only the symbolic ones. And with correct
enclosures expressed in real dimensions (microns).
* Change: In CRL Core, in coriolis2/etc the file an directory structure
describing the technonolies is modified.
Before, one technology was split in two: the symbolic part that
may be shared across multiple real technology and the real technology
itself. To configure this we needed in ".coriolis2/techno.py" two
variables:
* symbolicTechnology.
* realTechnology.
After, we duplicate the symbolic technology in each real ones, so
to configure we only have to refer to one technology with the
variable:
* technology.
Pure sympolic technologies are still availables, associated with
a dummy real one.
We provides:
* 180/scn6m_deep_09 for MOSIS 180nm
* 45/freepdk_45 for FreePDK 45nm (work in progress).
* symbolic/cmos for classical Alliance symbolic.
* Change: In CRL Core python/helpers, SymbolicTechnology.py and
RealTechnology.py are now grouped under Technology.py.
* New: Hurricane::DataBase::getCell() method to search a cell through
all the libraries of *all* the frameworks, not just Alliance.
Also exported in Python interface.
* Bug: In Technology::getNthMetal() the function was not returning the
right metal, there was an offset of one. And when the offset was
0, no metal was even returned. Same fix goes for getNthCut().
The fault was in Mask<>::nthbit().
* Change: In Hurricane::CellWidget, the initial window size is too tiny.
Increase the size from 250 to 500 pixels.