coriolis/anabatic/src/AutoContactTerminal.cpp

469 lines
16 KiB
C++
Raw Normal View History

// -*- C++ -*-
//
// This file is part of the Coriolis Software.
// Copyright (c) UPMC 2012-2016, All Rights Reserved
//
// +-----------------------------------------------------------------+
// | C O R I O L I S |
// | A n a b a t i c - Routing Toolbox |
// | |
// | Author : Jean-Paul CHAPUT |
// | E-mail : Jean-Paul.Chaput@lip6.fr |
// | =============================================================== |
// | C++ Module : "./AutoContactTerminal.cpp" |
// +-----------------------------------------------------------------+
#include <cstdlib>
#include <climits>
#include <sstream>
#include "hurricane/Bug.h"
#include "hurricane/Error.h"
#include "hurricane/Warning.h"
#include "hurricane/Layer.h"
#include "hurricane/ViaLayer.h"
#include "hurricane/BasicLayer.h"
#include "hurricane/Technology.h"
#include "hurricane/Net.h"
#include "hurricane/Plug.h"
#include "hurricane/RoutingPad.h"
#include "hurricane/Vertical.h"
#include "hurricane/Horizontal.h"
#include "hurricane/DebugSession.h"
#include "crlcore/RoutingGauge.h"
#include "anabatic/AutoContactTerminal.h"
#include "anabatic/AutoContactTurn.h"
#include "anabatic/AutoVertical.h"
#include "anabatic/AutoHorizontal.h"
#include "anabatic/Session.h"
namespace Anabatic {
using std::ostringstream;
using Hurricane::Bug;
using Hurricane::Error;
using Hurricane::DebugSession;
using Hurricane::Transformation;
using Hurricane::Entity;
// -------------------------------------------------------------------
// Class : "Anabatic::AutoContactTerminal".
AutoContactTerminal* AutoContactTerminal::create ( GCell* gcell
, Component* anchor
, const Layer* layer
, Point point
, DbU::Unit width
, DbU::Unit height
)
{
cdebug_log(145,1) << "AutoContactTerminal::create(... Point, ...)" << endl;
cdebug_log(145,0) << "@" << point << endl;
anchor->getBodyHook()->detach();
AutoContactTerminal* autoContact = AutoContactTerminal::create( gcell
, anchor
, layer
, point.getX(), point.getY()
, width, height
);
cdebug_tabw(145,-1);
return autoContact;
}
AutoContactTerminal* AutoContactTerminal::create ( GCell* gcell
, Component* anchor
, const Layer* layer
, const DbU::Unit x
, const DbU::Unit y
, const DbU::Unit width
, const DbU::Unit height
)
{
cdebug_log(145,0) << "AutoContactTerminal::create(... x, y, ...)" << endl;
cdebug_log(145,0) << "@ x:" << DbU::getValueString(x) << " y:" << DbU::getValueString(y) << endl;
_preCreate( gcell, anchor->getNet(), layer );
Point anchorPosition = anchor->getPosition();
Contact* contact = Contact::create( anchor
, layer
, x - anchorPosition.getX()
, y - anchorPosition.getY()
, width
, height
);
AutoContactTerminal* autoContact = new AutoContactTerminal( gcell, contact );
autoContact->_postCreate();
autoContact->unsetFlags( CntInCreationStage );
cdebug_log(145,0) << "create(Component*) " << autoContact << endl;
return autoContact;
}
AutoContactTerminal::AutoContactTerminal ( GCell* gcell, Contact* contact )
: AutoContact(gcell,contact)
, _segment (NULL)
{
setFlags( CntTerminal );
}
AutoContactTerminal::~AutoContactTerminal ()
{ }
Apaired segments building for symmetric routing (step 1). * Change: In Hurricane::BaseFlags, store flags in uint64_t instead of unsigned int because we start to need more than 32 different flags in some tools. * New: In ::getString() & ::getRecord() templates, add support for std::array<>. * Change: In CRL::ToolEngine, add support for timer (time & memory measurements) displaced from Katabatic. This way all ToolEngine can use this feature. The _postCreate() method display the memory just after ToolEngine allocation. * Change: In Etesian::EtesianEngine, make use of the ToolEngine builtin timer (remove the local one). Forgot to call the base class _postCreate() and _preDestroy(). * Change: In Anabatic::AnabaticEngine, make use of the ToolEngine builtin timer (remove the local one). * New: In Anabatic, new AutoSegments_Connecteds() collection. This Collection allows a deterministic walkthough *all* the AutoSegments connected either to source or target of one AutoSegment. * New: In Anabatic::AutoContactTerminal::isEndPoint() to check if an AutoContactTerminal is the *only one* anchored on a RoutingPad, thus being a true "end point" and not a kind of feed-through. * New: In Katana::KatanaEngine, added support for symmetric nets. Created new class DataSymmetric to store symmetric information of a net (mainly the paired AutoSegments). Added KatanaEngine::runSymmetricRouter(), for now only build the DataSymmetric informations. More to come... * Change: In Katana::GraphicKatanaEngine::_runTest(), now perform symmetric information building the non-symmetric routing.
2017-03-12 13:34:12 -05:00
bool AutoContactTerminal::isEndPoint () const
{
RoutingPad* rp = dynamic_cast<RoutingPad*>( getAnchor() );
return (rp->getBodyHook()->getSlaveHooks().getSize() == 1);
}
AutoSegment* AutoContactTerminal::getOpposite ( const AutoSegment* ) const
{ return NULL; }
AutoSegment* AutoContactTerminal::getPerpandicular ( const AutoSegment* ) const
{ return NULL; }
AutoSegment* AutoContactTerminal::getSegment ( unsigned int index ) const
{
if (_segment) {
switch ( index ) {
case 0: return (_segment->isHorizontal()) ? _segment : NULL;
case 2: return (_segment->isVertical ()) ? _segment : NULL;
}
}
return NULL;
}
Apaired segments building for symmetric routing (step 1). * Change: In Hurricane::BaseFlags, store flags in uint64_t instead of unsigned int because we start to need more than 32 different flags in some tools. * New: In ::getString() & ::getRecord() templates, add support for std::array<>. * Change: In CRL::ToolEngine, add support for timer (time & memory measurements) displaced from Katabatic. This way all ToolEngine can use this feature. The _postCreate() method display the memory just after ToolEngine allocation. * Change: In Etesian::EtesianEngine, make use of the ToolEngine builtin timer (remove the local one). Forgot to call the base class _postCreate() and _preDestroy(). * Change: In Anabatic::AnabaticEngine, make use of the ToolEngine builtin timer (remove the local one). * New: In Anabatic, new AutoSegments_Connecteds() collection. This Collection allows a deterministic walkthough *all* the AutoSegments connected either to source or target of one AutoSegment. * New: In Anabatic::AutoContactTerminal::isEndPoint() to check if an AutoContactTerminal is the *only one* anchored on a RoutingPad, thus being a true "end point" and not a kind of feed-through. * New: In Katana::KatanaEngine, added support for symmetric nets. Created new class DataSymmetric to store symmetric information of a net (mainly the paired AutoSegments). Added KatanaEngine::runSymmetricRouter(), for now only build the DataSymmetric informations. More to come... * Change: In Katana::GraphicKatanaEngine::_runTest(), now perform symmetric information building the non-symmetric routing.
2017-03-12 13:34:12 -05:00
RoutingPad* AutoContactTerminal::getRoutingPad () const
{ return dynamic_cast<RoutingPad*>(getAnchor()); }
AutoSegments AutoContactTerminal::getRpConnecteds () const
{ return AutoSegments_OnRoutingPad(this); }
Box AutoContactTerminal::getNativeConstraintBox () const
{
cdebug_log(145,1) << "AutoContactTerminal::getNativeConstraintBox()" << endl;
if (isUserNativeConstraints()) {
cdebug_log(145,1) << " Native constraints sets by user:" << getConstraintBox() << endl;
cdebug_tabw(145,-1);
cdebug_tabw(145,-1);
return getConstraintBox();
}
Component* component = getAnchor();
if (component == NULL) {
cerr << Error( "%s is not anchored.", getString(this).c_str() ) << endl;
cdebug_tabw(145,-1);
return _gcell->getBoundingBox ();
}
DbU::Unit xMin;
DbU::Unit xMax;
DbU::Unit yMin;
DbU::Unit yMax;
Vertical* vertical;
Horizontal* horizontal;
RoutingPad* routingPad;
if ( (horizontal = dynamic_cast<Horizontal*>(component)) ) {
cdebug_log(145,0) << "Anchor: " << horizontal << "@" << horizontal->getSourcePosition() << endl;
xMin = horizontal->getSourcePosition().getX();
xMax = horizontal->getTargetPosition().getX();
yMin = yMax
= horizontal->getTargetPosition().getY();
} else if ( (vertical = dynamic_cast<Vertical*>(component)) ) {
cdebug_log(145,0) << "Anchor: " << vertical << "@" << vertical->getSourcePosition() << endl;
yMin = vertical->getSourcePosition().getY();
yMax = vertical->getTargetPosition().getY();
xMin = xMax
= vertical->getTargetPosition().getX();
} else if ( (routingPad = dynamic_cast<RoutingPad*>(component)) ) {
Entity* entity = routingPad->getOccurrence().getEntity();
Transformation transf = routingPad->getOccurrence().getPath().getTransformation();
cdebug_log(145,0) << "Anchor: " << routingPad << endl;
int rpOrient = 1;
switch ( transf.getOrientation() ) {
case Transformation::Orientation::R1:
case Transformation::Orientation::R3:
case Transformation::Orientation::XR:
case Transformation::Orientation::YR:
rpOrient = 2;
break;
default:
break;
}
if (dynamic_cast<Horizontal*>(entity)) {
// rpOrient *is* the rotation.
} else if ( dynamic_cast<Vertical*>(entity) ) {
// rpOrient is the inverse rotation.
rpOrient = (rpOrient == 1) ? 2 : 1;
} else {
rpOrient = 0;
}
switch ( rpOrient ) {
case 1:
xMin = routingPad->getSourcePosition().getX();
xMax = routingPad->getTargetPosition().getX();
yMin = yMax
= routingPad->getTargetPosition().getY();
break;
case 2:
yMin = routingPad->getSourcePosition().getY();
yMax = routingPad->getTargetPosition().getY();
xMin = xMax
= routingPad->getTargetPosition().getX();
break;
default:
xMin = xMax = routingPad->getPosition().getX();
yMin = yMax = routingPad->getPosition().getY();
break;
}
} else {
xMin = xMax = component->getPosition().getX();
yMin = yMax = component->getPosition().getY();
}
order( xMin, xMax );
order( yMin, yMax );
Katana manage wide wires, and they can also be symmetric. * New: In Anabatic::AutoContact and the derived classes, manages wide wires. The contact self dimension itself according to the segments it is connected to. Special case for the AutoContactTerminal which also read the size of the component it is anchored upon. New refresh method "updateSize()" and flag CntInvalidatedWidth. to compute the size. In AutoContactTerminal, compute the constraint box according to the width of the segment. * New: In Anabatic::AutoSegment, flags are now implemented as "static const" attributes of the class. The flags are stored into a uint64_t as they are more than 32. Added new flag "SegWide" and associated predicates. * Change: In GCellTopology::_doHChannel() and GCellTopology::_doVChannel(), uses the simpler overload of AutoSegment::create() in order to detect the wire width automatically. * New: In Katana::Manipulator, split insertToTrack() and forceToTrack() into a one-track method and a segment level method that iterate over the track span of the segment. * New: In Katana::SegmentFsm, for each cost in the table, now allow access to a specific track. So the base functions have now two parameters: "icost" and "itrack" (has a cost can have multiple tracks in the case of wide segments). * Change: In Katana::TrackElement, remove the index of the element inside it's track, as for a wide segment it will not be meaningful for the non-base track. This means that we have to use the Track::find() method each time instead. Remove the wide flag, as it is a duplicate of the one in AutoSegment. Added a getTrackCount() method to tell the number of track the segment is inserted into. Needed in the Track destroy step to delete a segment only when the last track that refers it is destroyed. Added getSymmetricAxis() to correct the computation of the symmetric base track in case of wide segment as the base track is not centered but the the leftmost one. * Change: In Track::insert() insert wide segments in their whole track span. * Change: In TrackCost, create an array of costs according to the segment track span. * Change: In TrackSegment::create(), now activate the factory and create wide segments. * Bug: In Katana::AutoSegments_Perpandicular, correct the debug indentation problem (ever shifting to the right).
2017-07-28 08:30:22 -05:00
Box bb ( xMin, yMin, xMax, yMax );
if (_segment and _segment->isWide()) {
if (dynamic_cast<AutoHorizontal*>(_segment)) bb.inflate( 0, 0, 0, -_segment->getWidth() );
else bb.inflate( 0, 0, -_segment->getWidth(), 0 );
}
cdebug_log(145,0) << "| Using (y): "
Katana manage wide wires, and they can also be symmetric. * New: In Anabatic::AutoContact and the derived classes, manages wide wires. The contact self dimension itself according to the segments it is connected to. Special case for the AutoContactTerminal which also read the size of the component it is anchored upon. New refresh method "updateSize()" and flag CntInvalidatedWidth. to compute the size. In AutoContactTerminal, compute the constraint box according to the width of the segment. * New: In Anabatic::AutoSegment, flags are now implemented as "static const" attributes of the class. The flags are stored into a uint64_t as they are more than 32. Added new flag "SegWide" and associated predicates. * Change: In GCellTopology::_doHChannel() and GCellTopology::_doVChannel(), uses the simpler overload of AutoSegment::create() in order to detect the wire width automatically. * New: In Katana::Manipulator, split insertToTrack() and forceToTrack() into a one-track method and a segment level method that iterate over the track span of the segment. * New: In Katana::SegmentFsm, for each cost in the table, now allow access to a specific track. So the base functions have now two parameters: "icost" and "itrack" (has a cost can have multiple tracks in the case of wide segments). * Change: In Katana::TrackElement, remove the index of the element inside it's track, as for a wide segment it will not be meaningful for the non-base track. This means that we have to use the Track::find() method each time instead. Remove the wide flag, as it is a duplicate of the one in AutoSegment. Added a getTrackCount() method to tell the number of track the segment is inserted into. Needed in the Track destroy step to delete a segment only when the last track that refers it is destroyed. Added getSymmetricAxis() to correct the computation of the symmetric base track in case of wide segment as the base track is not centered but the the leftmost one. * Change: In Track::insert() insert wide segments in their whole track span. * Change: In TrackCost, create an array of costs according to the segment track span. * Change: In TrackSegment::create(), now activate the factory and create wide segments. * Bug: In Katana::AutoSegments_Perpandicular, correct the debug indentation problem (ever shifting to the right).
2017-07-28 08:30:22 -05:00
<< DbU::getValueString(bb.getYMin()) << " "
<< DbU::getValueString(bb.getYMax()) << endl;
cdebug_tabw(145,-1);
Katana manage wide wires, and they can also be symmetric. * New: In Anabatic::AutoContact and the derived classes, manages wide wires. The contact self dimension itself according to the segments it is connected to. Special case for the AutoContactTerminal which also read the size of the component it is anchored upon. New refresh method "updateSize()" and flag CntInvalidatedWidth. to compute the size. In AutoContactTerminal, compute the constraint box according to the width of the segment. * New: In Anabatic::AutoSegment, flags are now implemented as "static const" attributes of the class. The flags are stored into a uint64_t as they are more than 32. Added new flag "SegWide" and associated predicates. * Change: In GCellTopology::_doHChannel() and GCellTopology::_doVChannel(), uses the simpler overload of AutoSegment::create() in order to detect the wire width automatically. * New: In Katana::Manipulator, split insertToTrack() and forceToTrack() into a one-track method and a segment level method that iterate over the track span of the segment. * New: In Katana::SegmentFsm, for each cost in the table, now allow access to a specific track. So the base functions have now two parameters: "icost" and "itrack" (has a cost can have multiple tracks in the case of wide segments). * Change: In Katana::TrackElement, remove the index of the element inside it's track, as for a wide segment it will not be meaningful for the non-base track. This means that we have to use the Track::find() method each time instead. Remove the wide flag, as it is a duplicate of the one in AutoSegment. Added a getTrackCount() method to tell the number of track the segment is inserted into. Needed in the Track destroy step to delete a segment only when the last track that refers it is destroyed. Added getSymmetricAxis() to correct the computation of the symmetric base track in case of wide segment as the base track is not centered but the the leftmost one. * Change: In Track::insert() insert wide segments in their whole track span. * Change: In TrackCost, create an array of costs according to the segment track span. * Change: In TrackSegment::create(), now activate the factory and create wide segments. * Bug: In Katana::AutoSegments_Perpandicular, correct the debug indentation problem (ever shifting to the right).
2017-07-28 08:30:22 -05:00
return bb;
}
void AutoContactTerminal::_invalidate ( Flags flags )
{
if (_segment) _segment->invalidate();
}
void AutoContactTerminal::cacheDetach ( AutoSegment* segment )
{
if (_segment == segment) {
_segment = NULL;
setFlags( CntInvalidatedCache );
}
}
void AutoContactTerminal::cacheAttach ( AutoSegment* segment )
{
if (_segment) {
cerr << Bug( "%s::cacheAttach() On %s,\n"
" cache has not been cleared first, cancelled."
, _getTypeName().c_str(), getString(this).c_str()
) << endl;
return;
}
_segment = segment;
unsetFlags( CntInvalidatedCache );
}
void AutoContactTerminal::updateCache ()
{
DebugSession::open( getNet(), 140, 150 );
cdebug_log(145,1) << _getTypeName() << "::updateCache() " << this << endl;
Component* anchor;
Horizontal** horizontals = new Horizontal* [2];
Vertical** verticals = new Vertical* [2];
_getTopology( base(), anchor, horizontals, verticals, 2 );
if (anchor == NULL)
showTopologyError( "Terminal is missing an anchor (RoutingPad or Component)." );
size_t count = 0;
if (horizontals[0] != NULL) ++count;
if (horizontals[1] != NULL) ++count;
if (verticals [0] != NULL) ++count;
if (verticals [1] != NULL) ++count;
if (count > 1) {
showTopologyError( "Terminal has more than one segment." );
}
if (horizontals[0] != NULL ) {
_segment = Session::lookup( horizontals[0] );
} else {
_segment = Session::lookup( verticals[0] );
}
if (_segment == NULL) {
ostringstream os;
os << this << ", AutoSegment lookup failed for:"
<< "\n h1: " << horizontals[0]
<< "\n v1: " << verticals[0];
delete [] horizontals;
delete [] verticals;
showTopologyError( os.str() );
throw Error( os.str() );
}
unsetFlags( CntInvalidatedCache );
cdebug_log(145,0) << "seg:" << _segment << endl;
delete [] horizontals;
delete [] verticals;
cdebug_tabw(145,-1);
DebugSession::close();
}
void AutoContactTerminal::updateGeometry ()
{
DebugSession::open( getNet(), 140, 150 );
cdebug_log(145,1) << _getTypeName() << "::updateGeometry() " << this << endl;
if (isInvalidatedCache()) updateCache();
if (isInvalidatedCache()) {
cerr << Error( "%s::updateGeometry() %s: Unable to restore cache."
, _getTypeName().c_str(), getString(this).c_str() ) << endl;
cdebug_tabw(145,-1);
return;
}
base()->invalidate( false );
unsetFlags( CntInvalidated );
ostringstream message;
if (not hasBadTopology()) {
Katana manage wide wires, and they can also be symmetric. * New: In Anabatic::AutoContact and the derived classes, manages wide wires. The contact self dimension itself according to the segments it is connected to. Special case for the AutoContactTerminal which also read the size of the component it is anchored upon. New refresh method "updateSize()" and flag CntInvalidatedWidth. to compute the size. In AutoContactTerminal, compute the constraint box according to the width of the segment. * New: In Anabatic::AutoSegment, flags are now implemented as "static const" attributes of the class. The flags are stored into a uint64_t as they are more than 32. Added new flag "SegWide" and associated predicates. * Change: In GCellTopology::_doHChannel() and GCellTopology::_doVChannel(), uses the simpler overload of AutoSegment::create() in order to detect the wire width automatically. * New: In Katana::Manipulator, split insertToTrack() and forceToTrack() into a one-track method and a segment level method that iterate over the track span of the segment. * New: In Katana::SegmentFsm, for each cost in the table, now allow access to a specific track. So the base functions have now two parameters: "icost" and "itrack" (has a cost can have multiple tracks in the case of wide segments). * Change: In Katana::TrackElement, remove the index of the element inside it's track, as for a wide segment it will not be meaningful for the non-base track. This means that we have to use the Track::find() method each time instead. Remove the wide flag, as it is a duplicate of the one in AutoSegment. Added a getTrackCount() method to tell the number of track the segment is inserted into. Needed in the Track destroy step to delete a segment only when the last track that refers it is destroyed. Added getSymmetricAxis() to correct the computation of the symmetric base track in case of wide segment as the base track is not centered but the the leftmost one. * Change: In Track::insert() insert wide segments in their whole track span. * Change: In TrackCost, create an array of costs according to the segment track span. * Change: In TrackSegment::create(), now activate the factory and create wide segments. * Bug: In Katana::AutoSegments_Perpandicular, correct the debug indentation problem (ever shifting to the right).
2017-07-28 08:30:22 -05:00
Box anchorBb = getAnchor()->getBoundingBox();
anchorBb.inflate( Session::getViaWidth (getAnchor()->getLayer())
- Session::getWireWidth(getAnchor()->getLayer()) );
if (_segment->isHorizontal()) {
Katana manage wide wires, and they can also be symmetric. * New: In Anabatic::AutoContact and the derived classes, manages wide wires. The contact self dimension itself according to the segments it is connected to. Special case for the AutoContactTerminal which also read the size of the component it is anchored upon. New refresh method "updateSize()" and flag CntInvalidatedWidth. to compute the size. In AutoContactTerminal, compute the constraint box according to the width of the segment. * New: In Anabatic::AutoSegment, flags are now implemented as "static const" attributes of the class. The flags are stored into a uint64_t as they are more than 32. Added new flag "SegWide" and associated predicates. * Change: In GCellTopology::_doHChannel() and GCellTopology::_doVChannel(), uses the simpler overload of AutoSegment::create() in order to detect the wire width automatically. * New: In Katana::Manipulator, split insertToTrack() and forceToTrack() into a one-track method and a segment level method that iterate over the track span of the segment. * New: In Katana::SegmentFsm, for each cost in the table, now allow access to a specific track. So the base functions have now two parameters: "icost" and "itrack" (has a cost can have multiple tracks in the case of wide segments). * Change: In Katana::TrackElement, remove the index of the element inside it's track, as for a wide segment it will not be meaningful for the non-base track. This means that we have to use the Track::find() method each time instead. Remove the wide flag, as it is a duplicate of the one in AutoSegment. Added a getTrackCount() method to tell the number of track the segment is inserted into. Needed in the Track destroy step to delete a segment only when the last track that refers it is destroyed. Added getSymmetricAxis() to correct the computation of the symmetric base track in case of wide segment as the base track is not centered but the the leftmost one. * Change: In Track::insert() insert wide segments in their whole track span. * Change: In TrackCost, create an array of costs according to the segment track span. * Change: In TrackSegment::create(), now activate the factory and create wide segments. * Bug: In Katana::AutoSegments_Perpandicular, correct the debug indentation problem (ever shifting to the right).
2017-07-28 08:30:22 -05:00
DbU::Unit axis = _segment->getY();
if (_segment->isWide()) {
axis += (- _segment->getWidth() + Session::getWireWidth(_segment->getLayer())) / 2;
setHeight( _segment->getContactWidth() );
}
if (not getUConstraints(Flags::Vertical).contains(axis)) {
cdebug_log(145,0) << "Cached: " << _segment << endl;
Katana manage wide wires, and they can also be symmetric. * New: In Anabatic::AutoContact and the derived classes, manages wide wires. The contact self dimension itself according to the segments it is connected to. Special case for the AutoContactTerminal which also read the size of the component it is anchored upon. New refresh method "updateSize()" and flag CntInvalidatedWidth. to compute the size. In AutoContactTerminal, compute the constraint box according to the width of the segment. * New: In Anabatic::AutoSegment, flags are now implemented as "static const" attributes of the class. The flags are stored into a uint64_t as they are more than 32. Added new flag "SegWide" and associated predicates. * Change: In GCellTopology::_doHChannel() and GCellTopology::_doVChannel(), uses the simpler overload of AutoSegment::create() in order to detect the wire width automatically. * New: In Katana::Manipulator, split insertToTrack() and forceToTrack() into a one-track method and a segment level method that iterate over the track span of the segment. * New: In Katana::SegmentFsm, for each cost in the table, now allow access to a specific track. So the base functions have now two parameters: "icost" and "itrack" (has a cost can have multiple tracks in the case of wide segments). * Change: In Katana::TrackElement, remove the index of the element inside it's track, as for a wide segment it will not be meaningful for the non-base track. This means that we have to use the Track::find() method each time instead. Remove the wide flag, as it is a duplicate of the one in AutoSegment. Added a getTrackCount() method to tell the number of track the segment is inserted into. Needed in the Track destroy step to delete a segment only when the last track that refers it is destroyed. Added getSymmetricAxis() to correct the computation of the symmetric base track in case of wide segment as the base track is not centered but the the leftmost one. * Change: In Track::insert() insert wide segments in their whole track span. * Change: In TrackCost, create an array of costs according to the segment track span. * Change: In TrackSegment::create(), now activate the factory and create wide segments. * Bug: In Katana::AutoSegments_Perpandicular, correct the debug indentation problem (ever shifting to the right).
2017-07-28 08:30:22 -05:00
message << "Terminal horizontal segment Y " << DbU::getValueString(axis)
<< " axis is outside RoutingPad " << getUConstraints(Flags::Vertical) << ".";
Anabatic transient commit 18. Port of Kite (Katana), Yeah, Baby! Yeah! * Bug: In Hurricane, in StaticObservable::getObserver(), if the slot pointer is NULL, do not try to access the owner. Returns NULL, so the caller can be aware of the situation... * Change: In Hurricane, in BreakpointWidget & ExceptionWidget some cosmetic changes (fonts and window sizes). * Bug: In Anabatic, In AutoHorizontal::getConstraints(), take into account the constraints from the source AutoContact, as it holds the constraints transmitted by the RoutingPads and sets up by propageConstraintsFromRp(). It is likely to be a bug affecting the original Katabatic as well. * Change: In Anabatic, in RawGCellsUnder(), check that the segment is not completly oustside the cell abutment box and truncate the coordinates to the part that is inside. Use the "shrink" if we reach the east/north border. * Change: In Anabatic, in Configuration, no more decorator because we will use a true derived relationship. Katana *derives* from *Anabatic* and do not *decorate* it, so the Configuration can do the same. It also implies that we directly create a Katana engine, not an Anabatic one. * Change: In Anabatic, in Session, do not allow the opening of the Session in a standalone fashion (with a static method). Instead it must be opened using the relevant method of the Anabatic/Katana engine. This ensure we are opening the right Session type. * Change: In Anabatic, in AutoSegment_Aligneds() collection the seed segment is not part of the collection by default, but will be included if the Flags::WithSelf is set. * Change: In Configuration, all the flags value are now defined in two steps. Declared in the header and initialized in the module. This is to prevent the fact that on some cases, in relation with the Python "extern C" part modules, we need a true allocated variable. It was causing weird linking problems. A side effect is that they can no longer be used as entry is switches, have to replace them by if/else. * New: In Anabatic, new GCell::getNeighborAt() utility function. * Bug: In Anabatic, in GCell::doGrid(), tag all the GCells of the grid with the grid type... Back annote all the edges capacity (north & east) with the reserved local capacity. * New: Complete portage of Kite over Anabatic. The new engine is christened "Katana" for Kite-Analogic. When it's capabilities and performances will be on a part with Kite, it is to completly replace it (and take back the "Kite" name). Preliminary tests seems to show that, contrary to intuition (because built on a more complex/slower grid), it is even slightly faster than Kite 8-).
2016-08-15 09:30:13 -05:00
Interval intv;
_segment->getConstraints( intv );
message << "\n Segment constraints: " << intv << endl;
Flags flags = Flags::NoFlags;
if (_segment->isCreated()) flags |= Flags::CParanoid;
showTopologyError( message.str(), flags );
} else
setY( _segment->getY() );
} else {
Katana manage wide wires, and they can also be symmetric. * New: In Anabatic::AutoContact and the derived classes, manages wide wires. The contact self dimension itself according to the segments it is connected to. Special case for the AutoContactTerminal which also read the size of the component it is anchored upon. New refresh method "updateSize()" and flag CntInvalidatedWidth. to compute the size. In AutoContactTerminal, compute the constraint box according to the width of the segment. * New: In Anabatic::AutoSegment, flags are now implemented as "static const" attributes of the class. The flags are stored into a uint64_t as they are more than 32. Added new flag "SegWide" and associated predicates. * Change: In GCellTopology::_doHChannel() and GCellTopology::_doVChannel(), uses the simpler overload of AutoSegment::create() in order to detect the wire width automatically. * New: In Katana::Manipulator, split insertToTrack() and forceToTrack() into a one-track method and a segment level method that iterate over the track span of the segment. * New: In Katana::SegmentFsm, for each cost in the table, now allow access to a specific track. So the base functions have now two parameters: "icost" and "itrack" (has a cost can have multiple tracks in the case of wide segments). * Change: In Katana::TrackElement, remove the index of the element inside it's track, as for a wide segment it will not be meaningful for the non-base track. This means that we have to use the Track::find() method each time instead. Remove the wide flag, as it is a duplicate of the one in AutoSegment. Added a getTrackCount() method to tell the number of track the segment is inserted into. Needed in the Track destroy step to delete a segment only when the last track that refers it is destroyed. Added getSymmetricAxis() to correct the computation of the symmetric base track in case of wide segment as the base track is not centered but the the leftmost one. * Change: In Track::insert() insert wide segments in their whole track span. * Change: In TrackCost, create an array of costs according to the segment track span. * Change: In TrackSegment::create(), now activate the factory and create wide segments. * Bug: In Katana::AutoSegments_Perpandicular, correct the debug indentation problem (ever shifting to the right).
2017-07-28 08:30:22 -05:00
DbU::Unit axis = _segment->getX();
if (_segment->isWide()) {
axis += (- _segment->getWidth() + Session::getWireWidth(_segment->getLayer())) / 2;
setWidth ( _segment->getContactWidth() );
setHeight( anchorBb.getHeight() );
cdebug_log(145,0) << "Contact for wide segment." << endl;
}
if (not getUConstraints(Flags::Horizontal).contains(axis)) {
cdebug_log(145,0) << "Cached: " << _segment << endl;
Katana manage wide wires, and they can also be symmetric. * New: In Anabatic::AutoContact and the derived classes, manages wide wires. The contact self dimension itself according to the segments it is connected to. Special case for the AutoContactTerminal which also read the size of the component it is anchored upon. New refresh method "updateSize()" and flag CntInvalidatedWidth. to compute the size. In AutoContactTerminal, compute the constraint box according to the width of the segment. * New: In Anabatic::AutoSegment, flags are now implemented as "static const" attributes of the class. The flags are stored into a uint64_t as they are more than 32. Added new flag "SegWide" and associated predicates. * Change: In GCellTopology::_doHChannel() and GCellTopology::_doVChannel(), uses the simpler overload of AutoSegment::create() in order to detect the wire width automatically. * New: In Katana::Manipulator, split insertToTrack() and forceToTrack() into a one-track method and a segment level method that iterate over the track span of the segment. * New: In Katana::SegmentFsm, for each cost in the table, now allow access to a specific track. So the base functions have now two parameters: "icost" and "itrack" (has a cost can have multiple tracks in the case of wide segments). * Change: In Katana::TrackElement, remove the index of the element inside it's track, as for a wide segment it will not be meaningful for the non-base track. This means that we have to use the Track::find() method each time instead. Remove the wide flag, as it is a duplicate of the one in AutoSegment. Added a getTrackCount() method to tell the number of track the segment is inserted into. Needed in the Track destroy step to delete a segment only when the last track that refers it is destroyed. Added getSymmetricAxis() to correct the computation of the symmetric base track in case of wide segment as the base track is not centered but the the leftmost one. * Change: In Track::insert() insert wide segments in their whole track span. * Change: In TrackCost, create an array of costs according to the segment track span. * Change: In TrackSegment::create(), now activate the factory and create wide segments. * Bug: In Katana::AutoSegments_Perpandicular, correct the debug indentation problem (ever shifting to the right).
2017-07-28 08:30:22 -05:00
message << "Terminal vertical segment X" << DbU::getValueString(axis)
<< " axis is outside RoutingPad " << getUConstraints(Flags::Horizontal) << ".";
Flags flags = Flags::NoFlags;
if (_segment->isCreated()) flags |= Flags::CParanoid;
showTopologyError( message.str(), flags );
} else
setX( _segment->getX() );
}
}
cdebug_tabw(145,-1);
DebugSession::close();
}
void AutoContactTerminal::updateTopology ()
{
DebugSession::open( getNet(), 140, 150 );
cdebug_log(145,1) << _getTypeName() << "::updateTopology() " << this << endl;
if (isInvalidatedCache()) updateCache();
if (isInvalidatedCache()) {
cerr << Error( "%s::updateGeometry() %s: Unable to restore cache."
, _getTypeName().c_str(), getString(this).c_str() ) << endl;
cdebug_tabw(145,-1);
return;
}
RoutingGauge* rg = Session::getRoutingGauge();
size_t anchorDepth = rg->getLayerDepth( (_flags & CntIgnoreAnchor) ? getLayer()
: getAnchor()->getLayer() );
size_t segmentDepth = rg->getLayerDepth( _segment->getLayer() );
size_t delta = abssub( anchorDepth, segmentDepth );
if (delta > 3) {
showTopologyError( "Sheared Terminal, layer delta exceed 3." );
setFlags( CntBadTopology );
} else {
if (delta > 1) {
//_segment = _segment->makeDogleg( this );
_segment->makeDogleg( this );
cdebug_log(145,0) << "Update seg: " << _segment << endl;
delta = abssub( anchorDepth, rg->getLayerDepth( _segment->getLayer() ) );
}
else if (delta == 0) setLayer( rg->getRoutingLayer(anchorDepth) );
else if (delta == 1) setLayer( rg->getContactLayer(std::min(anchorDepth,segmentDepth)) );
}
_segment->invalidate( this );
cdebug_tabw(145,-1);
DebugSession::close();
}
void AutoContactTerminal::forceOnGrid ( Point gridPoint )
{
setFlags( CntUserNativeConstraints );
setConstraintBox( Box(gridPoint) );
}
string AutoContactTerminal::_getTypeName () const
{ return "ContactTerminal"; }
} // Anabatic namespace.