diff --git a/hurricane/doc/hurricane/Transformation.dox b/hurricane/doc/hurricane/Transformation.dox index daa4a0ae..560a6e7b 100644 --- a/hurricane/doc/hurricane/Transformation.dox +++ b/hurricane/doc/hurricane/Transformation.dox @@ -21,40 +21,83 @@ /*! \class Transformation::Orientation - * This enumeration defines the orientation associated to a - * transformation object. - * - * Name Aspect Code Signification a b c d - * - * - * - * - * - * - * - * - * slots: R2 2 Double rotation (180°) - *   -1   0 0   -1   - * slots: R3 3 Triple rotation (270°) 0 - * 1   -1   0 slots: MX 4 Horizontal symetry (Miror X) - *   -1   0 0 1 slots: XR 5 Horizontal symetry followed by a 90° - * rotation 0   -1   - *   -1   0 slots: MY 6 Vertical symetry (Miror Y) 1 0 0 - *   -1   slots: YR - * 7 Vertical symetry followed by a 90° rotation 0 1 1 0 To each - * orientation corresponds a 2x2 matrix whose coefficients are - * named a and b for the first line and c and d for the second - * one. - *
Orientation codes and associated transformation matrix
ID0Identity1001
R11Simple rotation (90°)0-110
+ * This enumeration defines the orientation associated to a + * transformation object. + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + *
Orientation codes and associated transformation matrix
NameAspectCodeSignificationabcd
ID + * \image html id.gif + * 0Identity1001
R1 + * \image html r1.gif + * 1Simple rotation (90°)0-110
R2 + * \image html r2.gif + * 2Double rotation (180°)-100-1
R3 + * \image html r3.gif + * 3Triple rotation (270°)01-10
MX + * \image html mx.gif + * 4Horizontal symetry (Mirror X)-1001
XR + * \image html xr.gif + * 5Horizontal symetry followed by a 90° rotation0-1-10
MY + * \image html my.gif + * 6Vertical symetry (Mirror Y)100-1
YR + * \image html yr.gif + * 7Vertical symetry followed by a 90° rotation0110
* * The transformation formula is given by : x' = (a * x) + (b * - * y) + tx y' = (c * x) + (d * y) + ty Where x and y are the + * y) + tx y' = (c * x) + (d * y) + ty where x and y are the * coordinates of any point, x' and y' the coordinates of the - * trasformed point, tx and ty the horizontal and vertical + * transformed point, tx and ty the horizontal and vertical * components of the translation and where a, b, c and d are the * coefficients of the matrix associated to the orientation. *