coriolis/documentation/content/pages/python-cpp-new/Implementation.rst

508 lines
18 KiB
ReStructuredText
Raw Normal View History

Migration towards Python3, first stage: still based on C-Macros. * New: Python/C++ API level: * Write a new C++/template wrapper to get rid of boost::python * The int & long Python type are now merged. So a C/C++ level, it became "PyLong_X" (remove "PyInt_X") and at Python code level, it became "int" (remove "long"). * Change: VLSISAPD finally defunct. * Configuration is now integrated as a Hurricane component, makes use of the new C++/template wrapper. * vlsisapd is now defunct. Keep it in the source for now as some remaining non essential code may have to be ported in the future. * Note: Python code (copy of the migration howto): * New print function syntax print(). * Changed "dict.has_key(k)" for "k" in dict. * Changed "except Exception, e" for "except Exception as e". * The division "/" is now the floating point division, even if both operand are integers. So 3/2 now gives 1.5 and no longer 1. The integer division is now "//" : 1 = 3//2. So have to carefully review the code to update. Most of the time we want to use "//". We must never change to float for long that, in fact, represents DbU (exposed as Python int type). * execfile() must be replaced by exec(open("file").read()). * iter().__next__() becomes iter(x).__next__(). * __getslice__() has been removed, integrated to __getitem__(). * The formating used for str(type(o)) has changed, so In Stratus, have to update them ("<class 'MyClass'>" instead of "MyClass"). * the "types" module no longer supply values for default types like str (types.StringType) or list (types.StringType). Must use "isinstance()" where they were occuring. * Remove the 'L' to indicate "long integer" (like "12L"), now all Python integer are long. * Change in bootstrap: * Ported Coriolis builder (ccb) to Python3. * Ported Coriolis socInstaller.py to Python3. * Note: In PyQt4+Python3, QVariant no longer exists. Use None or directly convert using the python syntax: bool(x), int(x), ... By default, it is a string (str). * Note: PyQt4 bindings & Python3 under SL7. * In order to compile user's must upgrade to my own rebuild of PyQt 4 & 5 bindings 4.19.21-1.el7.soc. * Bug: In cumulus/plugins.block.htree.HTree.splitNet(), set the root buffer of the H-Tree to the original signal (mainly: top clock). Strangely, it was only done when working in full chip mode.
2021-09-19 12:41:24 -05:00
.. -*- Mode: rst -*-
2. Implementation
=================
We do not try to provides an iterface as sleek as ``pybind11`` that completely
hides the Python/C API. Instead we keep mostly visible the classic structure of
the Python/C API but we provides templates to automate as much as possible the
boring tasks (and code duplication). This way, if we need a very specific
feature at some point, we can still revert back to the pure Python/C API.
The key features of our wrapper are:
* The ``PyTypeManager`` and it's derived classes to store and share informations
about all our newly defined ``PyTypeObjects``.
* The ``callMethod<>()`` and ``callFunction<>()`` function templates to
automatically generate a wrapper around C++ object methods or functions.
* The ``PyBoject* objectLink<CppT>( CppT* )`` functions templates that provides C++ to Python
object translation.
* The ``bool pyAs<CppT>( PyObject*, CppT*& )`` functions templates that provides Python to C++
object translation.
We creates only two kind of ``PyObject`` (but many ``PyTypeObject``):
* ``PyVoidpointer`` which encapsulate one void pointer to the C++ associated
object.
.. code-block:: Python
extern "C" {
typedef struct PyVoidPointer {
PyObject_HEAD
void* _object;
};
}
* ``PyIteratorPointer`` which encapsulate one void pointer to the C++ associated
iterator and one another to the ``PyObject`` of the container.
.. code-block:: Python
extern "C" {
typedef struct PyVoidPointer {
PyObject_HEAD
void* _object; // C++ iterator.
PyVoidPointer* _container; // Python wrapped container.
};
}
2.1 PyTypeManager
~~~~~~~~~~~~~~~~~
``PyTypeManager`` has two usage:
* Act as a registry of all the created ``PyTypeObject``, and serve as a
dispatcher for the ``PyTypeObject`` *tp* like methods.
* Provide a non-template abstract base class for all the derived ``PyTypeObject``.
As said, it is not a template class but it supplies function member
template. Derived classes are provides for different kind of C++
class.
* :cb:`PyTypeManagerVTrunk<CppT>`
Is an intermediate between the non-template base class and all the
templatized others.
* :cb:`PyTypeManagerNonDBo<CppT>`
Template for standalone C++ classes that are not derived from ``DBo``.
For example ``Box`` or ``Parameter``.
* :cb:`PyTypeManagerDBo<CppT>`
Template for C++ classes that *are* not derived from ``DBo``.
For example ``Cell`` or ``Instance``.
* :cb:`PyTypeManagerVector<CppT>`, template for C++ ``std::vector<CppT*>``.
* :cb:`PyTypeManagerVectorIterator<CppT>`
Template for C++ ``std::vector<CppT*>::iterator``, automatically created
from the vector registration.
* :cb:`PyTypeManagerMap<CppK,CppT>`, template for C++ ``std::map<CppK*,CppT*>``.
* :cb:`PyTypeManagerMapIterator<CppK,CppT>`
Template for C++ ``std::vector<CppK*,CppT*>::iterator``, automatically created
from the map registration.
* :cb:`PyTypeManagerCollection<,CppT>`, template for C++ ``Hurricane::Collection<CppT*>``.
* :cb:`PyTypeManagerCollectionIterator<,CppT>`
Template for C++ ``Hurricane::Locator<CppT*>``, automatically created from
the collection registration.
2.2 Highjacking the *tp* methods
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Functions of a ``PyTypeObject`` like the *tp* methods (``tp_alloc``, ``tp_print``,
``tp_hash``, ...) must have a C-linkage. So we create *one* function per slot that
we want to use, set that *same* function for all the created ``PyTypeObject``, and
perform a dispact in it. The drawback is that for each access we have to perform
a map lookup. Hope it is fast.
Excerpt from the code:
.. code-block:: C++
namespace Isobar3 {
extern "C" {
// Here we have C-linkage.
extern long _tpHash ( PyObject* self )
{
// Dispatch towards the relevant class, based on ob_type pointer.
return PyTypeManager::get( self->ob_type )->_getTpHash( asVPtr(self) );
}
}
class PyTypeManager {
public:
void PyTypeManager::_setupPyType ()
// Derived classes must implement it as they see fit.
virtual long _getTpHash ( PyVoidPointer* ) = 0;
template<typename CppT>
static PyTypeManager* _get();
private:
PyTypeObject _typeObject;
};
void PyTypeManager::_setupPyType ()
{
PyTypeObject* ob_type = _getTypeObject();
ob_type->tp_name = _getPyTypeName().c_str();
ob_type->tp_dealloc = (destructor)&::Isobar3::_tpDeAlloc;
ob_type->tp_str = (reprfunc) &::Isobar3::_tpStr;
// All Python Type will call the same _tpHash().
ob_type->tp_hash = (hashfunc) &::Isobar3::_tpHash;
ob_type->tp_compare = (cmpfunc) &::Isobar3::_getTpCompare;
ob_type->tp_methods = _getMethods();
ob_type->tp_getset = _getGetsets();
}
} // Isobar3 namespace.
2.3 Going From Python to C++
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
To convert a C++ object (pointer) into a Python object, a set of
:cb:`pyAs<>` templates functions are supplieds.
Specialization for all POD type that can be directly translated into
Python types must be provideds (``bool``, ``int``, ``long``, ``double``,
``std::string``, ...).
Partial specialization for type availables through the ``PyTypeManager``
is supplied. It checks the manager for the type's existence.
.. code-block:: C++
// Most generic template, should *not* be used.
// So issue an error message and report a failed conversion.
template<typename T>
inline bool pyAs ( PyObject* pyArg, T& arg )
{
std::cerr << "Isobar3.pyAs<T>(): Unsupported type \""
<< demangle(typeid(T).name()) << "\"" << endl;
return false;
}
// Template specialization for POD type "int".
template<>
inline bool pyAs ( PyObject* pyArg, int& arg )
{
if (PyInt_Check (pyArg)) { arg = PyInt_AsLong ( pyArg ); }
else if (PyLong_Check(pyArg)) { arg = PyLong_AsLong( pyArg ); }
else return false;
return true;
}
// Template partial specialization for any type registered in
// the PyTypeManager.
template<typename T>
inline bool pyAs ( PyObject* pyArg, T*& arg )
{
PyTypeManager* manager = PyTypeManager::_get<T>();
if (not manager) {
std::cerr << "Isobar3.pyAs<T>(): Unsupported type \""
<< typeid(T).name() << "\"" << endl;
return false;
}
arg = (T*)( asVPtr( pyArg )->_object );
return true;
}
template<typename T>
inline bool pyAs ( PyVoidPointer* pyArg, T*& arg )
{ return pyAs( (PyObject*)pyArg, arg ); }
2.4 Going From C++ to Python
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
To convert a Python object into a C++ object, a set of
:cb:`objectLink<>` templates functions are supplieds.
We completely disable the partially specialized templates for
objects that are non-POD as the compiler seems to be unable to
choose the fully specialized template in this case (or I still
misunderstood the template resolution mechanism).
In the case of object registered in ``PyTypeManager``, we delegate
the ``PyObject`` creation to the ``PyTypeManager::link()`` template
function, which in turn, can call the right ``PyTypeManagerVTrunk<CppT>::_link()``
method.
.. note:: The ``PyTypeManagerVTrunk<CppT>::_link()`` method is the reason
**why** we need the intermediate ``PyTypeManagerVTrunk<CppT>``
template class.
.. code-block:: C++
// The most generic template, should *not* be used. So raise a Python exception.
template< typename CppT >
inline PyObject* objectLink ( CppT object )
{
std::string message = "Overload for Isobar3::objectLink< "
+ demangle(typeid(CppT).name()) + " >() is missing.";
PyErr_SetString( HurricaneError, message.c_str() );
return NULL;
}
// Disable this template if "CppT" is an already supported type.
template< typename CppT
, typename std::enable_if< !std::is_same<CppT,bool>::value
&& !std::is_same<CppT,int >::value
&& !std::is_same<CppT,std::string>::value
&& !std::is_same<CppT,const std::string>::value
,bool>::type = true >
inline PyObject* objectLink ( CppT* object )
{ return PyTypeManager::link<CppT>( object ); }
// Disable this template if "CppT" is an already supported type.
template< typename CppT
, typename std::enable_if< !std::is_same<CppT,bool>::value
&& !std::is_same<CppT,int >::value
&& !std::is_same<CppT,std::string>::value
&& !std::is_same<CppT,const std::string>::value
,bool>::type = true >
inline PyObject* objectLink ( const CppT* object )
{ return PyTypeManager::link<CppT>( const_cast<CppT*>( object )); }
// Specializations for POD type "int" .
template<> inline PyObject* objectLink<int > ( int i )
{ return PyInt_FromLong( i ); }
template<> inline PyObject* objectLink<const int > ( const int i )
{ return PyInt_FromLong( i ); }
template<> inline PyObject* objectLink<const int*> ( const int* i )
{ return PyInt_FromLong( *i ); }
2.5 Object Methods Wrappers
~~~~~~~~~~~~~~~~~~~~~~~~~~~
One of the more tedious task in exporting a C++ interface towards Python is
to have wrap the C++ functions/methods into C-linkage functions that can be
put into the ``PyMethodDef`` table.
Basically, we want to fit:
* A C++ function or method with a variable number of arguments, each argument
having it's own type.
.. code-block:: C++
class Parameter {
// ...
public:
void addValue ( std::string s, int v );
// ...
};
* Into a ``PyCFunction`` prototype.
.. code-block:: C++
extern "C" {
typedef PyObject* ( *PyCFunction )( PyObject* self, PyObject* args );
}
Here, the C++ object is provided through the first argument and the
functions arguments through a *tuple* in second argument. In Python
wrappers, the tuple doesn't have any complex structure, it boils down
to a sequence of ``PyObject*`` (that must match the number of arguments
of it's C++ function conterpart).
So, the problem is to change a tuple which size is only kown at *runtime*
into a list of C/C++ parameters known at *compile time*.
I am not such an expert in template programming so I can find a *generic*
solution able to handle any number of parameters. Instead I did write
a set of templates managing the translation from zero to ten parameters.
I did delay that translation as much as possible so it happens very close
to the C++ function call and the duplicated code needed for each template
is kept to a minimum.
To translate the Python tuple into an ordered list (vector like) of C++
object *of different types*, the obvious choice is C++ ``std::tuple<>``.
Another challenge is the return type. I distinguish three flavor of
return type:
* Function returning nothing (``void``).
* Function returning a value.
* Function returning a reference to a value.
* Function returning a pointer.
To uniformize the return type we create four templates ``_callMethodReturn<>()``
that takes whatever the C++ return type is, and turn it into a ``PyObject*``.
Except for the functions returning ``void``, we call ``objectLink<>()`` to
wrap the value.
Here is an excerpt of the code:
.. code-block:: C++
// Flavor for "return by pointer".
template< typename TC, typename TR, typename... TArgs
, typename std::enable_if<std::is_pointer<TR>::value,bool>::type = true >
inline PyObject* _callMethodReturn ( TR(TC::* method)(TArgs...), TC* cppObject, TArgs... args )
{
TR pvalue = (cppObject->*method)( args... );
return objectLink( pvalue );
}
// Flavor for "return void".
template< typename TC, typename TR, typename... TArgs
, typename std::enable_if<std::is_void<TR>::value,bool>::type = true >
inline PyObject* _callMethodReturn ( TR(TC::* method)(TArgs...), TC* cppObject, TArgs... args )
{
(cppObject->*method)( args... );
Py_RETURN_NONE;
}
// Function without argument.
template< typename TC, typename TR >
inline PyObject* _callMethod ( TR(TC::* method)(), TC* cppObject, std::tuple<> )
{ return _callMethodReturn<TC,TR>( method, cppObject ); }
// Function with one argument.
template< typename TC, typename TR, typename TA0 >
inline PyObject* _callMethod ( TR(TC::* method)(TA0), TC* cppObject, std::tuple<TA0> args )
{ return _callMethodReturn( method, cppObject, std::get<0>(args) ); }
// Function with two arguments.
template< typename TC, typename TR, typename TA0, typename TA1 >
PyObject* _callMethod ( TR(TC::* method)(TA0,TA1), TC* cppObject, std::tuple<TA0,TA1> args )
{ return _callMethodReturn( method, cppObject, std::get<0>(args), std::get<1>(args) ); }
The complete work of translating the Python tuple into a ``std::tuple<>`` and error
handling is done with a dedicated template class ``PyMethodWrapper`` and it's ``call()``
method.
As a class template cannot guess the template parameters, we wrap them into a
function template which can perform the guess. The ``callMethod<>`` template function.
In the end, what the user can write is simply:
.. code-block:: C++
static PyObject* PyParameter_addValue ( PyVoidPointer* self, PyObject* args )
{ return callMethod("Parameter.addValue",&Parameter::addValue,self,args); }
PyMethodDef PyParameter_Methods[] =
{ { "isFile" , (PyCFunction)PyParameter_isFile , METH_NOARGS
, "Tells if this parameter (string) holds a file name." }
, { "addValue", (PyCFunction)PyParameter_addValue, METH_VARARGS
, "Add a new value to parameter of enumerated type." }
// ...
, {NULL, NULL, 0, NULL} /* sentinel */
};
2.6 Case of C++ overloaded functions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This apply to both overloaded functions and functions with arguments values.
In that case, the only solution is to create a set of different functions
with differents arguments to expose all the various signature of the function.
We then create a function wrapper that calls them in decreasing number of
parameters order.
.. note::
If something goes wrong in a ``callMethod()``, it returns ``NULL`` and
sets an error exception. If, say, the ``setString3()`` variant fails,
but ``setString2()`` succeed, it will clear the error and sets ``rvalue``
to something non-``NULL``.
You may also notice that the signature of an un-overloaded function is that
of a normal function, not a class method, with the object (aka C++ ``this``
passed as the first argument). So ``callMethod()`` and ``PyMethodWrapper``
support both case (through different constructors).
.. code-block:: C++
static bool setString1 ( Parameter* self, std::string value )
{ return self->setString(value); }
static bool setString2 ( Parameter* self, std::string value, unsigned int flags )
{ return self->setString(value,Configuration::getDefaultPriority(),flags); }
static bool setString3 ( Parameter* self
, std::string value
, unsigned int flags
, Parameter::Priority pri )
{ return self->setString(value,pri,flags); }
static PyObject* PyParameter_setString ( PyVoidPointer* self, PyObject* args )
{
PyObject* rvalue = callMethod("Parameter.setString",&setString3,self,args);
if (not rvalue) rvalue = callMethod("Parameter.setString",&setString2,self,args);
if (not rvalue) rvalue = callMethod("Parameter.setString",&setString1,self,args);
return rvalue;
}
PyMethodDef PyParameter_Methods[] =
{ { "isFile" , (PyCFunction)PyParameter_isFile , METH_NOARGS
, "Tells if this parameter (string) holds a file name." }
, { "setString", (PyCFunction)PyParameter_setString, METH_VARARGS
, "Set the parameter value as a string." }
// ...
, {NULL, NULL, 0, NULL} /* sentinel */
};
2.7 Wrapper for ordinary functions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The same mechanic as for the object methods has been built for ordinary
functions. The top level wrapper beeing ``callFunction<>()`` ...
.. code-block:: C++
static PyObject* PyCfg_hasParameter ( PyObject* module, PyObject* args )
{ return callFunction("hasParameter",&hasParameter,args); }
static PyMethodDef PyCfg_Methods[] =
{ { "hasParameter", (PyCFunction)PyCfg_hasParameter, METH_VARARGS
, "Tells if a parameter exists already in the DB." }
// ...
, {NULL, NULL, 0, NULL} /* sentinel */
};
2.8 Object post-create hook
~~~~~~~~~~~~~~~~~~~~~~~~~~~
By defining specialization of the ``pyTypePostModuleinit<>()`` function template,
you can add any post-treatment to a Python type object. Like adding sub-classes
or constants values.
In the following code, we add ``Priority`` as a sub-object of ``Parameter`` then
set some constant values in ``Priority``. This was we emulate the behavior of
the ``Priority`` ``enum``.
.. code-block:: C++
template<>
inline void pyTypePostModuleInit<Cfg::Parameter> ( PyTypeObject* typeObject )
{
PyTypeManagerNonDBo<Cfg::Parameter::Priority>::create( (PyObject*)typeObject
, Cfg::PyParameterPriority_Methods
, NULL
, PyTypeManager::NoCppDelete );
}
template<>
inline void pyTypePostModuleInit<Cfg::Parameter::Priority> ( PyTypeObject* typeObject )
{
// Parameter::Priority enum.
addConstant( typeObject, "UseDefault" , Cfg::Parameter::UseDefault );
addConstant( typeObject, "ApplicationBuiltin", Cfg::Parameter::ApplicationBuiltin );
addConstant( typeObject, "ConfigurationFile" , Cfg::Parameter::ConfigurationFile );
addConstant( typeObject, "UserFile" , Cfg::Parameter::UserFile );
addConstant( typeObject, "CommandLine" , Cfg::Parameter::CommandLine );
addConstant( typeObject, "Interactive" , Cfg::Parameter::Interactive );
}