coriolis/karakaze/python/analogdesign.py

689 lines
31 KiB
Python
Raw Normal View History

Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
# -*- Mode:Python -*-
#
# This file is part of the Coriolis Software.
# Copyright (c) UPMC 2016-2018, All Rights Reserved
#
# +-----------------------------------------------------------------+
# | C O R I O L I S |
# | B o r a - A n a l o g S l i c i n g T r e e |
# | |
# | Author : Jean-Paul Chaput |
# | E-mail : Jean-Paul.Chaput@lip6.fr |
# | =============================================================== |
# | Python : "./karakaze/AnalogDesign.py" |
# +-----------------------------------------------------------------+
Support for mixing real pads & symbolic core. Wrapper around s2r. * Change: In Hurricane::Error constructors disable the backtrace generation. (*very* slow). * Change: In Hurricane::Library::getHierarchicalname(), more compact naming. Remove the name of the root library. * New: In Hurricane::Net, new type "FUSED", for component with no net. More efficient than having one net for each. * Change: In CellViewer, BreakpointWidget, use Angry Birds icons. * Change: In CellWidget::State, use the hierarchical name (cached) as key to the state. This allow to load two cells with the same name but from different libraries in the widget history. * Change: In PyGraphics, export "isEnabled()" and "isHighDpi()" functions. * Change: In CRL/etc/symbolic/cmos/plugin.conf, and CRL/etc/common/plugin.conf use the physical dimensions converters. * Change: In CRL/etc/symbolic/cmos/technology.conf, make the GDS layer table coherent with the default Alliance cmos.rds. * New: CRL/python/helpers/io.py, put ErrorMessage new implementation here, along with a new ErrorWidget written in PyQt4. It seems finally that PyQt4 can be used alongside Coriolis Qt widgets. New ErrorMessage.catch() static function to manage all exceptions in except clauses. * Change: In CRL/python/helpers/, no longer use ErrorMessage.wrapPrint(), directly print it. Rewrite the utilities to display Python stack traces "textStacktrace()" and "showStacktrace()". * Change: In CRL::AllianceFramework, shorten the names of the libraries. * Change: In CRL::ApParser & CRL::ApDriver, more accurate translation between Alliance connectors (C record) and Hurricane::Pin objects. Pin are no longer made square but thin and oriented in the connecting direction. Use the new fused net for unnamed components. * New: In CRL::GdsParser, implementation of SREF parsing, i.e. instances. Due to the unordered nature of the GDS stream, instances creation are delayed until the whole stream has been parsed and only then are they created. For the sake of reading back Alliance s2r GDS, we assume that any TEXT following a boundary is the Net name the boundary (component) belongs to. Create abutment box for Cells, computed from the bounding box, so the Hurricane QuadTree could work properly. Make use of the fused net for unnamed components. * New: In Cumulus/plugins/chip, complete rewrite of the I/O pad management. Now we can mix real (foundry) pads and a symbolic core. To cleanly support the de-coupling between the real part and the symbolic one we introduce a new intermediary hierarchical level, the corona. We have now: Chip --> Pads + Corona --> Core. At chip level (and if we are using real pads) the layout is fully real (excepting the corona). The Corona contains everything that is symbolic. It has symbolic wires extending outward the abutment box to make contact with the real wires coming from the pads. In the pad ring we can use corners instances (or not), pad spacers or directly draw wires between connectors ring pads. Provide two flavors: placement only or full place & route. WARNING: If routing in a second step, *do not route* the *Chip* but the *Corona*. * Change: In Cumulus/plugins/clocktree, give the modified Cell an additional extension of "_cts" (Clock Tree Synthesis) instead of "_clocked", to follow the common convention. * New: In cumulus/plugins/S2R.py, encapsulate call to Alliance S2R and reload the translated Cell in the editor. * New: In cumulus/plugins/core2chip, provide an utility to automatically create a chip from a core. To work this plugins must have a basic understanding of the pad functionalities which may differs from foundry to foundry. So a base class CoreToChip is created, then for each supported pad foundry a derived class is added. Currently we support AMS c35b4 and Alliance symbolic cmos. * Bug: In Anabatic::Configuration, read the right configuration parameter "anabatic.topRoutinglayer" (Katana), and not the one for Katabatic... * Change: In Unicorn/cgt.py, process the plugins in alphabetical order to ensure a reproductible ordering of the menus...
2019-05-22 07:34:32 -05:00
from Hurricane import *
from Hurricane import DataBase
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
import CRL
import helpers
Support for mixing real pads & symbolic core. Wrapper around s2r. * Change: In Hurricane::Error constructors disable the backtrace generation. (*very* slow). * Change: In Hurricane::Library::getHierarchicalname(), more compact naming. Remove the name of the root library. * New: In Hurricane::Net, new type "FUSED", for component with no net. More efficient than having one net for each. * Change: In CellViewer, BreakpointWidget, use Angry Birds icons. * Change: In CellWidget::State, use the hierarchical name (cached) as key to the state. This allow to load two cells with the same name but from different libraries in the widget history. * Change: In PyGraphics, export "isEnabled()" and "isHighDpi()" functions. * Change: In CRL/etc/symbolic/cmos/plugin.conf, and CRL/etc/common/plugin.conf use the physical dimensions converters. * Change: In CRL/etc/symbolic/cmos/technology.conf, make the GDS layer table coherent with the default Alliance cmos.rds. * New: CRL/python/helpers/io.py, put ErrorMessage new implementation here, along with a new ErrorWidget written in PyQt4. It seems finally that PyQt4 can be used alongside Coriolis Qt widgets. New ErrorMessage.catch() static function to manage all exceptions in except clauses. * Change: In CRL/python/helpers/, no longer use ErrorMessage.wrapPrint(), directly print it. Rewrite the utilities to display Python stack traces "textStacktrace()" and "showStacktrace()". * Change: In CRL::AllianceFramework, shorten the names of the libraries. * Change: In CRL::ApParser & CRL::ApDriver, more accurate translation between Alliance connectors (C record) and Hurricane::Pin objects. Pin are no longer made square but thin and oriented in the connecting direction. Use the new fused net for unnamed components. * New: In CRL::GdsParser, implementation of SREF parsing, i.e. instances. Due to the unordered nature of the GDS stream, instances creation are delayed until the whole stream has been parsed and only then are they created. For the sake of reading back Alliance s2r GDS, we assume that any TEXT following a boundary is the Net name the boundary (component) belongs to. Create abutment box for Cells, computed from the bounding box, so the Hurricane QuadTree could work properly. Make use of the fused net for unnamed components. * New: In Cumulus/plugins/chip, complete rewrite of the I/O pad management. Now we can mix real (foundry) pads and a symbolic core. To cleanly support the de-coupling between the real part and the symbolic one we introduce a new intermediary hierarchical level, the corona. We have now: Chip --> Pads + Corona --> Core. At chip level (and if we are using real pads) the layout is fully real (excepting the corona). The Corona contains everything that is symbolic. It has symbolic wires extending outward the abutment box to make contact with the real wires coming from the pads. In the pad ring we can use corners instances (or not), pad spacers or directly draw wires between connectors ring pads. Provide two flavors: placement only or full place & route. WARNING: If routing in a second step, *do not route* the *Chip* but the *Corona*. * Change: In Cumulus/plugins/clocktree, give the modified Cell an additional extension of "_cts" (Clock Tree Synthesis) instead of "_clocked", to follow the common convention. * New: In cumulus/plugins/S2R.py, encapsulate call to Alliance S2R and reload the translated Cell in the editor. * New: In cumulus/plugins/core2chip, provide an utility to automatically create a chip from a core. To work this plugins must have a basic understanding of the pad functionalities which may differs from foundry to foundry. So a base class CoreToChip is created, then for each supported pad foundry a derived class is added. Currently we support AMS c35b4 and Alliance symbolic cmos. * Bug: In Anabatic::Configuration, read the right configuration parameter "anabatic.topRoutinglayer" (Katana), and not the one for Katabatic... * Change: In Unicorn/cgt.py, process the plugins in alphabetical order to ensure a reproductible ordering of the menus...
2019-05-22 07:34:32 -05:00
from helpers import isderived
from helpers import trace
from helpers.io import ErrorMessage as Error
from Analog import Device
First stage in analog capacitor integration * Bug: In Technology::getPhysicalRule(), if the named layerdo not exists, throw an exception instead of silently putting a NULL pointer inside a rule. * New: In Hurricane/Analog, new parameters classes for capacitor devices: - Analog::Matrix, a matrix of null or positives integers to encode capacitor matrix matching. - Analog::Capacities, a list of float values for all component of a multi-capacitor. * New: In Hurricane::Script, add a "getFileName()" method to get the full path name of the Python module. * Change: In Analog::LayoutGenerator, completly remove the logger utility as it is no longer used. Simply print error messages instead. * Change: In Analog::MetaCapacitor, rename top & bottom plate 'T' & 'B'. Accessors renamed in "getTopPlate()" & "getBottomPlate()". * New: In Analog::MultiCapacitor, complete rewrite. Makes use of the new parameters "capacities" and "matrix". Dynamically generates it's terminals as we do not know beforehand how many capacitors could be put in it. * Bug: In isobar/PyHurricane.h, in Type object definition, do not prepend a "Py" to class name (so the keep the C++ name). * Change: In CRL/etc/scn6m_deep_09/devices.py, add entry for the new capacitor generator. * New: In oroshi/python/ParamsMatrix, add a "family" entry in the [0,0] element to distinguish between transistor, capacitor and resistor. (this is the matrix of values returned to the LayoutGenerator after device generation). Now have one "setGlobalParams()" function per family. * New: In oroshi/python/Rules.py, added DTR rules needed by capacitors. Catch exceptions if something wrong append when we extract the rules from the technology. * New: In Bora, the devices are no longer *only* transistors, so the possibles configurations are no longer defined only by a number of fingers. We must be able to support any kind of range of configuration. So the explicit range of number of fingers is replaced by a base class ParameterRange, and it's derived classes: - Bora::StepParameterRange, to encode the possible number of fingers of a transistor (the former only possibility). - Bora::MatrixParameterRange, to encode all the possible matching scheme for a capacitor. As there is no way to compress it, this is a vector of Matrix (from Analog). * Change: In Bora::DSlicingNode::_place(), the ParameterRange has to be set on the right configuration (through the index) before being called. The generation parameters are taken from the active item in the ParameterRange. * Change: In Bora::NodeSets::create(), iterate over the ParameterRange to build all the configuration. Adjustement to the routing gauge pitchs are moved into the DBoxSet CTOR to save a lot of code. Semantic change: the index in the NodeSets is now the index in the associated ParameterRange and no longer the number of fingers of a transistor. Check that the ParameterRange dynamic class is consitent with the device family. * Change: In Bora::DBoxSet, same semantic change as for NodeSets, the number of finger become an index in ParameterRange. In DBoxSet::create(), now also perform the abutment box adjustement to the RoutingGauge, if possible. * New: In Karakaze/python/AnalogDesign.py, add support for Capacitor devices.
2019-11-07 10:05:49 -06:00
from Analog import TransistorFamily
Support for mixing real pads & symbolic core. Wrapper around s2r. * Change: In Hurricane::Error constructors disable the backtrace generation. (*very* slow). * Change: In Hurricane::Library::getHierarchicalname(), more compact naming. Remove the name of the root library. * New: In Hurricane::Net, new type "FUSED", for component with no net. More efficient than having one net for each. * Change: In CellViewer, BreakpointWidget, use Angry Birds icons. * Change: In CellWidget::State, use the hierarchical name (cached) as key to the state. This allow to load two cells with the same name but from different libraries in the widget history. * Change: In PyGraphics, export "isEnabled()" and "isHighDpi()" functions. * Change: In CRL/etc/symbolic/cmos/plugin.conf, and CRL/etc/common/plugin.conf use the physical dimensions converters. * Change: In CRL/etc/symbolic/cmos/technology.conf, make the GDS layer table coherent with the default Alliance cmos.rds. * New: CRL/python/helpers/io.py, put ErrorMessage new implementation here, along with a new ErrorWidget written in PyQt4. It seems finally that PyQt4 can be used alongside Coriolis Qt widgets. New ErrorMessage.catch() static function to manage all exceptions in except clauses. * Change: In CRL/python/helpers/, no longer use ErrorMessage.wrapPrint(), directly print it. Rewrite the utilities to display Python stack traces "textStacktrace()" and "showStacktrace()". * Change: In CRL::AllianceFramework, shorten the names of the libraries. * Change: In CRL::ApParser & CRL::ApDriver, more accurate translation between Alliance connectors (C record) and Hurricane::Pin objects. Pin are no longer made square but thin and oriented in the connecting direction. Use the new fused net for unnamed components. * New: In CRL::GdsParser, implementation of SREF parsing, i.e. instances. Due to the unordered nature of the GDS stream, instances creation are delayed until the whole stream has been parsed and only then are they created. For the sake of reading back Alliance s2r GDS, we assume that any TEXT following a boundary is the Net name the boundary (component) belongs to. Create abutment box for Cells, computed from the bounding box, so the Hurricane QuadTree could work properly. Make use of the fused net for unnamed components. * New: In Cumulus/plugins/chip, complete rewrite of the I/O pad management. Now we can mix real (foundry) pads and a symbolic core. To cleanly support the de-coupling between the real part and the symbolic one we introduce a new intermediary hierarchical level, the corona. We have now: Chip --> Pads + Corona --> Core. At chip level (and if we are using real pads) the layout is fully real (excepting the corona). The Corona contains everything that is symbolic. It has symbolic wires extending outward the abutment box to make contact with the real wires coming from the pads. In the pad ring we can use corners instances (or not), pad spacers or directly draw wires between connectors ring pads. Provide two flavors: placement only or full place & route. WARNING: If routing in a second step, *do not route* the *Chip* but the *Corona*. * Change: In Cumulus/plugins/clocktree, give the modified Cell an additional extension of "_cts" (Clock Tree Synthesis) instead of "_clocked", to follow the common convention. * New: In cumulus/plugins/S2R.py, encapsulate call to Alliance S2R and reload the translated Cell in the editor. * New: In cumulus/plugins/core2chip, provide an utility to automatically create a chip from a core. To work this plugins must have a basic understanding of the pad functionalities which may differs from foundry to foundry. So a base class CoreToChip is created, then for each supported pad foundry a derived class is added. Currently we support AMS c35b4 and Alliance symbolic cmos. * Bug: In Anabatic::Configuration, read the right configuration parameter "anabatic.topRoutinglayer" (Katana), and not the one for Katabatic... * Change: In Unicorn/cgt.py, process the plugins in alphabetical order to ensure a reproductible ordering of the menus...
2019-05-22 07:34:32 -05:00
from Analog import Transistor
from Analog import CommonDrain
from Analog import CommonGatePair
from Analog import CommonSourcePair
from Analog import CrossCoupledPair
from Analog import DifferentialPair
from Analog import LevelShifter
from Analog import SimpleCurrentMirror
First stage in analog capacitor integration * Bug: In Technology::getPhysicalRule(), if the named layerdo not exists, throw an exception instead of silently putting a NULL pointer inside a rule. * New: In Hurricane/Analog, new parameters classes for capacitor devices: - Analog::Matrix, a matrix of null or positives integers to encode capacitor matrix matching. - Analog::Capacities, a list of float values for all component of a multi-capacitor. * New: In Hurricane::Script, add a "getFileName()" method to get the full path name of the Python module. * Change: In Analog::LayoutGenerator, completly remove the logger utility as it is no longer used. Simply print error messages instead. * Change: In Analog::MetaCapacitor, rename top & bottom plate 'T' & 'B'. Accessors renamed in "getTopPlate()" & "getBottomPlate()". * New: In Analog::MultiCapacitor, complete rewrite. Makes use of the new parameters "capacities" and "matrix". Dynamically generates it's terminals as we do not know beforehand how many capacitors could be put in it. * Bug: In isobar/PyHurricane.h, in Type object definition, do not prepend a "Py" to class name (so the keep the C++ name). * Change: In CRL/etc/scn6m_deep_09/devices.py, add entry for the new capacitor generator. * New: In oroshi/python/ParamsMatrix, add a "family" entry in the [0,0] element to distinguish between transistor, capacitor and resistor. (this is the matrix of values returned to the LayoutGenerator after device generation). Now have one "setGlobalParams()" function per family. * New: In oroshi/python/Rules.py, added DTR rules needed by capacitors. Catch exceptions if something wrong append when we extract the rules from the technology. * New: In Bora, the devices are no longer *only* transistors, so the possibles configurations are no longer defined only by a number of fingers. We must be able to support any kind of range of configuration. So the explicit range of number of fingers is replaced by a base class ParameterRange, and it's derived classes: - Bora::StepParameterRange, to encode the possible number of fingers of a transistor (the former only possibility). - Bora::MatrixParameterRange, to encode all the possible matching scheme for a capacitor. As there is no way to compress it, this is a vector of Matrix (from Analog). * Change: In Bora::DSlicingNode::_place(), the ParameterRange has to be set on the right configuration (through the index) before being called. The generation parameters are taken from the active item in the ParameterRange. * Change: In Bora::NodeSets::create(), iterate over the ParameterRange to build all the configuration. Adjustement to the routing gauge pitchs are moved into the DBoxSet CTOR to save a lot of code. Semantic change: the index in the NodeSets is now the index in the associated ParameterRange and no longer the number of fingers of a transistor. Check that the ParameterRange dynamic class is consitent with the device family. * Change: In Bora::DBoxSet, same semantic change as for NodeSets, the number of finger become an index in ParameterRange. In DBoxSet::create(), now also perform the abutment box adjustement to the RoutingGauge, if possible. * New: In Karakaze/python/AnalogDesign.py, add support for Capacitor devices.
2019-11-07 10:05:49 -06:00
from Analog import CapacitorFamily
from Analog import MultiCapacitor
from Analog import CapacitorFamily
from Analog import MultiCapacitor
from Analog import ResistorFamily
from Analog import Resistor
Support for mixing real pads & symbolic core. Wrapper around s2r. * Change: In Hurricane::Error constructors disable the backtrace generation. (*very* slow). * Change: In Hurricane::Library::getHierarchicalname(), more compact naming. Remove the name of the root library. * New: In Hurricane::Net, new type "FUSED", for component with no net. More efficient than having one net for each. * Change: In CellViewer, BreakpointWidget, use Angry Birds icons. * Change: In CellWidget::State, use the hierarchical name (cached) as key to the state. This allow to load two cells with the same name but from different libraries in the widget history. * Change: In PyGraphics, export "isEnabled()" and "isHighDpi()" functions. * Change: In CRL/etc/symbolic/cmos/plugin.conf, and CRL/etc/common/plugin.conf use the physical dimensions converters. * Change: In CRL/etc/symbolic/cmos/technology.conf, make the GDS layer table coherent with the default Alliance cmos.rds. * New: CRL/python/helpers/io.py, put ErrorMessage new implementation here, along with a new ErrorWidget written in PyQt4. It seems finally that PyQt4 can be used alongside Coriolis Qt widgets. New ErrorMessage.catch() static function to manage all exceptions in except clauses. * Change: In CRL/python/helpers/, no longer use ErrorMessage.wrapPrint(), directly print it. Rewrite the utilities to display Python stack traces "textStacktrace()" and "showStacktrace()". * Change: In CRL::AllianceFramework, shorten the names of the libraries. * Change: In CRL::ApParser & CRL::ApDriver, more accurate translation between Alliance connectors (C record) and Hurricane::Pin objects. Pin are no longer made square but thin and oriented in the connecting direction. Use the new fused net for unnamed components. * New: In CRL::GdsParser, implementation of SREF parsing, i.e. instances. Due to the unordered nature of the GDS stream, instances creation are delayed until the whole stream has been parsed and only then are they created. For the sake of reading back Alliance s2r GDS, we assume that any TEXT following a boundary is the Net name the boundary (component) belongs to. Create abutment box for Cells, computed from the bounding box, so the Hurricane QuadTree could work properly. Make use of the fused net for unnamed components. * New: In Cumulus/plugins/chip, complete rewrite of the I/O pad management. Now we can mix real (foundry) pads and a symbolic core. To cleanly support the de-coupling between the real part and the symbolic one we introduce a new intermediary hierarchical level, the corona. We have now: Chip --> Pads + Corona --> Core. At chip level (and if we are using real pads) the layout is fully real (excepting the corona). The Corona contains everything that is symbolic. It has symbolic wires extending outward the abutment box to make contact with the real wires coming from the pads. In the pad ring we can use corners instances (or not), pad spacers or directly draw wires between connectors ring pads. Provide two flavors: placement only or full place & route. WARNING: If routing in a second step, *do not route* the *Chip* but the *Corona*. * Change: In Cumulus/plugins/clocktree, give the modified Cell an additional extension of "_cts" (Clock Tree Synthesis) instead of "_clocked", to follow the common convention. * New: In cumulus/plugins/S2R.py, encapsulate call to Alliance S2R and reload the translated Cell in the editor. * New: In cumulus/plugins/core2chip, provide an utility to automatically create a chip from a core. To work this plugins must have a basic understanding of the pad functionalities which may differs from foundry to foundry. So a base class CoreToChip is created, then for each supported pad foundry a derived class is added. Currently we support AMS c35b4 and Alliance symbolic cmos. * Bug: In Anabatic::Configuration, read the right configuration parameter "anabatic.topRoutinglayer" (Katana), and not the one for Katabatic... * Change: In Unicorn/cgt.py, process the plugins in alphabetical order to ensure a reproductible ordering of the menus...
2019-05-22 07:34:32 -05:00
from Analog import LayoutGenerator
First stage in analog capacitor integration * Bug: In Technology::getPhysicalRule(), if the named layerdo not exists, throw an exception instead of silently putting a NULL pointer inside a rule. * New: In Hurricane/Analog, new parameters classes for capacitor devices: - Analog::Matrix, a matrix of null or positives integers to encode capacitor matrix matching. - Analog::Capacities, a list of float values for all component of a multi-capacitor. * New: In Hurricane::Script, add a "getFileName()" method to get the full path name of the Python module. * Change: In Analog::LayoutGenerator, completly remove the logger utility as it is no longer used. Simply print error messages instead. * Change: In Analog::MetaCapacitor, rename top & bottom plate 'T' & 'B'. Accessors renamed in "getTopPlate()" & "getBottomPlate()". * New: In Analog::MultiCapacitor, complete rewrite. Makes use of the new parameters "capacities" and "matrix". Dynamically generates it's terminals as we do not know beforehand how many capacitors could be put in it. * Bug: In isobar/PyHurricane.h, in Type object definition, do not prepend a "Py" to class name (so the keep the C++ name). * Change: In CRL/etc/scn6m_deep_09/devices.py, add entry for the new capacitor generator. * New: In oroshi/python/ParamsMatrix, add a "family" entry in the [0,0] element to distinguish between transistor, capacitor and resistor. (this is the matrix of values returned to the LayoutGenerator after device generation). Now have one "setGlobalParams()" function per family. * New: In oroshi/python/Rules.py, added DTR rules needed by capacitors. Catch exceptions if something wrong append when we extract the rules from the technology. * New: In Bora, the devices are no longer *only* transistors, so the possibles configurations are no longer defined only by a number of fingers. We must be able to support any kind of range of configuration. So the explicit range of number of fingers is replaced by a base class ParameterRange, and it's derived classes: - Bora::StepParameterRange, to encode the possible number of fingers of a transistor (the former only possibility). - Bora::MatrixParameterRange, to encode all the possible matching scheme for a capacitor. As there is no way to compress it, this is a vector of Matrix (from Analog). * Change: In Bora::DSlicingNode::_place(), the ParameterRange has to be set on the right configuration (through the index) before being called. The generation parameters are taken from the active item in the ParameterRange. * Change: In Bora::NodeSets::create(), iterate over the ParameterRange to build all the configuration. Adjustement to the routing gauge pitchs are moved into the DBoxSet CTOR to save a lot of code. Semantic change: the index in the NodeSets is now the index in the associated ParameterRange and no longer the number of fingers of a transistor. Check that the ParameterRange dynamic class is consitent with the device family. * Change: In Bora::DBoxSet, same semantic change as for NodeSets, the number of finger become an index in ParameterRange. In DBoxSet::create(), now also perform the abutment box adjustement to the RoutingGauge, if possible. * New: In Karakaze/python/AnalogDesign.py, add support for Capacitor devices.
2019-11-07 10:05:49 -06:00
from Analog import Matrix
from Bora import ParameterRange
from Bora import StepParameterRange
from Bora import MatrixParameterRange
Support for mixing real pads & symbolic core. Wrapper around s2r. * Change: In Hurricane::Error constructors disable the backtrace generation. (*very* slow). * Change: In Hurricane::Library::getHierarchicalname(), more compact naming. Remove the name of the root library. * New: In Hurricane::Net, new type "FUSED", for component with no net. More efficient than having one net for each. * Change: In CellViewer, BreakpointWidget, use Angry Birds icons. * Change: In CellWidget::State, use the hierarchical name (cached) as key to the state. This allow to load two cells with the same name but from different libraries in the widget history. * Change: In PyGraphics, export "isEnabled()" and "isHighDpi()" functions. * Change: In CRL/etc/symbolic/cmos/plugin.conf, and CRL/etc/common/plugin.conf use the physical dimensions converters. * Change: In CRL/etc/symbolic/cmos/technology.conf, make the GDS layer table coherent with the default Alliance cmos.rds. * New: CRL/python/helpers/io.py, put ErrorMessage new implementation here, along with a new ErrorWidget written in PyQt4. It seems finally that PyQt4 can be used alongside Coriolis Qt widgets. New ErrorMessage.catch() static function to manage all exceptions in except clauses. * Change: In CRL/python/helpers/, no longer use ErrorMessage.wrapPrint(), directly print it. Rewrite the utilities to display Python stack traces "textStacktrace()" and "showStacktrace()". * Change: In CRL::AllianceFramework, shorten the names of the libraries. * Change: In CRL::ApParser & CRL::ApDriver, more accurate translation between Alliance connectors (C record) and Hurricane::Pin objects. Pin are no longer made square but thin and oriented in the connecting direction. Use the new fused net for unnamed components. * New: In CRL::GdsParser, implementation of SREF parsing, i.e. instances. Due to the unordered nature of the GDS stream, instances creation are delayed until the whole stream has been parsed and only then are they created. For the sake of reading back Alliance s2r GDS, we assume that any TEXT following a boundary is the Net name the boundary (component) belongs to. Create abutment box for Cells, computed from the bounding box, so the Hurricane QuadTree could work properly. Make use of the fused net for unnamed components. * New: In Cumulus/plugins/chip, complete rewrite of the I/O pad management. Now we can mix real (foundry) pads and a symbolic core. To cleanly support the de-coupling between the real part and the symbolic one we introduce a new intermediary hierarchical level, the corona. We have now: Chip --> Pads + Corona --> Core. At chip level (and if we are using real pads) the layout is fully real (excepting the corona). The Corona contains everything that is symbolic. It has symbolic wires extending outward the abutment box to make contact with the real wires coming from the pads. In the pad ring we can use corners instances (or not), pad spacers or directly draw wires between connectors ring pads. Provide two flavors: placement only or full place & route. WARNING: If routing in a second step, *do not route* the *Chip* but the *Corona*. * Change: In Cumulus/plugins/clocktree, give the modified Cell an additional extension of "_cts" (Clock Tree Synthesis) instead of "_clocked", to follow the common convention. * New: In cumulus/plugins/S2R.py, encapsulate call to Alliance S2R and reload the translated Cell in the editor. * New: In cumulus/plugins/core2chip, provide an utility to automatically create a chip from a core. To work this plugins must have a basic understanding of the pad functionalities which may differs from foundry to foundry. So a base class CoreToChip is created, then for each supported pad foundry a derived class is added. Currently we support AMS c35b4 and Alliance symbolic cmos. * Bug: In Anabatic::Configuration, read the right configuration parameter "anabatic.topRoutinglayer" (Katana), and not the one for Katabatic... * Change: In Unicorn/cgt.py, process the plugins in alphabetical order to ensure a reproductible ordering of the menus...
2019-05-22 07:34:32 -05:00
from Bora import SlicingNode
from Bora import HSlicingNode
from Bora import VSlicingNode
from Bora import DSlicingNode
from Bora import RHSlicingNode
from Bora import RVSlicingNode
import karakaze.oceane
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
import Anabatic
import Katana
import Bora
#helpers.setTraceLevel( 100 )
NMOS = Transistor.NMOS
PMOS = Transistor.PMOS
PIP = CapacitorFamily.PIP
MIM = CapacitorFamily.MIM
MOM = CapacitorFamily.MOM
LOWRES = ResistorFamily.LOWRES
HIRES = ResistorFamily.HIRES
RPOLYH = ResistorFamily.RPOLYH
RPOLY2PH = ResistorFamily.RPOLY2PH
Center = SlicingNode.AlignCenter
Left = SlicingNode.AlignLeft
Right = SlicingNode.AlignRight
Top = SlicingNode.AlignTop
Bottom = SlicingNode.AlignBottom
Unknown = SlicingNode.AlignBottom
VNode = 1
HNode = 2
DNode = 3
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
def toDbU ( value ): return DbU.fromPhysical( value, DbU.UnitPowerMicro )
def toLength ( value ): return float(value) * 1e+6
First stage in analog capacitor integration * Bug: In Technology::getPhysicalRule(), if the named layerdo not exists, throw an exception instead of silently putting a NULL pointer inside a rule. * New: In Hurricane/Analog, new parameters classes for capacitor devices: - Analog::Matrix, a matrix of null or positives integers to encode capacitor matrix matching. - Analog::Capacities, a list of float values for all component of a multi-capacitor. * New: In Hurricane::Script, add a "getFileName()" method to get the full path name of the Python module. * Change: In Analog::LayoutGenerator, completly remove the logger utility as it is no longer used. Simply print error messages instead. * Change: In Analog::MetaCapacitor, rename top & bottom plate 'T' & 'B'. Accessors renamed in "getTopPlate()" & "getBottomPlate()". * New: In Analog::MultiCapacitor, complete rewrite. Makes use of the new parameters "capacities" and "matrix". Dynamically generates it's terminals as we do not know beforehand how many capacitors could be put in it. * Bug: In isobar/PyHurricane.h, in Type object definition, do not prepend a "Py" to class name (so the keep the C++ name). * Change: In CRL/etc/scn6m_deep_09/devices.py, add entry for the new capacitor generator. * New: In oroshi/python/ParamsMatrix, add a "family" entry in the [0,0] element to distinguish between transistor, capacitor and resistor. (this is the matrix of values returned to the LayoutGenerator after device generation). Now have one "setGlobalParams()" function per family. * New: In oroshi/python/Rules.py, added DTR rules needed by capacitors. Catch exceptions if something wrong append when we extract the rules from the technology. * New: In Bora, the devices are no longer *only* transistors, so the possibles configurations are no longer defined only by a number of fingers. We must be able to support any kind of range of configuration. So the explicit range of number of fingers is replaced by a base class ParameterRange, and it's derived classes: - Bora::StepParameterRange, to encode the possible number of fingers of a transistor (the former only possibility). - Bora::MatrixParameterRange, to encode all the possible matching scheme for a capacitor. As there is no way to compress it, this is a vector of Matrix (from Analog). * Change: In Bora::DSlicingNode::_place(), the ParameterRange has to be set on the right configuration (through the index) before being called. The generation parameters are taken from the active item in the ParameterRange. * Change: In Bora::NodeSets::create(), iterate over the ParameterRange to build all the configuration. Adjustement to the routing gauge pitchs are moved into the DBoxSet CTOR to save a lot of code. Semantic change: the index in the NodeSets is now the index in the associated ParameterRange and no longer the number of fingers of a transistor. Check that the ParameterRange dynamic class is consitent with the device family. * Change: In Bora::DBoxSet, same semantic change as for NodeSets, the number of finger become an index in ParameterRange. In DBoxSet::create(), now also perform the abutment box adjustement to the RoutingGauge, if possible. * New: In Karakaze/python/AnalogDesign.py, add support for Capacitor devices.
2019-11-07 10:05:49 -06:00
def readMatrix ( rows ):
if not isinstance(rows,list):
print '[ERROR] readMatrix(): First level is not a list.'
sys.exit( 1 )
rowCount = len(rows)
for row in range(len(rows)):
column = rows[row]
if not isinstance(column,list):
print '[ERROR] readMatrix(): Column %d is not a list.' % row
sys.exit( 1 )
if row == 0:
columnCount = len(column)
matrix = Matrix( rowCount, columnCount )
else:
if columnCount != len(column):
print '[ERROR] readMatrix(): Column %d size discrepency (sould be %d).' % (len(column),columnCount)
sys.exit( 1 )
for column in range(len(column)):
matrix.setValue( row, column, rows[row][column] )
return matrix
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
class AnalogDesign ( object ):
def __init__ ( self ):
self.cellName = None
self.netCache = {}
self.rg = None
self.library = None
self.cell = None
self.netCache = {}
self.slicingTree = None
self.stack = []
self.stack2 = []
self.toleranceRatioH = 0
self.toleranceRatioW = 0
self.toleranceBandH = 0
self.toleranceBandW = 0
self.parameters = karakaze.oceane.Parameters()
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
return
def setCellName ( self, name ):
self.cellName = name
return
def beginCell ( self, cellName ):
self.setCellName( cellName )
UpdateSession.open()
self.rg = CRL.AllianceFramework.get().getRoutingGauge()
self.cell = CRL.AllianceFramework.get().createCell( self.cellName )
self.library = Library.create( DataBase.getDB().getRootLibrary(), 'AnalogRootLibrary' )
self.generator = LayoutGenerator()
return
def endCell ( self ):
UpdateSession.close()
return
def checkBeginCell ( self, function ):
if not self.cell:
raise Error( 3, [ 'AnalogDesign: \"AnalogDevice.beginCell()\" must be called *before* \"%s\".' \
% function
] )
return
def checkConnexion ( self, count, net, connexion ):
if not isinstance(connexion,tuple):
raise Error( 3, [ 'AnalogDesign.doNets(): \"self.netSpecs\" in \"%s\", connexion [%d] is *not* a tuple.' \
% (net.getName(),count)
, '%s' % str(connexion) ] )
if len(connexion) != 2:
raise Error( 3, [ 'AnalogDesign.doNets(): \"self.devicesSpecs\" in \"%s\", connexion [%d] has %d items instead of 2 .' \
% (net.getName(),count,len(connexion))
, '%s' % str(connexion) ] )
if not isinstance(connexion[0],str):
raise Error( 3, [ 'AnalogDesign.doNets(): \"self.devicesSpecs\" in \"%s\", connexion [%d], field [0] (instance) is *not* a string.' \
% (net.getName(),count)
, '%s' % str(connexion) ] )
if not isinstance(connexion[1],str):
raise Error( 3, [ 'AnalogDesign.doNets(): \"self.devicesSpecs\" in \"%s\", connexion [%d], field [1] (terminal) is *not* a string.' \
% (net.getName(),count)
, '%s' % str(connexion) ] )
return
def checkRail( self, net, metal, npitch, cellName, instanceName ):
#Net verification missing
if not isinstance(metal,str):
raise Error( 3, [ 'AnalogDesign.checkRail(): \"metal\" is *not* a string.' ] )
if not isinstance(npitch,int):
raise Error( 3, [ 'AnalogDesign.checkRail(): \"NPitch\" is *not* an int.' ] )
if not isinstance(cellName,str):
raise Error( 3, [ 'AnalogDesign.checkRail(): \"cellName\" is *not* a string.' ] )
if not isinstance(instanceName,str):
raise Error( 3, [ 'AnalogDesign.checkRail(): \"instanceName\" is *not* a string.' ] )
return
def connect ( self, instanceName, masterNetName, net ):
instance = getattr( self, instanceName )
masterNet = instance.getMasterCell().getNet( masterNetName )
instance.getPlug( masterNet ).setNet( net )
state = NetRoutingExtension.get(net)
device = instance.getMasterCell()
if masterNetName=='B':
device.getParameter('B.w').setValue(int(state.getWPitch()))
if masterNetName=='G':
device.getParameter('G.w').setValue(int(state.getWPitch()))
if masterNetName=='G1':
device.getParameter('G1.w').setValue(int(state.getWPitch()))
if masterNetName=='G2':
device.getParameter('G2.w').setValue(int(state.getWPitch()))
if masterNetName=='D':
device.getParameter('D.w').setValue(int(state.getWPitch()))
if masterNetName=='D1':
device.getParameter('D1.w').setValue(int(state.getWPitch()))
if masterNetName=='D2':
device.getParameter('D2.w').setValue(int(state.getWPitch()))
if masterNetName=='S':
device.getParameter('S.w').setValue(int(state.getWPitch()))
return
def getNet ( self, netName, create=True ):
net = None
if self.netCache.has_key(netName):
net = self.netCache[netName]
elif create:
net = Net.create( self.cell, netName )
self.netCache[ netName ] = net
return net
def doNets ( self ):
self.checkBeginCell( 'AnalogDesign.doNets()' )
if not hasattr(self,'netSpecs'):
raise Error( 3, 'AnalogDesign.doNets(): Mandatory attribute \"self.netSpecs\" has not been defined.' )
if not isinstance(self.netSpecs,dict):
raise Error( 3, 'AnalogDesign.doNets(): Attribute \"self.netSpecs\" *must* be a Python dict.' )
for netName, netType in self.netTypes.items():
if not isinstance(netName,str):
raise Error( 3, 'AnalogDesign.doNets(): Dict key (net name) of \"self.netTypes\" *must* be a string (%s).' % str(netName) )
net = self.getNet( netName )
isExternal = False
if netType.has_key('isExternal'): isExternal = netType['isExternal']
for netName, connexions in self.netSpecs.items():
if not isinstance(netName,str):
raise Error( 3, 'AnalogDesign.doNets(): Dict key (net name) of \"self.netSpecs\" *must* be a string (%s).' % str(netName) )
net = self.getNet( netName )
state = NetRoutingExtension.create( net, NetRoutingState.AutomaticGlobalRoute|NetRoutingState.Analog )
count = 1
for connexion in connexions:
if isinstance(connexion,tuple):
self.checkConnexion( count, net, connexion )
self.connect( connexion[0], connexion[1], net )
count += 1
else:
if isinstance(connexion,dict): state.setWPitch(long(connexion['W']))
return
def checkDSpec ( self, count, dspec ):
if not isinstance(dspec,list):
raise Error( 3, [ 'AnalogDesign.doDevices(): \"self.devicesSpecs\" entry [%d], is *not* a list.' % count
, '%s' % str(dspec) ])
if not isderived(dspec[0],Device):
raise Error( 3, [ 'AnalogDesign.doDevices(): \"self.devicesSpecs\" entry [%d], field [0] is *not* a Device class.' % count
, '%s' % str(dspec) ])
First stage in analog capacitor integration * Bug: In Technology::getPhysicalRule(), if the named layerdo not exists, throw an exception instead of silently putting a NULL pointer inside a rule. * New: In Hurricane/Analog, new parameters classes for capacitor devices: - Analog::Matrix, a matrix of null or positives integers to encode capacitor matrix matching. - Analog::Capacities, a list of float values for all component of a multi-capacitor. * New: In Hurricane::Script, add a "getFileName()" method to get the full path name of the Python module. * Change: In Analog::LayoutGenerator, completly remove the logger utility as it is no longer used. Simply print error messages instead. * Change: In Analog::MetaCapacitor, rename top & bottom plate 'T' & 'B'. Accessors renamed in "getTopPlate()" & "getBottomPlate()". * New: In Analog::MultiCapacitor, complete rewrite. Makes use of the new parameters "capacities" and "matrix". Dynamically generates it's terminals as we do not know beforehand how many capacitors could be put in it. * Bug: In isobar/PyHurricane.h, in Type object definition, do not prepend a "Py" to class name (so the keep the C++ name). * Change: In CRL/etc/scn6m_deep_09/devices.py, add entry for the new capacitor generator. * New: In oroshi/python/ParamsMatrix, add a "family" entry in the [0,0] element to distinguish between transistor, capacitor and resistor. (this is the matrix of values returned to the LayoutGenerator after device generation). Now have one "setGlobalParams()" function per family. * New: In oroshi/python/Rules.py, added DTR rules needed by capacitors. Catch exceptions if something wrong append when we extract the rules from the technology. * New: In Bora, the devices are no longer *only* transistors, so the possibles configurations are no longer defined only by a number of fingers. We must be able to support any kind of range of configuration. So the explicit range of number of fingers is replaced by a base class ParameterRange, and it's derived classes: - Bora::StepParameterRange, to encode the possible number of fingers of a transistor (the former only possibility). - Bora::MatrixParameterRange, to encode all the possible matching scheme for a capacitor. As there is no way to compress it, this is a vector of Matrix (from Analog). * Change: In Bora::DSlicingNode::_place(), the ParameterRange has to be set on the right configuration (through the index) before being called. The generation parameters are taken from the active item in the ParameterRange. * Change: In Bora::NodeSets::create(), iterate over the ParameterRange to build all the configuration. Adjustement to the routing gauge pitchs are moved into the DBoxSet CTOR to save a lot of code. Semantic change: the index in the NodeSets is now the index in the associated ParameterRange and no longer the number of fingers of a transistor. Check that the ParameterRange dynamic class is consitent with the device family. * Change: In Bora::DBoxSet, same semantic change as for NodeSets, the number of finger become an index in ParameterRange. In DBoxSet::create(), now also perform the abutment box adjustement to the RoutingGauge, if possible. * New: In Karakaze/python/AnalogDesign.py, add support for Capacitor devices.
2019-11-07 10:05:49 -06:00
specSize = 0
if isderived(dspec[0],TransistorFamily): specSize = 12
elif isderived(dspec[0], CapacitorFamily): specSize = 7
elif isderived(dspec[0], ResistorFamily): specSize = 8
First stage in analog capacitor integration * Bug: In Technology::getPhysicalRule(), if the named layerdo not exists, throw an exception instead of silently putting a NULL pointer inside a rule. * New: In Hurricane/Analog, new parameters classes for capacitor devices: - Analog::Matrix, a matrix of null or positives integers to encode capacitor matrix matching. - Analog::Capacities, a list of float values for all component of a multi-capacitor. * New: In Hurricane::Script, add a "getFileName()" method to get the full path name of the Python module. * Change: In Analog::LayoutGenerator, completly remove the logger utility as it is no longer used. Simply print error messages instead. * Change: In Analog::MetaCapacitor, rename top & bottom plate 'T' & 'B'. Accessors renamed in "getTopPlate()" & "getBottomPlate()". * New: In Analog::MultiCapacitor, complete rewrite. Makes use of the new parameters "capacities" and "matrix". Dynamically generates it's terminals as we do not know beforehand how many capacitors could be put in it. * Bug: In isobar/PyHurricane.h, in Type object definition, do not prepend a "Py" to class name (so the keep the C++ name). * Change: In CRL/etc/scn6m_deep_09/devices.py, add entry for the new capacitor generator. * New: In oroshi/python/ParamsMatrix, add a "family" entry in the [0,0] element to distinguish between transistor, capacitor and resistor. (this is the matrix of values returned to the LayoutGenerator after device generation). Now have one "setGlobalParams()" function per family. * New: In oroshi/python/Rules.py, added DTR rules needed by capacitors. Catch exceptions if something wrong append when we extract the rules from the technology. * New: In Bora, the devices are no longer *only* transistors, so the possibles configurations are no longer defined only by a number of fingers. We must be able to support any kind of range of configuration. So the explicit range of number of fingers is replaced by a base class ParameterRange, and it's derived classes: - Bora::StepParameterRange, to encode the possible number of fingers of a transistor (the former only possibility). - Bora::MatrixParameterRange, to encode all the possible matching scheme for a capacitor. As there is no way to compress it, this is a vector of Matrix (from Analog). * Change: In Bora::DSlicingNode::_place(), the ParameterRange has to be set on the right configuration (through the index) before being called. The generation parameters are taken from the active item in the ParameterRange. * Change: In Bora::NodeSets::create(), iterate over the ParameterRange to build all the configuration. Adjustement to the routing gauge pitchs are moved into the DBoxSet CTOR to save a lot of code. Semantic change: the index in the NodeSets is now the index in the associated ParameterRange and no longer the number of fingers of a transistor. Check that the ParameterRange dynamic class is consitent with the device family. * Change: In Bora::DBoxSet, same semantic change as for NodeSets, the number of finger become an index in ParameterRange. In DBoxSet::create(), now also perform the abutment box adjustement to the RoutingGauge, if possible. * New: In Karakaze/python/AnalogDesign.py, add support for Capacitor devices.
2019-11-07 10:05:49 -06:00
else:
raise Error( 3, [ 'AnalogDesign.doDevices(): \"self.devicesSpecs\" entry [%d], has unsupported device type.' \
% (count)
, '%s' % str(dspec) ])
if len(dspec) < specSize:
raise Error( 3, [ 'AnalogDesign.doDevices(): \"self.devicesSpecs\" entry [%d], has %d items instead of 12 .' \
% (count,len(dspec))
, '%s' % str(dspec) ])
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
if not isinstance(dspec[1],str):
raise Error( 3, [ 'AnalogDesign.doDevices(): \"self.devicesSpecs\" entry [%d], field [1] (model name) is *not* a string.' % count
, '%s' % str(dspec) ])
if not isinstance(dspec[2],str):
raise Error( 3, [ 'AnalogDesign.doDevices(): \"self.devicesSpecs\" entry [%d], field [2] (layout style) is *not* a string.' % count
, '%s' % str(dspec) ])
First stage in analog capacitor integration * Bug: In Technology::getPhysicalRule(), if the named layerdo not exists, throw an exception instead of silently putting a NULL pointer inside a rule. * New: In Hurricane/Analog, new parameters classes for capacitor devices: - Analog::Matrix, a matrix of null or positives integers to encode capacitor matrix matching. - Analog::Capacities, a list of float values for all component of a multi-capacitor. * New: In Hurricane::Script, add a "getFileName()" method to get the full path name of the Python module. * Change: In Analog::LayoutGenerator, completly remove the logger utility as it is no longer used. Simply print error messages instead. * Change: In Analog::MetaCapacitor, rename top & bottom plate 'T' & 'B'. Accessors renamed in "getTopPlate()" & "getBottomPlate()". * New: In Analog::MultiCapacitor, complete rewrite. Makes use of the new parameters "capacities" and "matrix". Dynamically generates it's terminals as we do not know beforehand how many capacitors could be put in it. * Bug: In isobar/PyHurricane.h, in Type object definition, do not prepend a "Py" to class name (so the keep the C++ name). * Change: In CRL/etc/scn6m_deep_09/devices.py, add entry for the new capacitor generator. * New: In oroshi/python/ParamsMatrix, add a "family" entry in the [0,0] element to distinguish between transistor, capacitor and resistor. (this is the matrix of values returned to the LayoutGenerator after device generation). Now have one "setGlobalParams()" function per family. * New: In oroshi/python/Rules.py, added DTR rules needed by capacitors. Catch exceptions if something wrong append when we extract the rules from the technology. * New: In Bora, the devices are no longer *only* transistors, so the possibles configurations are no longer defined only by a number of fingers. We must be able to support any kind of range of configuration. So the explicit range of number of fingers is replaced by a base class ParameterRange, and it's derived classes: - Bora::StepParameterRange, to encode the possible number of fingers of a transistor (the former only possibility). - Bora::MatrixParameterRange, to encode all the possible matching scheme for a capacitor. As there is no way to compress it, this is a vector of Matrix (from Analog). * Change: In Bora::DSlicingNode::_place(), the ParameterRange has to be set on the right configuration (through the index) before being called. The generation parameters are taken from the active item in the ParameterRange. * Change: In Bora::NodeSets::create(), iterate over the ParameterRange to build all the configuration. Adjustement to the routing gauge pitchs are moved into the DBoxSet CTOR to save a lot of code. Semantic change: the index in the NodeSets is now the index in the associated ParameterRange and no longer the number of fingers of a transistor. Check that the ParameterRange dynamic class is consitent with the device family. * Change: In Bora::DBoxSet, same semantic change as for NodeSets, the number of finger become an index in ParameterRange. In DBoxSet::create(), now also perform the abutment box adjustement to the RoutingGauge, if possible. * New: In Karakaze/python/AnalogDesign.py, add support for Capacitor devices.
2019-11-07 10:05:49 -06:00
if isderived(dspec[0],TransistorFamily):
First stage in analog capacitor integration * Bug: In Technology::getPhysicalRule(), if the named layerdo not exists, throw an exception instead of silently putting a NULL pointer inside a rule. * New: In Hurricane/Analog, new parameters classes for capacitor devices: - Analog::Matrix, a matrix of null or positives integers to encode capacitor matrix matching. - Analog::Capacities, a list of float values for all component of a multi-capacitor. * New: In Hurricane::Script, add a "getFileName()" method to get the full path name of the Python module. * Change: In Analog::LayoutGenerator, completly remove the logger utility as it is no longer used. Simply print error messages instead. * Change: In Analog::MetaCapacitor, rename top & bottom plate 'T' & 'B'. Accessors renamed in "getTopPlate()" & "getBottomPlate()". * New: In Analog::MultiCapacitor, complete rewrite. Makes use of the new parameters "capacities" and "matrix". Dynamically generates it's terminals as we do not know beforehand how many capacitors could be put in it. * Bug: In isobar/PyHurricane.h, in Type object definition, do not prepend a "Py" to class name (so the keep the C++ name). * Change: In CRL/etc/scn6m_deep_09/devices.py, add entry for the new capacitor generator. * New: In oroshi/python/ParamsMatrix, add a "family" entry in the [0,0] element to distinguish between transistor, capacitor and resistor. (this is the matrix of values returned to the LayoutGenerator after device generation). Now have one "setGlobalParams()" function per family. * New: In oroshi/python/Rules.py, added DTR rules needed by capacitors. Catch exceptions if something wrong append when we extract the rules from the technology. * New: In Bora, the devices are no longer *only* transistors, so the possibles configurations are no longer defined only by a number of fingers. We must be able to support any kind of range of configuration. So the explicit range of number of fingers is replaced by a base class ParameterRange, and it's derived classes: - Bora::StepParameterRange, to encode the possible number of fingers of a transistor (the former only possibility). - Bora::MatrixParameterRange, to encode all the possible matching scheme for a capacitor. As there is no way to compress it, this is a vector of Matrix (from Analog). * Change: In Bora::DSlicingNode::_place(), the ParameterRange has to be set on the right configuration (through the index) before being called. The generation parameters are taken from the active item in the ParameterRange. * Change: In Bora::NodeSets::create(), iterate over the ParameterRange to build all the configuration. Adjustement to the routing gauge pitchs are moved into the DBoxSet CTOR to save a lot of code. Semantic change: the index in the NodeSets is now the index in the associated ParameterRange and no longer the number of fingers of a transistor. Check that the ParameterRange dynamic class is consitent with the device family. * Change: In Bora::DBoxSet, same semantic change as for NodeSets, the number of finger become an index in ParameterRange. In DBoxSet::create(), now also perform the abutment box adjustement to the RoutingGauge, if possible. * New: In Karakaze/python/AnalogDesign.py, add support for Capacitor devices.
2019-11-07 10:05:49 -06:00
if dspec[3] not in [NMOS, PMOS]:
raise Error( 3, [ 'AnalogDesign.doDevices(): \"self.devicesSpecs\" entry [%d], field [3] (type) must be either NMOS or PMOS.' % count
, '%s' % str(dspec) ])
if not isinstance(dspec[4],float):
raise Error( 3, [ 'AnalogDesign.doDevices(): \"self.devicesSpecs\" entry [%d], field [4] (WE) is *not* a float.' % count
, '%s' % str(dspec) ])
if not isinstance(dspec[5],float):
raise Error( 3, [ 'AnalogDesign.doDevices(): \"self.devicesSpecs\" entry [%d], field [5] (LE) is *not* a float.' % count
, '%s' % str(dspec) ])
if not isinstance(dspec[6],int):
raise Error( 3, [ 'AnalogDesign.doDevices(): \"self.devicesSpecs\" entry [%d], field [6] (M) is *not* an int.' % count
, '%s' % str(dspec) ])
if (not dspec[7] is None) and (not isinstance(dspec[7],int)):
raise Error( 3, [ 'AnalogDesign.doDevices(): \"self.devicesSpecs\" entry [%d], field [7] (Mint) is neither an int nor None.' % count
, '%s' % str(dspec) ])
if not isinstance(dspec[8],int):
raise Error( 3, [ 'AnalogDesign.doDevices(): \"self.devicesSpecs\" entry [%d], field [8] (external dummies) is *not* an int.' % count
, '%s' % str(dspec) ])
if not isinstance(dspec[9],bool):
raise Error( 3, [ 'AnalogDesign.doDevices(): \"self.devicesSpecs\" entry [%d], field [9] (source first) is *not* a boolean.' % count
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
, '%s' % str(dspec) ])
First stage in analog capacitor integration * Bug: In Technology::getPhysicalRule(), if the named layerdo not exists, throw an exception instead of silently putting a NULL pointer inside a rule. * New: In Hurricane/Analog, new parameters classes for capacitor devices: - Analog::Matrix, a matrix of null or positives integers to encode capacitor matrix matching. - Analog::Capacities, a list of float values for all component of a multi-capacitor. * New: In Hurricane::Script, add a "getFileName()" method to get the full path name of the Python module. * Change: In Analog::LayoutGenerator, completly remove the logger utility as it is no longer used. Simply print error messages instead. * Change: In Analog::MetaCapacitor, rename top & bottom plate 'T' & 'B'. Accessors renamed in "getTopPlate()" & "getBottomPlate()". * New: In Analog::MultiCapacitor, complete rewrite. Makes use of the new parameters "capacities" and "matrix". Dynamically generates it's terminals as we do not know beforehand how many capacitors could be put in it. * Bug: In isobar/PyHurricane.h, in Type object definition, do not prepend a "Py" to class name (so the keep the C++ name). * Change: In CRL/etc/scn6m_deep_09/devices.py, add entry for the new capacitor generator. * New: In oroshi/python/ParamsMatrix, add a "family" entry in the [0,0] element to distinguish between transistor, capacitor and resistor. (this is the matrix of values returned to the LayoutGenerator after device generation). Now have one "setGlobalParams()" function per family. * New: In oroshi/python/Rules.py, added DTR rules needed by capacitors. Catch exceptions if something wrong append when we extract the rules from the technology. * New: In Bora, the devices are no longer *only* transistors, so the possibles configurations are no longer defined only by a number of fingers. We must be able to support any kind of range of configuration. So the explicit range of number of fingers is replaced by a base class ParameterRange, and it's derived classes: - Bora::StepParameterRange, to encode the possible number of fingers of a transistor (the former only possibility). - Bora::MatrixParameterRange, to encode all the possible matching scheme for a capacitor. As there is no way to compress it, this is a vector of Matrix (from Analog). * Change: In Bora::DSlicingNode::_place(), the ParameterRange has to be set on the right configuration (through the index) before being called. The generation parameters are taken from the active item in the ParameterRange. * Change: In Bora::NodeSets::create(), iterate over the ParameterRange to build all the configuration. Adjustement to the routing gauge pitchs are moved into the DBoxSet CTOR to save a lot of code. Semantic change: the index in the NodeSets is now the index in the associated ParameterRange and no longer the number of fingers of a transistor. Check that the ParameterRange dynamic class is consitent with the device family. * Change: In Bora::DBoxSet, same semantic change as for NodeSets, the number of finger become an index in ParameterRange. In DBoxSet::create(), now also perform the abutment box adjustement to the RoutingGauge, if possible. * New: In Karakaze/python/AnalogDesign.py, add support for Capacitor devices.
2019-11-07 10:05:49 -06:00
if not isinstance(dspec[10],int):
raise Error( 3, [ 'AnalogDesign.doDevices(): \"self.devicesSpecs\" entry [%d], field [10] (bulk) is *not* an int.' % count
, '%s' % str(dspec) ])
else:
if dspec[10] > 0xf:
raise Error( 3, [ 'AnalogDesign.doDevices(): \"self.devicesSpecs\" entry [%d], field [10] (bulk) is greater than 0xf.' % count
, '%s' % str(dspec) ])
if not isinstance(dspec[11],bool):
raise Error( 3, [ 'AnalogDesign.doDevices(): \"self.devicesSpecs\" entry [%d], field [11] (bulk connected) is *not* a boolean.' % count
, '%s' % str(dspec) ])
elif isderived(dspec[0], CapacitorFamily):
First stage in analog capacitor integration * Bug: In Technology::getPhysicalRule(), if the named layerdo not exists, throw an exception instead of silently putting a NULL pointer inside a rule. * New: In Hurricane/Analog, new parameters classes for capacitor devices: - Analog::Matrix, a matrix of null or positives integers to encode capacitor matrix matching. - Analog::Capacities, a list of float values for all component of a multi-capacitor. * New: In Hurricane::Script, add a "getFileName()" method to get the full path name of the Python module. * Change: In Analog::LayoutGenerator, completly remove the logger utility as it is no longer used. Simply print error messages instead. * Change: In Analog::MetaCapacitor, rename top & bottom plate 'T' & 'B'. Accessors renamed in "getTopPlate()" & "getBottomPlate()". * New: In Analog::MultiCapacitor, complete rewrite. Makes use of the new parameters "capacities" and "matrix". Dynamically generates it's terminals as we do not know beforehand how many capacitors could be put in it. * Bug: In isobar/PyHurricane.h, in Type object definition, do not prepend a "Py" to class name (so the keep the C++ name). * Change: In CRL/etc/scn6m_deep_09/devices.py, add entry for the new capacitor generator. * New: In oroshi/python/ParamsMatrix, add a "family" entry in the [0,0] element to distinguish between transistor, capacitor and resistor. (this is the matrix of values returned to the LayoutGenerator after device generation). Now have one "setGlobalParams()" function per family. * New: In oroshi/python/Rules.py, added DTR rules needed by capacitors. Catch exceptions if something wrong append when we extract the rules from the technology. * New: In Bora, the devices are no longer *only* transistors, so the possibles configurations are no longer defined only by a number of fingers. We must be able to support any kind of range of configuration. So the explicit range of number of fingers is replaced by a base class ParameterRange, and it's derived classes: - Bora::StepParameterRange, to encode the possible number of fingers of a transistor (the former only possibility). - Bora::MatrixParameterRange, to encode all the possible matching scheme for a capacitor. As there is no way to compress it, this is a vector of Matrix (from Analog). * Change: In Bora::DSlicingNode::_place(), the ParameterRange has to be set on the right configuration (through the index) before being called. The generation parameters are taken from the active item in the ParameterRange. * Change: In Bora::NodeSets::create(), iterate over the ParameterRange to build all the configuration. Adjustement to the routing gauge pitchs are moved into the DBoxSet CTOR to save a lot of code. Semantic change: the index in the NodeSets is now the index in the associated ParameterRange and no longer the number of fingers of a transistor. Check that the ParameterRange dynamic class is consitent with the device family. * Change: In Bora::DBoxSet, same semantic change as for NodeSets, the number of finger become an index in ParameterRange. In DBoxSet::create(), now also perform the abutment box adjustement to the RoutingGauge, if possible. * New: In Karakaze/python/AnalogDesign.py, add support for Capacitor devices.
2019-11-07 10:05:49 -06:00
if dspec[3] not in [PIP, MIM, MOM]:
raise Error( 3, [ 'AnalogDesign.doDevices(): \"self.devicesSpecs\" entry [%d], field [3] (type) must be either PIP, MIM or MOM.' % count
, '%s' % str(dspec) ])
if isinstance(dspec[4],float): pass
elif isinstance(dspec[4],tuple): pass
else:
raise Error( 3, [ 'AnalogDesign.doDevices(): \"self.devicesSpecs\" entry [%d], field [4] (Cs) should either be *one* float or a *list* of floats.' % count
, '%s' % str(dspec) ])
elif isderived(dspec[0],ResistorFamily):
if dspec[3] not in [RPOLYH, RPOLY2PH]:
raise Error( 3, [ 'AnalogDesign.doDevices(): \"self.devicesSpecs\" entry [%d], field [3] (type) must be either RPOLYH or RPOLY2PH.' % count
, '%s' % str(dspec) ])
if isinstance(dspec[5],float): pass
else:
raise Error( 3, [ 'AnalogDesign.doDevices(): \"self.devicesSpecs\" entry [%d], field [4] (resistance) must be a float.' % count
, '%s' % str(dspec) ])
First stage in analog capacitor integration * Bug: In Technology::getPhysicalRule(), if the named layerdo not exists, throw an exception instead of silently putting a NULL pointer inside a rule. * New: In Hurricane/Analog, new parameters classes for capacitor devices: - Analog::Matrix, a matrix of null or positives integers to encode capacitor matrix matching. - Analog::Capacities, a list of float values for all component of a multi-capacitor. * New: In Hurricane::Script, add a "getFileName()" method to get the full path name of the Python module. * Change: In Analog::LayoutGenerator, completly remove the logger utility as it is no longer used. Simply print error messages instead. * Change: In Analog::MetaCapacitor, rename top & bottom plate 'T' & 'B'. Accessors renamed in "getTopPlate()" & "getBottomPlate()". * New: In Analog::MultiCapacitor, complete rewrite. Makes use of the new parameters "capacities" and "matrix". Dynamically generates it's terminals as we do not know beforehand how many capacitors could be put in it. * Bug: In isobar/PyHurricane.h, in Type object definition, do not prepend a "Py" to class name (so the keep the C++ name). * Change: In CRL/etc/scn6m_deep_09/devices.py, add entry for the new capacitor generator. * New: In oroshi/python/ParamsMatrix, add a "family" entry in the [0,0] element to distinguish between transistor, capacitor and resistor. (this is the matrix of values returned to the LayoutGenerator after device generation). Now have one "setGlobalParams()" function per family. * New: In oroshi/python/Rules.py, added DTR rules needed by capacitors. Catch exceptions if something wrong append when we extract the rules from the technology. * New: In Bora, the devices are no longer *only* transistors, so the possibles configurations are no longer defined only by a number of fingers. We must be able to support any kind of range of configuration. So the explicit range of number of fingers is replaced by a base class ParameterRange, and it's derived classes: - Bora::StepParameterRange, to encode the possible number of fingers of a transistor (the former only possibility). - Bora::MatrixParameterRange, to encode all the possible matching scheme for a capacitor. As there is no way to compress it, this is a vector of Matrix (from Analog). * Change: In Bora::DSlicingNode::_place(), the ParameterRange has to be set on the right configuration (through the index) before being called. The generation parameters are taken from the active item in the ParameterRange. * Change: In Bora::NodeSets::create(), iterate over the ParameterRange to build all the configuration. Adjustement to the routing gauge pitchs are moved into the DBoxSet CTOR to save a lot of code. Semantic change: the index in the NodeSets is now the index in the associated ParameterRange and no longer the number of fingers of a transistor. Check that the ParameterRange dynamic class is consitent with the device family. * Change: In Bora::DBoxSet, same semantic change as for NodeSets, the number of finger become an index in ParameterRange. In DBoxSet::create(), now also perform the abutment box adjustement to the RoutingGauge, if possible. * New: In Karakaze/python/AnalogDesign.py, add support for Capacitor devices.
2019-11-07 10:05:49 -06:00
else:
raise Error( 3, [ 'AnalogDesign.doDevices(): \"self.devicesSpecs\" entry [%d], spec list do not match any known pattern.' % count
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
, '%s' % str(dspec) ])
return
def checkDSpecDigital ( self, count, dspec ):
# if not isinstance(dspec[0],str):
# raise Error( 3, [ 'AnalogDesign.doDevices(): \"self.devicesSpecs\" entry [%d], field [0] (model name) is *not* a string.' % count
# , '%s' % str(dspec) ])
if not isinstance(dspec[1],str):
raise Error( 3, [ 'AnalogDesign.doDevices(): \"self.devicesSpecs\" entry [%d], field [1] (model name) is *not* a string.' % count
, '%s' % str(dspec) ])
return
def readParameters ( self, path ):
trace( 110, ',+', '\tReading Oceane parameters from \"%s\"\n' % path )
if not path: return
self.parameters.read( path );
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
for dspec in self.devicesSpecs:
if dspec[0] == MultiCapacitor:
Cname = dspec[1]
Cparameters = self.parameters.getCapacitor( Cname )
if not Cparameters:
raise Error( 3, [ 'AnalogDesign.readParameters(): Missing parameters for capacity \"%s\".' % Cname ] )
continue
dspec[4] = Cparameters.C * 1e+12
trace( 110, '\t- \"%s\" : C:%fpF\n' % (Cname ,dspec[4]) )
else:
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
Tname = dspec[1].split('_')[0]
Tparameters = self.parameters.getTransistor( Tname )
if not Tparameters:
raise Error( 3, [ 'AnalogDesign.readParameters(): Missing parameters for \"%s\".' % Tname ] )
continue
dspec[4] = toLength( Tparameters.W )
dspec[5] = toLength( Tparameters.L )
dspec[6] = Tparameters.M
trace( 110, '\t- \"%s\" : W:%f L:%f M:%d\n' % (Tname
,dspec[4]
,dspec[5]
,dspec[6]) )
trace( 110, '-,' )
return
def doDevice ( self, count, dspec ):
self.checkBeginCell( 'AnalogDesign.doDevice()' )
if len(dspec) == 2:
self.checkDSpecDigital( count, dspec )
if isinstance( dspec[0], str ):
masterCell = CRL.AllianceFramework.get().getCell( dspec[0], CRL.Catalog.State.Views )
instance = Instance.create( self.cell
, dspec[1]
, masterCell
, Transformation()
, Instance.PlacementStatus.UNPLACED )
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
self.__dict__[ dspec[1] ] = instance
else:
masterCell = dspec[0]
instance = Instance.create( self.cell
, dspec[1]
, masterCell
, Transformation()
, Instance.PlacementStatus.UNPLACED )
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
self.__dict__[ dspec[1] ] = instance
else:
self.checkDSpec( count, dspec )
trace( 110, '\t==============================================================\n' )
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
trace( 110, '\tBuilding \"%s\"\n' % dspec[1] )
First stage in analog capacitor integration * Bug: In Technology::getPhysicalRule(), if the named layerdo not exists, throw an exception instead of silently putting a NULL pointer inside a rule. * New: In Hurricane/Analog, new parameters classes for capacitor devices: - Analog::Matrix, a matrix of null or positives integers to encode capacitor matrix matching. - Analog::Capacities, a list of float values for all component of a multi-capacitor. * New: In Hurricane::Script, add a "getFileName()" method to get the full path name of the Python module. * Change: In Analog::LayoutGenerator, completly remove the logger utility as it is no longer used. Simply print error messages instead. * Change: In Analog::MetaCapacitor, rename top & bottom plate 'T' & 'B'. Accessors renamed in "getTopPlate()" & "getBottomPlate()". * New: In Analog::MultiCapacitor, complete rewrite. Makes use of the new parameters "capacities" and "matrix". Dynamically generates it's terminals as we do not know beforehand how many capacitors could be put in it. * Bug: In isobar/PyHurricane.h, in Type object definition, do not prepend a "Py" to class name (so the keep the C++ name). * Change: In CRL/etc/scn6m_deep_09/devices.py, add entry for the new capacitor generator. * New: In oroshi/python/ParamsMatrix, add a "family" entry in the [0,0] element to distinguish between transistor, capacitor and resistor. (this is the matrix of values returned to the LayoutGenerator after device generation). Now have one "setGlobalParams()" function per family. * New: In oroshi/python/Rules.py, added DTR rules needed by capacitors. Catch exceptions if something wrong append when we extract the rules from the technology. * New: In Bora, the devices are no longer *only* transistors, so the possibles configurations are no longer defined only by a number of fingers. We must be able to support any kind of range of configuration. So the explicit range of number of fingers is replaced by a base class ParameterRange, and it's derived classes: - Bora::StepParameterRange, to encode the possible number of fingers of a transistor (the former only possibility). - Bora::MatrixParameterRange, to encode all the possible matching scheme for a capacitor. As there is no way to compress it, this is a vector of Matrix (from Analog). * Change: In Bora::DSlicingNode::_place(), the ParameterRange has to be set on the right configuration (through the index) before being called. The generation parameters are taken from the active item in the ParameterRange. * Change: In Bora::NodeSets::create(), iterate over the ParameterRange to build all the configuration. Adjustement to the routing gauge pitchs are moved into the DBoxSet CTOR to save a lot of code. Semantic change: the index in the NodeSets is now the index in the associated ParameterRange and no longer the number of fingers of a transistor. Check that the ParameterRange dynamic class is consitent with the device family. * Change: In Bora::DBoxSet, same semantic change as for NodeSets, the number of finger become an index in ParameterRange. In DBoxSet::create(), now also perform the abutment box adjustement to the RoutingGauge, if possible. * New: In Karakaze/python/AnalogDesign.py, add support for Capacitor devices.
2019-11-07 10:05:49 -06:00
if isderived(dspec[0],TransistorFamily):
device = dspec[0].create( self.library, dspec[1], dspec[3], dspec[11] )
device.getParameter( 'Layout Styles' ).setValue( dspec[2] )
device.getParameter( 'W' ).setValue( toDbU(dspec[4]) )
device.getParameter( 'L' ).setValue( toDbU(dspec[5]) )
device.getParameter( 'M' ).setValue( dspec[6] )
device.setSourceFirst( dspec[9] )
device.setBulkType ( dspec[10] )
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
First stage in analog capacitor integration * Bug: In Technology::getPhysicalRule(), if the named layerdo not exists, throw an exception instead of silently putting a NULL pointer inside a rule. * New: In Hurricane/Analog, new parameters classes for capacitor devices: - Analog::Matrix, a matrix of null or positives integers to encode capacitor matrix matching. - Analog::Capacities, a list of float values for all component of a multi-capacitor. * New: In Hurricane::Script, add a "getFileName()" method to get the full path name of the Python module. * Change: In Analog::LayoutGenerator, completly remove the logger utility as it is no longer used. Simply print error messages instead. * Change: In Analog::MetaCapacitor, rename top & bottom plate 'T' & 'B'. Accessors renamed in "getTopPlate()" & "getBottomPlate()". * New: In Analog::MultiCapacitor, complete rewrite. Makes use of the new parameters "capacities" and "matrix". Dynamically generates it's terminals as we do not know beforehand how many capacitors could be put in it. * Bug: In isobar/PyHurricane.h, in Type object definition, do not prepend a "Py" to class name (so the keep the C++ name). * Change: In CRL/etc/scn6m_deep_09/devices.py, add entry for the new capacitor generator. * New: In oroshi/python/ParamsMatrix, add a "family" entry in the [0,0] element to distinguish between transistor, capacitor and resistor. (this is the matrix of values returned to the LayoutGenerator after device generation). Now have one "setGlobalParams()" function per family. * New: In oroshi/python/Rules.py, added DTR rules needed by capacitors. Catch exceptions if something wrong append when we extract the rules from the technology. * New: In Bora, the devices are no longer *only* transistors, so the possibles configurations are no longer defined only by a number of fingers. We must be able to support any kind of range of configuration. So the explicit range of number of fingers is replaced by a base class ParameterRange, and it's derived classes: - Bora::StepParameterRange, to encode the possible number of fingers of a transistor (the former only possibility). - Bora::MatrixParameterRange, to encode all the possible matching scheme for a capacitor. As there is no way to compress it, this is a vector of Matrix (from Analog). * Change: In Bora::DSlicingNode::_place(), the ParameterRange has to be set on the right configuration (through the index) before being called. The generation parameters are taken from the active item in the ParameterRange. * Change: In Bora::NodeSets::create(), iterate over the ParameterRange to build all the configuration. Adjustement to the routing gauge pitchs are moved into the DBoxSet CTOR to save a lot of code. Semantic change: the index in the NodeSets is now the index in the associated ParameterRange and no longer the number of fingers of a transistor. Check that the ParameterRange dynamic class is consitent with the device family. * Change: In Bora::DBoxSet, same semantic change as for NodeSets, the number of finger become an index in ParameterRange. In DBoxSet::create(), now also perform the abutment box adjustement to the RoutingGauge, if possible. * New: In Karakaze/python/AnalogDesign.py, add support for Capacitor devices.
2019-11-07 10:05:49 -06:00
if (len(dspec) > 12): device.getParameter( 'NERC' ).setValue(int (dspec[12]))
if (len(dspec) > 13): device.getParameter( 'NIRC' ).setValue(int (dspec[13]))
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
First stage in analog capacitor integration * Bug: In Technology::getPhysicalRule(), if the named layerdo not exists, throw an exception instead of silently putting a NULL pointer inside a rule. * New: In Hurricane/Analog, new parameters classes for capacitor devices: - Analog::Matrix, a matrix of null or positives integers to encode capacitor matrix matching. - Analog::Capacities, a list of float values for all component of a multi-capacitor. * New: In Hurricane::Script, add a "getFileName()" method to get the full path name of the Python module. * Change: In Analog::LayoutGenerator, completly remove the logger utility as it is no longer used. Simply print error messages instead. * Change: In Analog::MetaCapacitor, rename top & bottom plate 'T' & 'B'. Accessors renamed in "getTopPlate()" & "getBottomPlate()". * New: In Analog::MultiCapacitor, complete rewrite. Makes use of the new parameters "capacities" and "matrix". Dynamically generates it's terminals as we do not know beforehand how many capacitors could be put in it. * Bug: In isobar/PyHurricane.h, in Type object definition, do not prepend a "Py" to class name (so the keep the C++ name). * Change: In CRL/etc/scn6m_deep_09/devices.py, add entry for the new capacitor generator. * New: In oroshi/python/ParamsMatrix, add a "family" entry in the [0,0] element to distinguish between transistor, capacitor and resistor. (this is the matrix of values returned to the LayoutGenerator after device generation). Now have one "setGlobalParams()" function per family. * New: In oroshi/python/Rules.py, added DTR rules needed by capacitors. Catch exceptions if something wrong append when we extract the rules from the technology. * New: In Bora, the devices are no longer *only* transistors, so the possibles configurations are no longer defined only by a number of fingers. We must be able to support any kind of range of configuration. So the explicit range of number of fingers is replaced by a base class ParameterRange, and it's derived classes: - Bora::StepParameterRange, to encode the possible number of fingers of a transistor (the former only possibility). - Bora::MatrixParameterRange, to encode all the possible matching scheme for a capacitor. As there is no way to compress it, this is a vector of Matrix (from Analog). * Change: In Bora::DSlicingNode::_place(), the ParameterRange has to be set on the right configuration (through the index) before being called. The generation parameters are taken from the active item in the ParameterRange. * Change: In Bora::NodeSets::create(), iterate over the ParameterRange to build all the configuration. Adjustement to the routing gauge pitchs are moved into the DBoxSet CTOR to save a lot of code. Semantic change: the index in the NodeSets is now the index in the associated ParameterRange and no longer the number of fingers of a transistor. Check that the ParameterRange dynamic class is consitent with the device family. * Change: In Bora::DBoxSet, same semantic change as for NodeSets, the number of finger become an index in ParameterRange. In DBoxSet::create(), now also perform the abutment box adjustement to the RoutingGauge, if possible. * New: In Karakaze/python/AnalogDesign.py, add support for Capacitor devices.
2019-11-07 10:05:49 -06:00
if not (dspec[7] is None): device.setMint ( dspec[7] )
if dspec[8]: device.setExternalDummy( dspec[8] )
elif isderived(dspec[0],CapacitorFamily):
if isinstance(dspec[4],float): capaValues = (dspec[4],)
elif isinstance(dspec[4],tuple): capaValues = dspec[4]
First stage in analog capacitor integration * Bug: In Technology::getPhysicalRule(), if the named layerdo not exists, throw an exception instead of silently putting a NULL pointer inside a rule. * New: In Hurricane/Analog, new parameters classes for capacitor devices: - Analog::Matrix, a matrix of null or positives integers to encode capacitor matrix matching. - Analog::Capacities, a list of float values for all component of a multi-capacitor. * New: In Hurricane::Script, add a "getFileName()" method to get the full path name of the Python module. * Change: In Analog::LayoutGenerator, completly remove the logger utility as it is no longer used. Simply print error messages instead. * Change: In Analog::MetaCapacitor, rename top & bottom plate 'T' & 'B'. Accessors renamed in "getTopPlate()" & "getBottomPlate()". * New: In Analog::MultiCapacitor, complete rewrite. Makes use of the new parameters "capacities" and "matrix". Dynamically generates it's terminals as we do not know beforehand how many capacitors could be put in it. * Bug: In isobar/PyHurricane.h, in Type object definition, do not prepend a "Py" to class name (so the keep the C++ name). * Change: In CRL/etc/scn6m_deep_09/devices.py, add entry for the new capacitor generator. * New: In oroshi/python/ParamsMatrix, add a "family" entry in the [0,0] element to distinguish between transistor, capacitor and resistor. (this is the matrix of values returned to the LayoutGenerator after device generation). Now have one "setGlobalParams()" function per family. * New: In oroshi/python/Rules.py, added DTR rules needed by capacitors. Catch exceptions if something wrong append when we extract the rules from the technology. * New: In Bora, the devices are no longer *only* transistors, so the possibles configurations are no longer defined only by a number of fingers. We must be able to support any kind of range of configuration. So the explicit range of number of fingers is replaced by a base class ParameterRange, and it's derived classes: - Bora::StepParameterRange, to encode the possible number of fingers of a transistor (the former only possibility). - Bora::MatrixParameterRange, to encode all the possible matching scheme for a capacitor. As there is no way to compress it, this is a vector of Matrix (from Analog). * Change: In Bora::DSlicingNode::_place(), the ParameterRange has to be set on the right configuration (through the index) before being called. The generation parameters are taken from the active item in the ParameterRange. * Change: In Bora::NodeSets::create(), iterate over the ParameterRange to build all the configuration. Adjustement to the routing gauge pitchs are moved into the DBoxSet CTOR to save a lot of code. Semantic change: the index in the NodeSets is now the index in the associated ParameterRange and no longer the number of fingers of a transistor. Check that the ParameterRange dynamic class is consitent with the device family. * Change: In Bora::DBoxSet, same semantic change as for NodeSets, the number of finger become an index in ParameterRange. In DBoxSet::create(), now also perform the abutment box adjustement to the RoutingGauge, if possible. * New: In Karakaze/python/AnalogDesign.py, add support for Capacitor devices.
2019-11-07 10:05:49 -06:00
else:
raise ErrorMessage( 1, 'AnalogDesign.doDevice(): Invalid type for capacities values "%s".' \
% str(dspec[4]) )
device = dspec[0].create( self.library, dspec[1], dspec[3], len(capaValues) )
device.getParameter( 'Layout Styles' ).setValue( dspec[2] )
device.getParameter( 'matrix' ).setMatrix( dspec[5] )
device.setDummy( dspec[6] )
for i in range(len(capaValues)):
device.getParameter( 'capacities' ).setValue( i, capaValues[i] )
elif isderived(dspec[0],ResistorFamily):
print dspec
device = dspec[0].create( self.library, dspec[1], dspec[3] )
device.getParameter( 'R' ).setValue( dspec[4] )
device.getParameter( 'W' ).setValue( toDbU(dspec[5]) )
device.getParameter( 'L' ).setValue( toDbU(dspec[6]) )
device.getParameter( 'bends' ).setValue( dspec[7] )
trace( 100, '\tW:{0}\n'.format(dspec[5]) )
trace( 100, '\tpW:{0}\n'.format(device.getParameter('W')) )
trace( 100, '\tbends:{0}\n'.format(dspec[7]) )
else:
raise ErrorMessage( 1, 'AnalogDesign.doDevice(): Unknown/unsupported device "%s".' % str(dspec[0]) )
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
self.generator.setDevice ( device )
self.generator.drawLayout()
Support for separated NDA tree. Big cleanup of the Python init system. * Change: In Hurricane::Script, when running a script, no longer do it inside a Python sun-interpreter, use the current one. This way we no longer have our modules initialized twice or more, which was starting to be unmanageable (with the NDA support). The settings were re-read multiple time to the same value, so it was working, but still... I hope I didn't left some dangling Python objects now. * Bug: In Hurricane::LayoutGenerator::drawLayout(), get the device abutment box though a Pyhon object *before* finalizing which removes that objet. * New: In cumulus/plugins/__init__.py, add a "loadPlugins()" and static initialisation to preload plugins modules. We use that pre-loading step to append to the module __path__ attribute the alternate directory where a NDA covered may be found. This assume that the directory tree under the NDA root is identical to the one under the public root. * New: In cumulus/plugins/chip/__init__.py, small utility function importContants() to import the constants inside another module namespace, to have more consise notations. * Change: In cumulus/plugins/, in the various plugins sub-modules import use the full path from plugins, that is, for example: from plugins.core2chip.CoreToChip import IoPad * Change: In Unicorn/python/unicornInit.py, no longer directly load the plugins modules, this is now done by cumulus/plugins/__init__.py. Instead, iterate through sys.modules for the ones starting by "plugins/" and try to execute a Unicorn hook, if present. * Change: In Karakaze/python/AnalogDesign.py, update for the new Instance.create() prototype (added placement parameter).
2019-10-11 10:36:54 -05:00
instance = Instance.create( self.cell
, dspec[1]
, device
, Transformation()
, Instance.PlacementStatus.UNPLACED )
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
self.__dict__[ dspec[1] ] = instance
trace( 100, '\tAdd Instance:{0}\n'.format(dspec[1]) )
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
return
def doDevices ( self ):
trace( 110, ',+', '\tAnalogDesign.doDevices()\n' )
if not hasattr(self,'devicesSpecs'):
raise Error( 3, 'AnalogDesign.doDevices(): Mandatory attribute \"self.devicesSpecs\" has not been defined.' )
if not isinstance(self.devicesSpecs,list):
raise Error( 3, 'AnalogDesign.doDevices(): Attribute \"self.devicesSpecs\" *must* be a Python list.' )
count = 1
for dspec in self.devicesSpecs:
self.doDevice( count, dspec )
count += 1
trace( 110, '-,' )
return
def showNode ( self, node ):
lines = [ '{' ]
for key, value in node.items():
if key == 'children':
lines += [ "%20s { ... }" % "'children':" ]
else:
skey = "'%s':" % str(key)
lines += [ "%20s %s" % (skey,str(value)) ]
lines += [ '}' ]
return lines
def checkNode ( self, node, isRoot ):
if not isinstance(node,dict):
raise Error( 3, [ 'AnalogDesign.doSlicingTree(): Node element is *not* a dict.'
] + self.showNode(node) )
if not node.has_key('type'):
raise Error( 3, [ 'AnalogDesign.doSlicingTree(): Missing mandatory \"type\" key/element.'
] + self.showNode(node) )
nodeType = node['type']
if nodeType not in [VNode, HNode, DNode]:
raise Error( 3, [ 'AnalogDesign.doSlicingTree(): \"type\" must be one of VNode, HNode or DNode.'
] + self.showNode(node) )
if nodeType == DNode:
if not node.has_key('device'):
raise Error( 3, [ 'AnalogDesign.doSlicingTree(): Missing mandatory \"device\" key/element.'
] + self.showNode(node) )
if not isinstance(node['device'],str):
raise Error( 3, [ 'AnalogDesign.doSlicingTree(): \"device\" value *must* be of type str.'
] + self.showNode(node) )
if not node.has_key('span'):
raise Error( 3, [ 'AnalogDesign.doSlicingTree(): Missing mandatory \"span\" key/element.'
] + self.showNode(node) )
if not isinstance(node['span'],tuple) \
or len(node['span']) != 3 \
or not isinstance(node['span'][0],float) \
or not isinstance(node['span'][1],float) \
or not isinstance(node['span'][2],float):
raise Error( 3, [ 'AnalogDesign.doSlicingTree(): \"span\" value *must* be a tuple of 3 floats.'
] + self.showNode(node) )
if not node.has_key('NF'):
raise Error( 3, [ 'AnalogDesign.doSlicingTree(): Missing mandatory \"NF\" key/element.'
] + self.showNode(node) )
if not isinstance(node['NF'],int):
raise Error( 3, [ 'AnalogDesign.doSlicingTree(): \"NF\" value *must* be of type int.'
] + self.showNode(node) )
else:
if isRoot:
if not node.has_key('toleranceRatioH'):
raise Error( 3, [ 'AnalogDesign.doSlicingTree(): Missing mandatory \"toleranceRationH\" key/element in root node.'
] + self.showNode(node) )
if not node.has_key('toleranceRatioW'):
raise Error( 3, [ 'AnalogDesign.doSlicingTree(): Missing mandatory \"toleranceRationW\" key/element in root node.'
] + self.showNode(node) )
if not node.has_key('toleranceBandH'):
raise Error( 3, [ 'AnalogDesign.doSlicingTree(): Missing mandatory \"toleranceBandH\" key/element in root node.'
] + self.showNode(node) )
if not node.has_key('toleranceBandW'):
raise Error( 3, [ 'AnalogDesign.doSlicingTree(): Missing mandatory \"toleranceBandW\" key/element in root node.'
] + self.showNode(node) )
if not node.has_key('children'):
print Error( 3, [ 'AnalogDesign.doSlicingTree(): Suspicious root node without children.'
] + self.showNode(node) )
if node.has_key('children'):
if not isinstance(node['children'],list):
raise Error( 3, [ 'AnalogDesign.doSlicingTree(): \"children\" value *must* be of type list.' ]
+ self.showNode(node) )
if node.has_key('symmetries'):
symmetries = node['symmetries']
if not isinstance(symmetries,list):
raise Error( 3, [ 'AnalogDesign.doSlicingTree(): \"symmetries\" value *must* be of type list.'
] + self.showNode(node) )
for i in range(len(symmetries)):
if not isinstance(symmetries[i],tuple) \
or len(symmetries[i]) != 2 \
or not isinstance(symmetries[i][0],int) \
or not isinstance(symmetries[i][1],int):
raise Error( 3, [ 'AnalogDesign.doSlicingTree(): \"symmetries\" entry [%d] *must* be a tuple of 2 int.' % i ]
+ self.showNode(node) )
return
def beginSlicingTree ( self ):
trace( 110, ',+', '\tAnalogDesign.beginSlicingTree()\n' )
return
def topNode ( self ): return self.stack[-1][0]
def topSymmetries ( self ): return self.stack[-1][1]
def topSymmetriesNet ( self ): return self.stack[-1][2]
def setToleranceRatioH ( self, u ): self.toleranceRatioH = toDbU(u)
def setToleranceRatioW ( self, u ): self.toleranceRatioW = toDbU(u)
def setToleranceBandH ( self, u ): self.toleranceBandH = toDbU(u)
def setToleranceBandW ( self, u ): self.toleranceBandW = toDbU(u)
def dupTolerances ( self, node ):
node.setToleranceRatioH( self.toleranceRatioH )
node.setToleranceRatioW( self.toleranceRatioW )
node.setToleranceBandH ( self.toleranceBandH )
node.setToleranceBandW ( self.toleranceBandW )
return
def pushNode ( self, node ):
trace( 110, ',+', '\tSlicingTree.pushNode() %s ' % str(node) )
parent = None
if len(self.stack):
parent = self.topNode()
parent.push_back( node )
trace( 110, '(parent id:%d)\n' % parent.getId() )
else:
trace( 110, '(Root)\n' )
self.slicingTree = node
node.setCell( self.cell )
self.stack.append( (node,[],[]) )
self.dupTolerances( node )
node.setRoutingGauge( self.rg )
#node.cprint()
return
def pushVNode ( self, alignment ):
self.pushNode( VSlicingNode.create( alignment ) )
return
def pushHNode ( self, alignment ):
self.pushNode( HSlicingNode.create( alignment ) )
return
def popNode ( self ):
for childIndex, copyIndex in self.topSymmetries():
self.topNode().addSymmetry( childIndex, copyIndex )
for type, net1, net2 in self.topSymmetriesNet():
if (net2 == None):
self.topNode().addSymmetryNet( type, net1 )
else:
self.topNode().addSymmetryNet( type, net1, net2 )
trace( 110, '-,', '\tSlicingTree.popNode() %s\n' % str(self.topNode()) )
if len(self.stack) == 1:
trace( 110, '\tAnalogDesign.endSlicingTree()\n' )
trace( 110, '-,', '\tSlicingTree %s stack size:%d\n' % (self.cell.getName(), len(self.stack)) )
#self.topNode().setCell( self.cell )
self.topNode().updateNetConstraints()
self.topNode().updateGlobalSize()
del self.stack[-1]
return
def addDevice ( self, name, align, parameter=None, index=0 ):
node = DSlicingNode.create( name, self.cell, parameter, self.rg )
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
node.setAlignment( align )
if index != 0: node.setBoxSetIndex( index )
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
self.topNode().push_back( node )
trace( 110, '\tSlicingTree.addDevice() %s (parent id:%d)\n' % (str(node),self.topNode().getId()) )
#node.cprint()
return
def addHRail ( self, net, metal, npitch, cellName, instanceName ):
self.checkRail( net, metal, npitch, cellName, instanceName )
node = RHSlicingNode.create( net, DataBase.getDB().getTechnology().getLayer(metal), npitch, cellName, instanceName)
self.topNode().push_back( node )
trace( 110, '\tSlicingTree.addHRail() to %s\n' % (str(self.topNode())) )
#node.cprint()
return
def addVRail ( self, net, metal, npitch, cellName, instanceName ):
self.checkRail( net, metal, npitch, cellName, instanceName )
node = RVSlicingNode.create( net, DataBase.getDB().getTechnology().getLayer(metal), npitch, cellName, instanceName)
self.topNode().push_back( node )
trace( 110, '\tSlicingTree.addVRail() to %s\n' % (str(self.topNode())) )
#node.cprint()
return
def addSymmetry ( self, childIndex, copyIndex ):
self.topSymmetries().append( (childIndex,copyIndex) )
return
def addSymmetryNet ( self, type, net1, net2=None ):
self.topSymmetriesNet().append( (type, net1, net2) )
return
def endSlicingTree ( self ):
self.slicingTree.updateGlobalSize()
#bora = Bora.BoraEngine.get( self.cell )
#if not bora: bora = Bora.BoraEngine.create( self.cell )
#bora.updateSlicingTree()
return
def updatePlacement ( self, *args ):
if self.slicingTree:
bora = Bora.BoraEngine.get( self.cell )
if not bora: bora = Bora.BoraEngine.create( self.cell )
signatureMatched = True
if len(args) == 2: bora.updatePlacement( toDbU(args[0]), toDbU(args[1]) )
elif len(args) == 1: bora.updatePlacement( args[0] )
else: signatureMatched = False
#if signatureMatched:
# katana = Katana.KatanaEngine.get( self.cell )
# if katana:
# katana.loadGlobalRouting( Anabatic.EngineLoadGrByNet )
# katana.runNegociate( Katana.Flags.PairSymmetrics );
# #katana.destroy()
return