coriolis/anabatic/src/AutoContact.cpp

686 lines
22 KiB
C++
Raw Normal View History

// -*- C++ -*-
//
// This file is part of the Coriolis Software.
// Copyright (c) UPMC 2008-2018, All Rights Reserved
//
// +-----------------------------------------------------------------+
// | C O R I O L I S |
// | A n a b a t i c - Routing Toolbox |
// | |
// | Author : Jean-Paul CHAPUT |
// | E-mail : Jean-Paul.Chaput@lip6.fr |
// | =============================================================== |
// | C++ Module : "./AutoContact.cpp" |
// +-----------------------------------------------------------------+
#include <cstdlib>
#include <climits>
#include <sstream>
#include "hurricane/Bug.h"
#include "hurricane/Error.h"
#include "hurricane/Warning.h"
#include "hurricane/Layer.h"
#include "hurricane/ViaLayer.h"
#include "hurricane/BasicLayer.h"
#include "hurricane/Technology.h"
#include "hurricane/Net.h"
#include "hurricane/Plug.h"
#include "hurricane/RoutingPad.h"
#include "hurricane/Vertical.h"
#include "hurricane/Horizontal.h"
#include "hurricane/DebugSession.h"
#include "crlcore/RoutingGauge.h"
#include "anabatic/AutoContact.h"
#include "anabatic/AutoContactTerminal.h"
#include "anabatic/AutoContactTurn.h"
#include "anabatic/AutoContactHTee.h"
#include "anabatic/AutoContactVTee.h"
#include "anabatic/AutoVertical.h"
#include "anabatic/AutoHorizontal.h"
#include "anabatic/AnabaticEngine.h"
#include "anabatic/Session.h"
namespace Anabatic {
using std::ostringstream;
using Hurricane::Bug;
using Hurricane::Error;
using Hurricane::Warning;
using Hurricane::DebugSession;
using Hurricane::ForEachIterator;
// -------------------------------------------------------------------
// Class : "Anabatic::AutoContact".
size_t AutoContact::_maxId = 0;
size_t AutoContact::_allocateds = 0;
const Name AutoContact::_goName = "Anabatic::AutoContact";
AutoContact::AutoContact ( GCell* gcell, Contact* contact )
: _id (contact->getId())
, _contact (contact)
, _gcell (gcell)
, _flags (CntInvalidatedCache|CntInCreationStage)
, _xMin (_gcell->getXMin())
, _xMax (_gcell->getConstraintXMax())
, _yMin (_gcell->getYMin())
, _yMax (_gcell->getConstraintYMax())
{
_allocateds++;
_gcell->addContact ( this );
}
void AutoContact::_preCreate ( GCell* gcell, Net* net, const Layer* layer )
{
if (not gcell) throw Error("AutoContact::_preCreate(): GCell* parameter must not be NULL.");
if (not net ) throw Error("AutoContact::_preCreate(): Net* parameter must not be NULL.");
if (not layer) throw Error("AutoContact::_preCreate(): const Layer* parameter must not be NULL.");
}
void AutoContact::_postCreate ()
{
restoreNativeConstraintBox();
cdebug_log(145,0) << "Native CBox: " << this
<< " <" << DbU::getValueString(getCBXMin())
<< " " << DbU::getValueString(getCBYMin())
<< " " << DbU::getValueString(getCBXMax())
<< " " << DbU::getValueString(getCBYMax()) << ">" << endl;
Session::link( this );
invalidate( Flags::Topology );
cdebug_log(145,0) << "AutoContact::_postCreate() - " << this << " in " << _gcell << endl;
}
void AutoContact::destroy ()
{
_preDestroy ();
delete this;
}
void AutoContact::_preDestroy ()
{
DebugSession::open( _contact->getNet(), 145, 150 );
cdebug_log(145,0) << "AutoContact::_preDestroy() - <AutoContact id:" << _id << ">" << endl;
#if 0
bool canDestroyBase = true;
if (not _contact->getSlaveComponents().isEmpty()) {
ostringstream message;
message << "Base contact still have slaves components, cancelled.\n"
<< " on: " << this;
for ( Component* component : _contact->getSlaveComponents() ) {
message << "\n | " << component;
}
cerr << Error( message.str() ) << endl;
canDestroyBase = false;
}
#endif
if (not Session::doDestroyTool()) {
_gcell->removeContact( this );
Session::unlink( this );
}
#if 0
if (Session::doDestroyBaseContact() and canDestroyBase)
_contact->destroy();
#endif
DebugSession::close();
}
AutoContact::~AutoContact ()
{ _allocateds--; }
size_t AutoContact::getAllocateds ()
{ return _allocateds; }
const Name& AutoContact::getStaticName ()
{ return _goName; }
bool AutoContact::canDestroy ( Flags flags ) const
{
if (not _contact->getSlaveComponents().isEmpty()) {
if (flags & Flags::WarnOnError) {
cerr << Error("Base contact still have slaves components, cancelled.\n"
" (%s)"
,_getString().c_str()) << endl;
}
return false;
}
return true;
}
Katana manage wide wires, and they can also be symmetric. * New: In Anabatic::AutoContact and the derived classes, manages wide wires. The contact self dimension itself according to the segments it is connected to. Special case for the AutoContactTerminal which also read the size of the component it is anchored upon. New refresh method "updateSize()" and flag CntInvalidatedWidth. to compute the size. In AutoContactTerminal, compute the constraint box according to the width of the segment. * New: In Anabatic::AutoSegment, flags are now implemented as "static const" attributes of the class. The flags are stored into a uint64_t as they are more than 32. Added new flag "SegWide" and associated predicates. * Change: In GCellTopology::_doHChannel() and GCellTopology::_doVChannel(), uses the simpler overload of AutoSegment::create() in order to detect the wire width automatically. * New: In Katana::Manipulator, split insertToTrack() and forceToTrack() into a one-track method and a segment level method that iterate over the track span of the segment. * New: In Katana::SegmentFsm, for each cost in the table, now allow access to a specific track. So the base functions have now two parameters: "icost" and "itrack" (has a cost can have multiple tracks in the case of wide segments). * Change: In Katana::TrackElement, remove the index of the element inside it's track, as for a wide segment it will not be meaningful for the non-base track. This means that we have to use the Track::find() method each time instead. Remove the wide flag, as it is a duplicate of the one in AutoSegment. Added a getTrackCount() method to tell the number of track the segment is inserted into. Needed in the Track destroy step to delete a segment only when the last track that refers it is destroyed. Added getSymmetricAxis() to correct the computation of the symmetric base track in case of wide segment as the base track is not centered but the the leftmost one. * Change: In Track::insert() insert wide segments in their whole track span. * Change: In TrackCost, create an array of costs according to the segment track span. * Change: In TrackSegment::create(), now activate the factory and create wide segments. * Bug: In Katana::AutoSegments_Perpandicular, correct the debug indentation problem (ever shifting to the right).
2017-07-28 08:30:22 -05:00
const Name& AutoContact::getName () const { return _goName; }
AutoSegments AutoContact::getAutoSegments () { return new AutoSegments_CachedOnContact(this); }
AutoSegment* AutoContact::getPerpandicular ( const AutoSegment* ) const { return NULL; }
AutoHorizontal* AutoContact::getHorizontal1 () const { return NULL; }
AutoHorizontal* AutoContact::getHorizontal2 () const { return NULL; }
AutoVertical* AutoContact::getVertical1 () const { return NULL; }
AutoVertical* AutoContact::getVertical2 () const { return NULL; }
Forgot to perform Track re-order after removing zero-length segments. * Change: In Anabatic::Autocontact, replace getMinDepth() and getMaxDepth() by getDepthSpan(). * New: In Anabatic::AutoSegment::canMoveUp(), add an optional check of low up density (Flags::CheckLowUpDensity). Allows to move up a segment if the up density is (very) low, and in this case it's more efficient than breaking it to fit in the lower layer. canMoveUp() is now able to perform the same work as canPivotUp() if *not* supplied the flag Flags::IgnoreContacts. * New: In Katana, in GlobalRouting::DigitalDistance() now take into account the cost of a VIA (currently set to 2.5). Need to known the Net currently routed in the DigitalDistance object itself. * Change: In Katana::Track::Element::canPivotUp(), now also takes a flag parameter. * Change: In Katana::Manipulator, new flag IgnoreContacts to mirror the one of Anabatic. * Change: In Katana::SegmentFsm, allocate once a Manipulator object instead of many times on the fly. In SegmentFsm::_slackenGlobal(), in the slacken state, if the up density is (very) low, bypass to move up instead of slackening. This solve better the routing of the control part of the register file. The register file having a pathological case of terminal placement: many punctual terminals aligneds in METAL2 *and* a grid of METAL2 and METAL3 blockages near below... * Bug: In Katana::Session::_revalidate(), after removing the zero-length segments, forgot to re-order the track, leading to many stranges effects as the indexes where no longer coherent in the Track.
2016-09-20 04:30:45 -05:00
void AutoContact::getDepthSpan ( size_t& minDepth, size_t& maxDepth ) const
{
Forgot to perform Track re-order after removing zero-length segments. * Change: In Anabatic::Autocontact, replace getMinDepth() and getMaxDepth() by getDepthSpan(). * New: In Anabatic::AutoSegment::canMoveUp(), add an optional check of low up density (Flags::CheckLowUpDensity). Allows to move up a segment if the up density is (very) low, and in this case it's more efficient than breaking it to fit in the lower layer. canMoveUp() is now able to perform the same work as canPivotUp() if *not* supplied the flag Flags::IgnoreContacts. * New: In Katana, in GlobalRouting::DigitalDistance() now take into account the cost of a VIA (currently set to 2.5). Need to known the Net currently routed in the DigitalDistance object itself. * Change: In Katana::Track::Element::canPivotUp(), now also takes a flag parameter. * Change: In Katana::Manipulator, new flag IgnoreContacts to mirror the one of Anabatic. * Change: In Katana::SegmentFsm, allocate once a Manipulator object instead of many times on the fly. In SegmentFsm::_slackenGlobal(), in the slacken state, if the up density is (very) low, bypass to move up instead of slackening. This solve better the routing of the control part of the register file. The register file having a pathological case of terminal placement: many punctual terminals aligneds in METAL2 *and* a grid of METAL2 and METAL3 blockages near below... * Bug: In Katana::Session::_revalidate(), after removing the zero-length segments, forgot to re-order the track, leading to many stranges effects as the indexes where no longer coherent in the Track.
2016-09-20 04:30:45 -05:00
minDepth = (size_t)-1;
maxDepth = 0;
Component* anchor = getAnchor ();
if (anchor) {
minDepth = std::min( minDepth, Session::getRoutingGauge()->getLayerDepth(anchor->getLayer()) );
Forgot to perform Track re-order after removing zero-length segments. * Change: In Anabatic::Autocontact, replace getMinDepth() and getMaxDepth() by getDepthSpan(). * New: In Anabatic::AutoSegment::canMoveUp(), add an optional check of low up density (Flags::CheckLowUpDensity). Allows to move up a segment if the up density is (very) low, and in this case it's more efficient than breaking it to fit in the lower layer. canMoveUp() is now able to perform the same work as canPivotUp() if *not* supplied the flag Flags::IgnoreContacts. * New: In Katana, in GlobalRouting::DigitalDistance() now take into account the cost of a VIA (currently set to 2.5). Need to known the Net currently routed in the DigitalDistance object itself. * Change: In Katana::Track::Element::canPivotUp(), now also takes a flag parameter. * Change: In Katana::Manipulator, new flag IgnoreContacts to mirror the one of Anabatic. * Change: In Katana::SegmentFsm, allocate once a Manipulator object instead of many times on the fly. In SegmentFsm::_slackenGlobal(), in the slacken state, if the up density is (very) low, bypass to move up instead of slackening. This solve better the routing of the control part of the register file. The register file having a pathological case of terminal placement: many punctual terminals aligneds in METAL2 *and* a grid of METAL2 and METAL3 blockages near below... * Bug: In Katana::Session::_revalidate(), after removing the zero-length segments, forgot to re-order the track, leading to many stranges effects as the indexes where no longer coherent in the Track.
2016-09-20 04:30:45 -05:00
maxDepth = std::max( maxDepth, Session::getRoutingGauge()->getLayerDepth(anchor->getLayer()) );
}
for ( AutoSegment* segment : const_cast<AutoContact*>(this)->getAutoSegments() ) {
minDepth = std::min( minDepth, Session::getRoutingGauge()->getLayerDepth(segment->getLayer()) );
Forgot to perform Track re-order after removing zero-length segments. * Change: In Anabatic::Autocontact, replace getMinDepth() and getMaxDepth() by getDepthSpan(). * New: In Anabatic::AutoSegment::canMoveUp(), add an optional check of low up density (Flags::CheckLowUpDensity). Allows to move up a segment if the up density is (very) low, and in this case it's more efficient than breaking it to fit in the lower layer. canMoveUp() is now able to perform the same work as canPivotUp() if *not* supplied the flag Flags::IgnoreContacts. * New: In Katana, in GlobalRouting::DigitalDistance() now take into account the cost of a VIA (currently set to 2.5). Need to known the Net currently routed in the DigitalDistance object itself. * Change: In Katana::Track::Element::canPivotUp(), now also takes a flag parameter. * Change: In Katana::Manipulator, new flag IgnoreContacts to mirror the one of Anabatic. * Change: In Katana::SegmentFsm, allocate once a Manipulator object instead of many times on the fly. In SegmentFsm::_slackenGlobal(), in the slacken state, if the up density is (very) low, bypass to move up instead of slackening. This solve better the routing of the control part of the register file. The register file having a pathological case of terminal placement: many punctual terminals aligneds in METAL2 *and* a grid of METAL2 and METAL3 blockages near below... * Bug: In Katana::Session::_revalidate(), after removing the zero-length segments, forgot to re-order the track, leading to many stranges effects as the indexes where no longer coherent in the Track.
2016-09-20 04:30:45 -05:00
maxDepth = std::max( maxDepth, Session::getRoutingGauge()->getLayerDepth(segment->getLayer()) );
}
}
Migrating the initialisation system to be completely Python-like. * New: In bootstrap/coriolisEnv.py, add the "etc" directory to the PYTHONPATH as initialization are now Python modules. * New: In Hurricane/analogic, first groundwork for the integration of PIP/MIM/MOM multi-capacitors. Add C++ and Python interface for the allocation matrix and the list of capacities values. * Change: In Hurricane::RegularLayer, add a layer parameter to the constructor so the association between the RegularLayer and it's BasicLayer can readily be done. * Change: In Hurricane::Layer, add a new getCut() accessor to get the cut layer in ViaLayer. * Change: In Hurricane::DataBase::get(), the Python wrapper should no longer consider an error if the data-base has not been created yet. Just return None. * Bug: In Isobar::PyLayer::getEnclosure() wrapper, if the overall enclosure is requested, pass the right parameter to the C++ function. * Change: In AllianceFramework, make public _bindLibraries() and export it to the Python interface. * Change: In AllianceFramework::create(), do not longer call bindLibraries(). This now must be done explicitely and afterwards. * Change: In AllianceFramework::createLibrary() and Environement::addSYSTEM_LIBRARY(), minor bug corrections that I don't recall. * Change: In SearchPath::prepend(), set the selected index to zero and return it. * Change: In CRL::System CTOR, add "etc" to the PYTHONPATH as the configuration files are now organized as Python modules. * New: In PyCRL, export the CRL::System singleton, it's creation is no longer triggered by the one of AllianceFramework. * New: In CRL/etc/, convert most of the configuration files into the Python module format. For now, keep the old ".conf", but that are no longer used. For the real technologies, we cannot keep the directory name as "180" or "45" as it not allowed by Python syntax, so we create "node180" or "node45" instead. Most of the helpers and coriolisInit.py are no longer used now. To be removed in future commits after being sure that everything works... * Bug: In AutoSegment::makeDogleg(AutoContact*), the layer of the contacts where badly computed when one end of the original segment was attached to a non-preferred direction segment (mostly on terminal contacts). Now use the new AutoContact::updateLayer() method. * Bug: In Dijkstra::load(), limit symetric search area only if the net is a symmetric one ! * Change: In Katana/python/katanaInit.py, comply with the new initialisation scheme. * Change: In Unicorn/cgt.py, comply to the new inititalization scheme. * Change: In cumulus various Python scripts remove the call to helpers.staticInitialization() as they are not needed now (we run in only *one* interpreter, so we correctly share all init). In plugins/__init__.py, read the new NDA directory variable. * Bug: In cumulus/plugins/Chip.doCoronafloorplan(), self.railsNb was not correctly managed when there was no clock. * Change: In cumulus/plugins/Configuration.coronaContactArray(), compute the viaPitch from the technology instead of the hard-coded 4.0 lambdas. In Configuration.loadConfiguration(), read the "ioring.py" from the new user's settings module. * Bug: In stratus.dpgen_ADSB2F, gives coordinates translated into DbU to the XY functions. In st_model.Save(), use the VstUseConcat flag to get correct VST files. In st_net.hur_net(), when a net is POWER/GROUND or CLOCK also make it global. * Change: In Oroshi/python/WIP_Transistor.py, encapsulate the generator inside a try/except block to get prettier error (and stop at the first).
2019-10-28 12:09:14 -05:00
void AutoContact::updateLayer ()
{
size_t minDepth = (size_t)-1;
size_t maxDepth = 0;
getDepthSpan( minDepth, maxDepth );
if (minDepth == maxDepth)
setLayer( Session::getRoutingGauge()->getRoutingLayer(minDepth) );
else
setLayer( Session::getRoutingGauge()->getContactLayer(minDepth) );
}
void AutoContact::getLengths ( DbU::Unit* lengths, AutoSegment::DepthLengthSet& processeds )
{
DbU::Unit hSideLength = getGCell()->getSide( Flags::Horizontal ).getSize();
DbU::Unit vSideLength = getGCell()->getSide( Flags::Vertical ).getSize();
for ( AutoSegment* segment : getAutoSegments() ) {
bool isSourceHook = (segment->getAutoSource() == this);
if (processeds.find(segment) != processeds.end()) continue;
processeds.insert( segment );
size_t depth = Session::getRoutingGauge()->getLayerDepth(segment->getLayer());
DbU::Unit length;
if (segment->isLocal()) {
length = segment->getLength();
lengths[depth] += length;
DbU::Unit sideLength = (segment->isHorizontal()) ? hSideLength : vSideLength;
if ( not segment->isUnbound() and (abs(length) > sideLength) )
cerr << Error("Suspicious length:%.2f of %s."
,DbU::getValueString(length).c_str()
,getString(segment).c_str()) << endl;
} else {
if (segment->isHorizontal()) {
if (isSourceHook)
lengths[depth] += _gcell->getXMax() - segment->getSourceX();
else
lengths[depth] += segment->getTargetX() - _gcell->getXMin();
} else {
if (isSourceHook)
lengths[depth] += _gcell->getYMax() - segment->getSourceY();
else
lengths[depth] += segment->getTargetY() - _gcell->getYMin();
}
}
}
}
Box AutoContact::getNativeConstraintBox () const
{
if (isUserNativeConstraints()) return getConstraintBox();
if (isFixed()) return Box(_contact->getPosition());
return _gcell->getConstraintBox();
}
Interval AutoContact::getNativeUConstraints ( Flags direction ) const
{
Box nativeConstraints = getNativeConstraintBox();
Interval constraint;
if (direction & Flags::Horizontal) {
constraint = Interval( nativeConstraints.getXMin(), nativeConstraints.getXMax() );
} else {
constraint = Interval( nativeConstraints.getYMin(), nativeConstraints.getYMax() );
}
//if (direction & Flags::NoGCellShrink) constraint.inflate( 0, GCell::getTopRightShrink() );
return constraint;
}
Interval AutoContact::getUConstraints ( Flags direction ) const
{
Interval constraint;
if (direction & Flags::Horizontal) {
constraint = Interval( getCBXMin(), getCBXMax() );
} else {
constraint = Interval( getCBYMin(), getCBYMax() );
}
//if (direction & Flags::NoGCellShrink) constraint.inflate( 0, GCell::getTopRightShrink() );
return constraint;
}
void AutoContact::invalidate ( Flags flags )
{
Upgrade of Katana detailed router to support Arlet 6502. * Change: In Hurricane::SharedName, replace the incremental Id by a hash key. This is to ensure better deterministic properties. Between use cases, additional strings may have to be allocated, shitfing the ids. Even if hash can be duplicated, we should be able to ensure that the absolute order in map table should be preserved. Supplemental strings are inserted in a way that keep the previous order. * Change: In CRL/etc/symbolic/cmos/kite.conf, add "katabatic.routingGauge" default parameter value ("sxlib"). * Change: In CRL/etc/common/technology.conf, define minimal spacing for symbolic layers too (added for METAL4 only for now). * Change: In CRL::Histogram, extend support to dynamically sized histograms. Add a text pretty print with table and pseudo-curve. * Change: In Cumulus/plugins/ClockTreePlugin, create blockage under the block corona corners so the global router do not draw wire under them. This was creating deadlock for the detailed router. When the abutment has to be computed, directly use Etesian to do it instead of duplicating the computation in the Python plugin. * New: In Etesian, as Coloquinte seems reluctant to evenly spread the standard cells, we trick it by making them bigger during the placement stage. Furthermore, we do not not uniformely increase the size of the cells but create a "bloating profile" based on cell size, cell name or it's density of terminals. Currently only two profiles are defined, "disabled" which does nothing and "nsxlib" targeted on 4 metal layer technologies (aka AMS 350nm, c35b4). * Bug: In Knik::MatrixVertex, load the default routing gauge using the configuration parameter "katabatic.routingGauge" as the default one may not be the first registered one. * New: In AnabaticEngine::setupNetDatas(), build a dynamic historgram of the nets terminal numbers. * Bug: In Anabatic::AutoContact::Invalidate(), always invalidate the contact cache when topology is invalidated. In case of multiple invalidations, if the first did not invalidate the cache, later one that may need it where not allowed to do so. The end result was correct nonetheless, but it did generate annoying error messages. * Bug: In Anabatic::AutoContactTurn::updateTopology(), bad computation of the contact's depth when delta == 2. * Bug: In Anabatic::Gcell::getCapacity(), was always returning the west edge capacity, even for the westermost GCell, should be the east edge in that case. * New: In Anabatic::AutoSegment, introduce a new measure "distance to terminal". This is the minimal number of segments separating the current one from the nearest RoutingPad. This replace the previous "strong terminal" and "weak terminal" flags. This distance is used by Katana to sort the events, we route the segments *from* the RoutingPads *outward*. The idea being that if we cannot event connect to the RoutingPad, there is no points continuing as thoses segments are the more constraineds. This gives an order close to the simple ascending metals but with better results. * New: In Anabatic::AutoSegment, introduce a new flag "Unbreakable", disable dogleg making on those segments. mainly intended for local segments directly connecteds to RoutingPads (distance == 0). * New: In Anabatic::AutoSegment, more aggressive reducing of segments. Now the only case where a segment cannot be reduced is when it is one horizontal branch in a HTee or a vertical on a VTee. Check if, when not accounted the source & target VIAs are still connex, if so, allow reducing. * New: In Anabatic::AutoContact, new state flags CntVDogleg & CntHDogleg mainly to prevent making doglegs twice on a turn contact. This is to limit over-fragmentation. If one dogleg doesn't solve the problem, making a second one will make things worse only... * Bug: In Anabatic::Configuration::selectRpcomponent(), we were choosing the component with the *smallest* span instead of the *bigger* one. * New: In Anabatic::GCell, introduce a new flag "GoStraight" to tell that no turn go be made inside those GCells. Mainly used underneath a block corona. * New: In AnabaticEngine::layerAssign(), new GCellRps & RpsInRow to manage GCells with too many terminals. Slacken at least one RoutingPad access when there is more than 8 RoutingPad in the GCell (slacken or change a vertical METAL2 (non-preferred) into a METAL3). * Change: In Anabatic::NetBuilderHV, allow the use of terminal connection in non-preferred direction. That is, vertical METAL2 directly connected to the RoutingPad (then a horizontal METAL2). This alllows for short dogleg without clutering the METAL3 layer (critical for AMS c35b4). Done in NetBuilderHV::doRp_Access(), with a new UseNonPref flag. Perform some other tweaking on METAL1 access topologies, to also minimize METAL3 use. * New: In AnabaticEngine::computeNetConstraints(), also compute the distance to RoutingPad for segments. Set the Unbreakable flag, based on the distance and segment length (local, short global or long global). New local function "propagateDistanceFromRp()". * Change: In AnabaticEngine.h, the sorting class for NetData, SparsityOrder, is modificated so net with a degree superior to 10 are sorted first, whatever their sparsity. This is to work in tandem with GlobalRouting. * New: In Katana::TrackSegmentNonPref, introduce a class to manage segment in non-preferred routing direction. Mostly intended for small METAL2 vertical directly connected to RoutingPad. Modifications to manage this new variant all through Katana. * Change: In Katana::GlobalRoute, DigitalDistance honor the GoStraight flag of the GCell. Do not make bend inside thoses GCells. * Change: In KatanaEngine::runGlobalRouter(), high degree nets (>= 10) are routed first and whitout the global routing estimation. There should be few of them so they wont create saturations and we want them as straight as possible. Detour are for long be-points. Set the saerch halo to one GCell in the initial routing stage (before ripup). * Bug: In KatanaEngine & NegociateWindow, call _computeCagedconstraints() inside NegociateWindow::run(), as segments are inserted into tracks only at that point so we cannot make the computation earlier. * Change: In Katana::Manipulator::repackPerpandiculars(), add a flag to select whether to replace the perpandiculars *after* or *before* the current segment. * Change: In Katana::NegociateWindow::NegociateOverlapCost(), when the segment is fully enclosed inside a global, the longest overlap cost is set to the shortest global hoverhang (before or after). When the cost is for a global, set an infinite cost if the overlapping segment has a RP distance less or equal to 1 (this is an access segment). * Bug: In Katana::PowerRailsPlane::Rail::doLayout(), correct computation of the segments extension cap. * New: In Katana::QueryPowerRails::addToPowerRail(), add support for Pad. * Change: In Katana/PreProcess::protectCagedTerminals(), apply the contraints to any turn connected to the first segment of the RoutingPad so the perpandicular constraints got propagated to the perpandicular segment... * Change: In RoutingEvent, cache the "distance to RP" value. * Change: In RoutingEvent::Key::compare(), sort *first* on distance to RoutingPad, then layer depth. If both distance to RoutingPad is null, then sort on segment length. * Change: In RoutingEvent::_processRepair(), try a repack perpandicular with perpandiculars first (then with perpandicular last, then give up). * Change: In SegmentFsm::bindToTrack() and moveToTrack(), set an axis hint when creating the insertion event. * Change: In SegmentFsm::_slackenStrap(), add a step through slacken between minimize and maximum slack (wihch directly end up in unimplemented). * Change: In Session::_addInsertEvent(), add an axis parameter needed when the axis of the segment is not the one of the track (case of wide segments or non-preferred direction). * Bug: In Track::_preDestroy(), bad management of the TrackElement reference count. Destroy the segment only when reaching zero... * Bug: In Track::expandFreeIneterval(), forgotten to manage case when there is a set of overlaping segments at the "end" of the track, the EndIsTrackMax was not set. * Change: In TrackCost::Compare, increase the cost when an overlaping segment is at it's ripup limit. We should try *not* to rip it up if we can. Add a dedicated flag "AtRipupLimit". * Change: In TrackElement, add proxies for isUnbreakable(), new function updateTrackSpan(). * New: In TrackFixedSegment CTOR, when a supply wire of METAL2 or above is found, make the underlying GCells "GoStraight". * New: In TrackElement::canDogleg(GCell*), check for already done perpandicular dogleg on source/target (reject if so).
2019-07-28 16:20:00 -05:00
if (flags & Flags::Topology ) setFlags( CntInvalidatedCache );
if (not isInvalidated()) {
cdebug_log(145,1) << "AutoContact::invalidate() - " << this << endl;
cdebug_log(145,0) << "flags:" << flags.asString(FlagsFunction) << endl;
setFlags( CntInvalidated );
Session::invalidate( this );
_invalidate( flags );
getGCell()->invalidate();
cdebug_tabw(145,-1);
}
}
void AutoContact::setGCell ( GCell* gcell )
{
invalidate();
if (_gcell) _gcell->removeContact( this );
_gcell = gcell;
if (_gcell) {
cdebug_log(145,0) << "AutoContact::setGCell() " << gcell << endl;
_gcell->addContact( this );
_contact->setPosition( _gcell->getCenter() );
_xMin = _gcell->getXMin();
_yMin = _gcell->getYMin();
_xMax = _gcell->getConstraintXMax();
_yMax = _gcell->getConstraintYMax();
if (cdebug.enabled()) {
cdebug_log(145,0) << "* deltas: [" << DbU::getValueString(_xMin)
<< " " << DbU::getValueString(_yMin)
<< " " << DbU::getValueString(_xMax)
<< " " << DbU::getValueString(_yMax)
<< "]" << endl;
}
} else {
cerr << Bug( "NULL GCell for %s.", _getString().c_str() ) << endl;
}
}
Katana manage wide wires, and they can also be symmetric. * New: In Anabatic::AutoContact and the derived classes, manages wide wires. The contact self dimension itself according to the segments it is connected to. Special case for the AutoContactTerminal which also read the size of the component it is anchored upon. New refresh method "updateSize()" and flag CntInvalidatedWidth. to compute the size. In AutoContactTerminal, compute the constraint box according to the width of the segment. * New: In Anabatic::AutoSegment, flags are now implemented as "static const" attributes of the class. The flags are stored into a uint64_t as they are more than 32. Added new flag "SegWide" and associated predicates. * Change: In GCellTopology::_doHChannel() and GCellTopology::_doVChannel(), uses the simpler overload of AutoSegment::create() in order to detect the wire width automatically. * New: In Katana::Manipulator, split insertToTrack() and forceToTrack() into a one-track method and a segment level method that iterate over the track span of the segment. * New: In Katana::SegmentFsm, for each cost in the table, now allow access to a specific track. So the base functions have now two parameters: "icost" and "itrack" (has a cost can have multiple tracks in the case of wide segments). * Change: In Katana::TrackElement, remove the index of the element inside it's track, as for a wide segment it will not be meaningful for the non-base track. This means that we have to use the Track::find() method each time instead. Remove the wide flag, as it is a duplicate of the one in AutoSegment. Added a getTrackCount() method to tell the number of track the segment is inserted into. Needed in the Track destroy step to delete a segment only when the last track that refers it is destroyed. Added getSymmetricAxis() to correct the computation of the symmetric base track in case of wide segment as the base track is not centered but the the leftmost one. * Change: In Track::insert() insert wide segments in their whole track span. * Change: In TrackCost, create an array of costs according to the segment track span. * Change: In TrackSegment::create(), now activate the factory and create wide segments. * Bug: In Katana::AutoSegments_Perpandicular, correct the debug indentation problem (ever shifting to the right).
2017-07-28 08:30:22 -05:00
void AutoContact::updateSize ()
{
if (isInvalidatedWidth()) {
size_t minDepth = 0;
size_t maxDepth = 0;
getDepthSpan( minDepth, maxDepth );
if (getVertical1() and getVertical1()->isWide()) {
size_t vdepth = (Session::getLayerDepth(getVertical1()->getLayer()) == maxDepth) ? maxDepth : minDepth;
DbU::Unit width = getVertical1()->getWidth();
width += Session::getViaWidth(vdepth) - Session::getWireWidth(vdepth);
setWidth( width );
}
if (getHorizontal1() and getHorizontal1()->isWide()) {
size_t hdepth = (Session::getLayerDepth(getHorizontal1()->getLayer()) == maxDepth) ? maxDepth : minDepth;
DbU::Unit width = getHorizontal1()->getWidth();
width += Session::getViaWidth(hdepth) - Session::getWireWidth(hdepth);
setHeight( width );
}
unsetFlags ( CntInvalidatedWidth );
}
}
void AutoContact::_getTopology ( Contact* support, Component*& anchor, Horizontal**& horizontals, Vertical**& verticals, size_t size )
{
size_t hcount = 0;
size_t vcount = 0;
for ( size_t i=0 ; i<size ; ++i ) {
horizontals[i] = NULL;
verticals [i] = NULL;
}
anchor = support->getAnchor();
for ( Component* component : support->getSlaveComponents() ) {
Horizontal* h = dynamic_cast<Horizontal*>(component);
if (h != NULL) {
if (hcount < size) horizontals[hcount++] = h;
} else {
Vertical* v = dynamic_cast<Vertical*>(component);
if ( (v != NULL) and (vcount < size) ) verticals[vcount++] = v;
}
}
}
void AutoContact::showTopologyError ( const std::string& message, Flags flags )
{
Component* anchor = NULL;
Horizontal** horizontals = new Horizontal* [10];
Vertical** verticals = new Vertical* [10];
if (not (flags & Flags::CParanoid)) cparanoid.setStreamMask( mstream::PassThrough );
_getTopology ( base(), anchor, horizontals, verticals, 10 );
cparanoid << Error("In topology of %s",getString(this).c_str()) << endl;
if (anchor) cparanoid << " A: " << anchor << endl;
for ( size_t i=0 ; (i<10) and (horizontals[i] != NULL); ++i ) {
AutoSegment* autoSegment = Session::lookup ( horizontals[i] );
if (autoSegment != NULL)
cparanoid << " " << (autoSegment->isGlobal()?'G':'L') << ": " << autoSegment << endl;
else
cparanoid << " ?: " << horizontals[i] << endl;
}
for ( size_t i=0 ; (i<10) and (verticals[i] != NULL); ++i ) {
AutoSegment* autoSegment = Session::lookup ( verticals[i] );
if (autoSegment != NULL)
cparanoid << " " << (autoSegment->isGlobal()?'G':'L') << ": " << autoSegment << endl;
else
cparanoid << " ?: " << verticals[i] << endl;
}
cparanoid << " " << message << endl;
if (not (flags & Flags::CParanoid)) cparanoid.unsetStreamMask( mstream::PassThrough );
delete [] horizontals;
delete [] verticals;
}
void AutoContact::checkTopology ()
{
//cdebug_log(145,0) << "checkTopology() NOT RE-IMPLEMENTED YET " << this << endl;
}
void AutoContact::forceOnGrid ( Point )
{
cerr << Warning( "AutoContact::forcedOnGrid() not implemented for this derived class.\n"
" %s\n"
, getString(this).c_str()
) << endl;
}
bool AutoContact::isTee ( Flags direction ) const
{
return (isHTee() and (direction & Flags::Horizontal))
or (isVTee() and (direction & Flags::Vertical ));
}
bool AutoContact::canMoveUp ( const AutoSegment* moved ) const
{
cdebug_log(149,0) << "AutoContact::canMoveUp() " << this << endl;
size_t viaDepth = 100;
RoutingGauge* rg = Session::getRoutingGauge();
size_t movedDepth = rg->getLayerDepth(moved->getLayer());
Component* anchor = getAnchor();
if (anchor) {
viaDepth = rg->getLayerDepth( anchor->getLayer() );
cdebug_log(149,0) << "| Anchor depth: " << viaDepth << endl;
}
for ( AutoSegment* segment : const_cast<AutoContact*>(this)->getAutoSegments() ) {
if (segment == moved) continue;
size_t depth = rg->getLayerDepth(segment->getLayer());
if (viaDepth == 100) viaDepth = depth;
else
if (viaDepth != depth) return false;
cdebug_log(149,0) << "| Segment depth: " << depth << endl;
}
return (movedDepth+1 == viaDepth);
}
void AutoContact::setConstraintBox ( const Box& box )
{
setCBXMin ( box.getXMin() );
setCBXMax ( box.getXMax() );
setCBYMin ( box.getYMin() );
setCBYMax ( box.getYMax() );
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
cdebug_log(149,0) << "setConstraintBox() - " << this << " " << getConstraintBox()
<< " from:" << box << endl;
cdebug_log(149,0) << "* " << _gcell << endl;
}
bool AutoContact::restrictConstraintBox ( DbU::Unit constraintMin
, DbU::Unit constraintMax
, Flags flags
)
{
cdebug_log(149,0) << "restrictConstraintBox() - " << this << " " << getConstraintBox() << endl;
if (flags & Flags::Horizontal) {
if ( (constraintMin > getCBYMax()) or (constraintMax < getCBYMin()) ) {
if ( Session::isInDemoMode() or not (flags & Flags::WarnOnError) ) return false;
cerr << Error ( "Incompatible DY restriction on %s", _getString().c_str() ) << endl;
if ( constraintMin > getCBYMax() )
cerr << Error ( "(constraintMin > CBYMax : %s > %s)"
, DbU::getValueString(constraintMin).c_str()
, DbU::getValueString(getCBYMax()).c_str() )
<< endl;
if ( constraintMax < getCBYMin() )
cerr << Error ( "(constraintMax < CBYMin : %s < %s)"
, DbU::getValueString(constraintMax).c_str()
, DbU::getValueString(getCBYMin()).c_str() )
<< endl;
return false;
}
setCBYMin ( std::max(getCBYMin(),constraintMin) );
setCBYMax ( std::min(getCBYMax(),constraintMax) );
} else if (flags & Flags::Vertical) {
if ( (constraintMin > getCBXMax()) || (constraintMax < getCBXMin()) ) {
if ( Session::isInDemoMode() or not (flags & Flags::WarnOnError) ) return false;
cerr << Error ( "Incompatible DX restriction on %s", _getString().c_str() ) << endl;
if ( constraintMin > getCBXMax() )
cerr << Error ( "(constraintMin > CBXMax : %s > %s)"
, DbU::getValueString(constraintMin).c_str()
, DbU::getValueString(getCBXMax()).c_str() )
<< endl;
if ( constraintMax < getCBXMin() )
cerr << Error ( "(constraintMax < CBXMin : %s < %s)"
, DbU::getValueString(constraintMax).c_str()
, DbU::getValueString(getCBXMin()).c_str() )
<< endl;
return false;
}
setCBXMin ( std::max(getCBXMin(),constraintMin) );
setCBXMax ( std::min(getCBXMax(),constraintMax) );
}
cdebug_log(149,0) << "restrictConstraintBox() - " << this << " " << getConstraintBox() << endl;
return true;
}
void AutoContact::restoreNativeConstraintBox ()
{ setConstraintBox ( getNativeConstraintBox() ); }
Box& AutoContact::intersectConstraintBox ( Box& box ) const
{ return box = box.getIntersection ( getConstraintBox() ); }
void AutoContact::migrateConstraintBox ( AutoContact* other )
{
if (_gcell != other->_gcell) {
cerr << Error( "AutoContact::migrateConstraintBox(): AutoContacts do not belongs to the same GCell:\n"
" from: %s\n"
" to: %s"
, getString(other).c_str()
, getString(this ).c_str()
) << endl;
return;
}
setConstraintBox( other->getConstraintBox() );
other->restoreNativeConstraintBox();
}
Box AutoContact::getBoundingBox () const
{ return _gcell->getBoundingBox (); }
void AutoContact::translate ( const DbU::Unit& tx, const DbU::Unit& ty )
{
cerr << Warning("Calling AutoContact::translate() is likely a bug.") << endl;
_contact->translate ( tx, ty );
}
void AutoContact::setLayerAndWidth ( size_t delta, size_t depth )
{
Upgrade of Katana detailed router to support Arlet 6502. * Change: In Hurricane::SharedName, replace the incremental Id by a hash key. This is to ensure better deterministic properties. Between use cases, additional strings may have to be allocated, shitfing the ids. Even if hash can be duplicated, we should be able to ensure that the absolute order in map table should be preserved. Supplemental strings are inserted in a way that keep the previous order. * Change: In CRL/etc/symbolic/cmos/kite.conf, add "katabatic.routingGauge" default parameter value ("sxlib"). * Change: In CRL/etc/common/technology.conf, define minimal spacing for symbolic layers too (added for METAL4 only for now). * Change: In CRL::Histogram, extend support to dynamically sized histograms. Add a text pretty print with table and pseudo-curve. * Change: In Cumulus/plugins/ClockTreePlugin, create blockage under the block corona corners so the global router do not draw wire under them. This was creating deadlock for the detailed router. When the abutment has to be computed, directly use Etesian to do it instead of duplicating the computation in the Python plugin. * New: In Etesian, as Coloquinte seems reluctant to evenly spread the standard cells, we trick it by making them bigger during the placement stage. Furthermore, we do not not uniformely increase the size of the cells but create a "bloating profile" based on cell size, cell name or it's density of terminals. Currently only two profiles are defined, "disabled" which does nothing and "nsxlib" targeted on 4 metal layer technologies (aka AMS 350nm, c35b4). * Bug: In Knik::MatrixVertex, load the default routing gauge using the configuration parameter "katabatic.routingGauge" as the default one may not be the first registered one. * New: In AnabaticEngine::setupNetDatas(), build a dynamic historgram of the nets terminal numbers. * Bug: In Anabatic::AutoContact::Invalidate(), always invalidate the contact cache when topology is invalidated. In case of multiple invalidations, if the first did not invalidate the cache, later one that may need it where not allowed to do so. The end result was correct nonetheless, but it did generate annoying error messages. * Bug: In Anabatic::AutoContactTurn::updateTopology(), bad computation of the contact's depth when delta == 2. * Bug: In Anabatic::Gcell::getCapacity(), was always returning the west edge capacity, even for the westermost GCell, should be the east edge in that case. * New: In Anabatic::AutoSegment, introduce a new measure "distance to terminal". This is the minimal number of segments separating the current one from the nearest RoutingPad. This replace the previous "strong terminal" and "weak terminal" flags. This distance is used by Katana to sort the events, we route the segments *from* the RoutingPads *outward*. The idea being that if we cannot event connect to the RoutingPad, there is no points continuing as thoses segments are the more constraineds. This gives an order close to the simple ascending metals but with better results. * New: In Anabatic::AutoSegment, introduce a new flag "Unbreakable", disable dogleg making on those segments. mainly intended for local segments directly connecteds to RoutingPads (distance == 0). * New: In Anabatic::AutoSegment, more aggressive reducing of segments. Now the only case where a segment cannot be reduced is when it is one horizontal branch in a HTee or a vertical on a VTee. Check if, when not accounted the source & target VIAs are still connex, if so, allow reducing. * New: In Anabatic::AutoContact, new state flags CntVDogleg & CntHDogleg mainly to prevent making doglegs twice on a turn contact. This is to limit over-fragmentation. If one dogleg doesn't solve the problem, making a second one will make things worse only... * Bug: In Anabatic::Configuration::selectRpcomponent(), we were choosing the component with the *smallest* span instead of the *bigger* one. * New: In Anabatic::GCell, introduce a new flag "GoStraight" to tell that no turn go be made inside those GCells. Mainly used underneath a block corona. * New: In AnabaticEngine::layerAssign(), new GCellRps & RpsInRow to manage GCells with too many terminals. Slacken at least one RoutingPad access when there is more than 8 RoutingPad in the GCell (slacken or change a vertical METAL2 (non-preferred) into a METAL3). * Change: In Anabatic::NetBuilderHV, allow the use of terminal connection in non-preferred direction. That is, vertical METAL2 directly connected to the RoutingPad (then a horizontal METAL2). This alllows for short dogleg without clutering the METAL3 layer (critical for AMS c35b4). Done in NetBuilderHV::doRp_Access(), with a new UseNonPref flag. Perform some other tweaking on METAL1 access topologies, to also minimize METAL3 use. * New: In AnabaticEngine::computeNetConstraints(), also compute the distance to RoutingPad for segments. Set the Unbreakable flag, based on the distance and segment length (local, short global or long global). New local function "propagateDistanceFromRp()". * Change: In AnabaticEngine.h, the sorting class for NetData, SparsityOrder, is modificated so net with a degree superior to 10 are sorted first, whatever their sparsity. This is to work in tandem with GlobalRouting. * New: In Katana::TrackSegmentNonPref, introduce a class to manage segment in non-preferred routing direction. Mostly intended for small METAL2 vertical directly connected to RoutingPad. Modifications to manage this new variant all through Katana. * Change: In Katana::GlobalRoute, DigitalDistance honor the GoStraight flag of the GCell. Do not make bend inside thoses GCells. * Change: In KatanaEngine::runGlobalRouter(), high degree nets (>= 10) are routed first and whitout the global routing estimation. There should be few of them so they wont create saturations and we want them as straight as possible. Detour are for long be-points. Set the saerch halo to one GCell in the initial routing stage (before ripup). * Bug: In KatanaEngine & NegociateWindow, call _computeCagedconstraints() inside NegociateWindow::run(), as segments are inserted into tracks only at that point so we cannot make the computation earlier. * Change: In Katana::Manipulator::repackPerpandiculars(), add a flag to select whether to replace the perpandiculars *after* or *before* the current segment. * Change: In Katana::NegociateWindow::NegociateOverlapCost(), when the segment is fully enclosed inside a global, the longest overlap cost is set to the shortest global hoverhang (before or after). When the cost is for a global, set an infinite cost if the overlapping segment has a RP distance less or equal to 1 (this is an access segment). * Bug: In Katana::PowerRailsPlane::Rail::doLayout(), correct computation of the segments extension cap. * New: In Katana::QueryPowerRails::addToPowerRail(), add support for Pad. * Change: In Katana/PreProcess::protectCagedTerminals(), apply the contraints to any turn connected to the first segment of the RoutingPad so the perpandicular constraints got propagated to the perpandicular segment... * Change: In RoutingEvent, cache the "distance to RP" value. * Change: In RoutingEvent::Key::compare(), sort *first* on distance to RoutingPad, then layer depth. If both distance to RoutingPad is null, then sort on segment length. * Change: In RoutingEvent::_processRepair(), try a repack perpandicular with perpandiculars first (then with perpandicular last, then give up). * Change: In SegmentFsm::bindToTrack() and moveToTrack(), set an axis hint when creating the insertion event. * Change: In SegmentFsm::_slackenStrap(), add a step through slacken between minimize and maximum slack (wihch directly end up in unimplemented). * Change: In Session::_addInsertEvent(), add an axis parameter needed when the axis of the segment is not the one of the track (case of wide segments or non-preferred direction). * Bug: In Track::_preDestroy(), bad management of the TrackElement reference count. Destroy the segment only when reaching zero... * Bug: In Track::expandFreeIneterval(), forgotten to manage case when there is a set of overlaping segments at the "end" of the track, the EndIsTrackMax was not set. * Change: In TrackCost::Compare, increase the cost when an overlaping segment is at it's ripup limit. We should try *not* to rip it up if we can. Add a dedicated flag "AtRipupLimit". * Change: In TrackElement, add proxies for isUnbreakable(), new function updateTrackSpan(). * New: In TrackFixedSegment CTOR, when a supply wire of METAL2 or above is found, make the underlying GCells "GoStraight". * New: In TrackElement::canDogleg(GCell*), check for already done perpandicular dogleg on source/target (reject if so).
2019-07-28 16:20:00 -05:00
cdebug_log(145,1) << "AutoContact::setLayerAndWidth() " << this << endl;
cdebug_log(145,0) << "delta:" << delta << " depth:" << depth << endl;
if (delta == 0) {
setLayer( Session::getRoutingLayer(depth) );
setSizes( Session::getWireWidth (depth)
, Session::getWireWidth (depth) );
} else {
setLayer( Session::getContactLayer(depth) );
setSizes( Session::getViaWidth (depth)
, Session::getViaWidth (depth) );
}
Upgrade of Katana detailed router to support Arlet 6502. * Change: In Hurricane::SharedName, replace the incremental Id by a hash key. This is to ensure better deterministic properties. Between use cases, additional strings may have to be allocated, shitfing the ids. Even if hash can be duplicated, we should be able to ensure that the absolute order in map table should be preserved. Supplemental strings are inserted in a way that keep the previous order. * Change: In CRL/etc/symbolic/cmos/kite.conf, add "katabatic.routingGauge" default parameter value ("sxlib"). * Change: In CRL/etc/common/technology.conf, define minimal spacing for symbolic layers too (added for METAL4 only for now). * Change: In CRL::Histogram, extend support to dynamically sized histograms. Add a text pretty print with table and pseudo-curve. * Change: In Cumulus/plugins/ClockTreePlugin, create blockage under the block corona corners so the global router do not draw wire under them. This was creating deadlock for the detailed router. When the abutment has to be computed, directly use Etesian to do it instead of duplicating the computation in the Python plugin. * New: In Etesian, as Coloquinte seems reluctant to evenly spread the standard cells, we trick it by making them bigger during the placement stage. Furthermore, we do not not uniformely increase the size of the cells but create a "bloating profile" based on cell size, cell name or it's density of terminals. Currently only two profiles are defined, "disabled" which does nothing and "nsxlib" targeted on 4 metal layer technologies (aka AMS 350nm, c35b4). * Bug: In Knik::MatrixVertex, load the default routing gauge using the configuration parameter "katabatic.routingGauge" as the default one may not be the first registered one. * New: In AnabaticEngine::setupNetDatas(), build a dynamic historgram of the nets terminal numbers. * Bug: In Anabatic::AutoContact::Invalidate(), always invalidate the contact cache when topology is invalidated. In case of multiple invalidations, if the first did not invalidate the cache, later one that may need it where not allowed to do so. The end result was correct nonetheless, but it did generate annoying error messages. * Bug: In Anabatic::AutoContactTurn::updateTopology(), bad computation of the contact's depth when delta == 2. * Bug: In Anabatic::Gcell::getCapacity(), was always returning the west edge capacity, even for the westermost GCell, should be the east edge in that case. * New: In Anabatic::AutoSegment, introduce a new measure "distance to terminal". This is the minimal number of segments separating the current one from the nearest RoutingPad. This replace the previous "strong terminal" and "weak terminal" flags. This distance is used by Katana to sort the events, we route the segments *from* the RoutingPads *outward*. The idea being that if we cannot event connect to the RoutingPad, there is no points continuing as thoses segments are the more constraineds. This gives an order close to the simple ascending metals but with better results. * New: In Anabatic::AutoSegment, introduce a new flag "Unbreakable", disable dogleg making on those segments. mainly intended for local segments directly connecteds to RoutingPads (distance == 0). * New: In Anabatic::AutoSegment, more aggressive reducing of segments. Now the only case where a segment cannot be reduced is when it is one horizontal branch in a HTee or a vertical on a VTee. Check if, when not accounted the source & target VIAs are still connex, if so, allow reducing. * New: In Anabatic::AutoContact, new state flags CntVDogleg & CntHDogleg mainly to prevent making doglegs twice on a turn contact. This is to limit over-fragmentation. If one dogleg doesn't solve the problem, making a second one will make things worse only... * Bug: In Anabatic::Configuration::selectRpcomponent(), we were choosing the component with the *smallest* span instead of the *bigger* one. * New: In Anabatic::GCell, introduce a new flag "GoStraight" to tell that no turn go be made inside those GCells. Mainly used underneath a block corona. * New: In AnabaticEngine::layerAssign(), new GCellRps & RpsInRow to manage GCells with too many terminals. Slacken at least one RoutingPad access when there is more than 8 RoutingPad in the GCell (slacken or change a vertical METAL2 (non-preferred) into a METAL3). * Change: In Anabatic::NetBuilderHV, allow the use of terminal connection in non-preferred direction. That is, vertical METAL2 directly connected to the RoutingPad (then a horizontal METAL2). This alllows for short dogleg without clutering the METAL3 layer (critical for AMS c35b4). Done in NetBuilderHV::doRp_Access(), with a new UseNonPref flag. Perform some other tweaking on METAL1 access topologies, to also minimize METAL3 use. * New: In AnabaticEngine::computeNetConstraints(), also compute the distance to RoutingPad for segments. Set the Unbreakable flag, based on the distance and segment length (local, short global or long global). New local function "propagateDistanceFromRp()". * Change: In AnabaticEngine.h, the sorting class for NetData, SparsityOrder, is modificated so net with a degree superior to 10 are sorted first, whatever their sparsity. This is to work in tandem with GlobalRouting. * New: In Katana::TrackSegmentNonPref, introduce a class to manage segment in non-preferred routing direction. Mostly intended for small METAL2 vertical directly connected to RoutingPad. Modifications to manage this new variant all through Katana. * Change: In Katana::GlobalRoute, DigitalDistance honor the GoStraight flag of the GCell. Do not make bend inside thoses GCells. * Change: In KatanaEngine::runGlobalRouter(), high degree nets (>= 10) are routed first and whitout the global routing estimation. There should be few of them so they wont create saturations and we want them as straight as possible. Detour are for long be-points. Set the saerch halo to one GCell in the initial routing stage (before ripup). * Bug: In KatanaEngine & NegociateWindow, call _computeCagedconstraints() inside NegociateWindow::run(), as segments are inserted into tracks only at that point so we cannot make the computation earlier. * Change: In Katana::Manipulator::repackPerpandiculars(), add a flag to select whether to replace the perpandiculars *after* or *before* the current segment. * Change: In Katana::NegociateWindow::NegociateOverlapCost(), when the segment is fully enclosed inside a global, the longest overlap cost is set to the shortest global hoverhang (before or after). When the cost is for a global, set an infinite cost if the overlapping segment has a RP distance less or equal to 1 (this is an access segment). * Bug: In Katana::PowerRailsPlane::Rail::doLayout(), correct computation of the segments extension cap. * New: In Katana::QueryPowerRails::addToPowerRail(), add support for Pad. * Change: In Katana/PreProcess::protectCagedTerminals(), apply the contraints to any turn connected to the first segment of the RoutingPad so the perpandicular constraints got propagated to the perpandicular segment... * Change: In RoutingEvent, cache the "distance to RP" value. * Change: In RoutingEvent::Key::compare(), sort *first* on distance to RoutingPad, then layer depth. If both distance to RoutingPad is null, then sort on segment length. * Change: In RoutingEvent::_processRepair(), try a repack perpandicular with perpandiculars first (then with perpandicular last, then give up). * Change: In SegmentFsm::bindToTrack() and moveToTrack(), set an axis hint when creating the insertion event. * Change: In SegmentFsm::_slackenStrap(), add a step through slacken between minimize and maximum slack (wihch directly end up in unimplemented). * Change: In Session::_addInsertEvent(), add an axis parameter needed when the axis of the segment is not the one of the track (case of wide segments or non-preferred direction). * Bug: In Track::_preDestroy(), bad management of the TrackElement reference count. Destroy the segment only when reaching zero... * Bug: In Track::expandFreeIneterval(), forgotten to manage case when there is a set of overlaping segments at the "end" of the track, the EndIsTrackMax was not set. * Change: In TrackCost::Compare, increase the cost when an overlaping segment is at it's ripup limit. We should try *not* to rip it up if we can. Add a dedicated flag "AtRipupLimit". * Change: In TrackElement, add proxies for isUnbreakable(), new function updateTrackSpan(). * New: In TrackFixedSegment CTOR, when a supply wire of METAL2 or above is found, make the underlying GCells "GoStraight". * New: In TrackElement::canDogleg(GCell*), check for already done perpandicular dogleg on source/target (reject if so).
2019-07-28 16:20:00 -05:00
cdebug_tabw(145,-1);
}
AutoContact* AutoContact::createFrom ( Contact* hurricaneContact )
{
AutoContact* autoContact = NULL;
Component* anchor;
size_t hSize = 0;
size_t vSize = 0;
Horizontal** horizontals = new Horizontal* [4];
Vertical** verticals = new Vertical* [4];
GCell* gcell = Session::getAnabatic()->getGCellUnder( hurricaneContact->getCenter() );
if (not gcell) {
throw Error("AutoContact::createFrom( %s ):\n"
" Contact is *not* under a GCell (outside routed area?)"
, getString(hurricaneContact).c_str()
);
}
_getTopology ( hurricaneContact, anchor, horizontals, verticals, 4 );
for ( size_t i=0 ; i<4 ; ++i ) {
hSize += (horizontals[i] != NULL) ? 1 : 0;
vSize += (verticals [i] != NULL) ? 1 : 0;
}
if (anchor) {
if (hSize+vSize == 1) {
autoContact = new AutoContactTerminal( gcell, hurricaneContact );
autoContact->_postCreate();
autoContact->unsetFlags( CntInCreationStage );
}
} else {
if ((hSize == 1) and (vSize == 1)) {
autoContact = new AutoContactTurn ( gcell, hurricaneContact );
autoContact->_postCreate();
autoContact->unsetFlags( CntInCreationStage );
} else if ((hSize == 2) and (vSize == 1)) {
autoContact = new AutoContactHTee ( gcell, hurricaneContact );
autoContact->_postCreate();
autoContact->unsetFlags( CntInCreationStage );
} else if ((hSize == 1) and (vSize == 2)) {
autoContact = new AutoContactVTee ( gcell, hurricaneContact );
}
}
if (not autoContact) {
throw Error("AutoContact::createFrom( %s ):\n"
" Contact do not have a manageable topology (a:%u, h:%u, v:%u)"
, getString(hurricaneContact).c_str()
, ((anchor) ? 1 : 0)
, hSize
, vSize
);
}
autoContact->_postCreate();
autoContact->unsetFlags( CntInCreationStage );
return autoContact;
}
string AutoContact::_getTypeName () const
{ return "AutoContact"; }
string AutoContact::_getString () const
{
string s = _contact->_getString();
size_t i = s.find(' ');
if (i != string::npos) {
s.erase ( i+1, 7 );
s.insert( i+1, _getTypeName() );
}
//s.insert( 1, "id: " );
//s.insert( 4, getString(_id) );
s.insert( s.size()-1, (isFixed ())?" F":" -" );
s.insert( s.size()-1, (isTerminal ())? "T": "-" );
Improved management of AutoContactTerminal for VH gauges (real ones). * New: In Anabatic & Katana, add the new "drag" feature. With VH gauges used by real technologies (M1-H, M2-V, M3-H) a new routing configuration that was not efficiently handled did appear. While the preferred routing direction for metal1 is officially horizontal, due to the way the standard cell must be designed, their metal1 terminals are still verticals (or punctuals). Thus, when connecting to them, we face the case where the metal1 terminal (RoutingPad) is vertical *and* the metal2 wire is also vertical. With that setup, the position of the AutoContactTerminal via12 cannot be deduced, it may range all the way over the metal1 RoutingPad. What may define it's position is the metal3 the metal2 finally connects to. That, is, when we have one horizontal (the metal3) and one vertical (the metal1 RoutingPad). The intermediate wire of metal2 can be kept to a minimum size by "dragging" the via12 close to the via23 when the metal3 wire is moved. * New: In Anabatic & Katana, problem of closely vertically aligneds RoutingPads in metal1 is managed first in PreProcess by restricting the span of the connecteds metal3 and in _makeDogleg also by restricting the span even more tightly (to the RoutingPad itself). * New: In Anabatic::AutoContactTerminal, add the "drag" support. Automatically check if the connecting segment is in the same direction as the RoutingPad, if so, sets the "SegDrag" flag. The dragging state can be known with the "::canDrag()" predicate. * New: In Anabatic::AutoHorizontal, add the "drag" support. The drag state can be known with the "::isDrag()" predicate. In "::_makeDogleg()", when making a dogleg on a dragable segment pass the drag state correctly and restrict the perpandicular span of the perpandicular to the RoutingPad (though segment user constraints). If we make a dogleg on the metal2 is it likely than we cannot go straigth out vertically from the RoutingPad, so the new perpandicular *is* restricted to the RoutingPad span. Idem for AutoVertical. * New: In Katana::Manipulator, add method "::dragMinimize()" which find a hole where to minimize a draggable segment. We finally did not use it, but keep it for potential further use. * New: In Katana::PreProcess, adds a "protectAlignedaccesses()" local function to check for vertically aligned metal1 RoutingPads, in that case setup user constraints on the metal3 segments so they cannot completly cover the other RoutingPad with metal2. We also keep a "metal2protect()" function that create a fixed segment to lock/protect a RoutingPad. Not used for now. * New: In Katana::Session, add a RoutingPad locking event mechanism. This allows us to request the creation of a locking (fixed segment) over a draggable segment. Not used for now. Lock events are processeds before all others as they create new TrackElements. * New: In Katana::Track, "::getNextFree()" and "::getPreviousFree()" method to find the nearest free interval in a Track after/before a position. * Bug: In Anabatic::AutoHorizontal::getConstraints(), merge with user constraints *only* if it's not an empty interval (as we use min/max functions). Idem for AutoVertical. * Bug: In AutoSegments_OnContacts::Locator::isValid(), the boolean test must be inverted. Seems it never worked, but we never used it until now...
2018-01-25 04:58:04 -06:00
s.insert( s.size()-1, (canDrag ())? "D": "-" );
s.insert( s.size()-1, (isHTee ())? "h": "-" );
s.insert( s.size()-1, (isVTee ())? "v": "-" );
s.insert( s.size()-1, (isInvalidated ())? "i": "-" );
s.insert( s.size()-1, (isInvalidatedCache())? "c": "-" );
//s.insert( s.size()-1, getString(getConstraintBox()));
return s;
}
Record* AutoContact::_getRecord () const
{
Record* record = _contact->_getRecord ();
record->add ( getSlot ( "_gcell" , _gcell ) );
record->add ( getSlot ( "_constraintBox", getConstraintBox() ) );
record->add ( getSlot ( "_flags" , _flags ) );
return record;
}
} // Anabatic namespace.