coriolis/coloquinte/src/detailed.cxx

262 lines
8.9 KiB
C++
Raw Normal View History

2015-04-08 03:45:11 -05:00
#include "coloquinte/detailed.hxx"
#include "coloquinte/circuit_helper.hxx"
#include <cassert>
namespace coloquinte{
namespace dp{
detailed_placement::detailed_placement(
placement_t pl,
std::vector<index_t> placement_rows,
std::vector<index_t> cell_heights,
std::vector<std::vector<index_t> > rows,
int_t min_x, int_t max_x,
int_t y_origin,
index_t nbr_rows, int_t row_height
)
:
plt_(pl),
cell_rows_(placement_rows),
min_x_(min_x), max_x_(max_x),
2015-07-02 10:32:09 -05:00
y_origin_(y_origin),
row_height_(row_height)
2015-04-08 03:45:11 -05:00
{
assert(row_height > 0);
assert(min_x < max_x);
assert(rows.size() == nbr_rows);
neighbours_limits_.push_back(0);
for(index_t h : cell_heights){
neighbours_limits_.push_back(neighbours_limits_.back() + h);
}
neighbours_ .resize(neighbours_limits_.back(), std::pair<index_t, index_t>(null_ind, null_ind) );
row_first_cells_ .resize(nbr_rows, null_ind);
row_last_cells_ .resize(nbr_rows, null_ind);
std::vector<bool> explored(neighbours_limits_.back(), false);
// Now we extract the dependencies
for(index_t r=0; r<rows.size(); ++r){
if(not rows[r].empty()){
row_first_cells_[r] = rows[r].front();
row_last_cells_[r] = rows[r].back();
}
for(index_t c : rows[r]){
// Has this row of the cell already been visited?
assert(not explored[neighbour_index(c, r)]);
explored[neighbour_index(c, r)] = true;
}
for(index_t i=0; i+1<rows[r].size(); ++i){
index_t c1 = rows[r][i], c2 = rows[r][i+1];
// Save in the internal format
neighbours_[neighbour_index(c1, r)].second = c2;
neighbours_[neighbour_index(c2, r)].first = c1;
// The positions are correct
}
}
// Every level of every cell must have been visited
for(bool o : explored)
assert(o);
// Verify that we haven't made any obvious mistake
selfcheck();
}
void detailed_placement::selfcheck() const{
assert(row_first_cells_.size() == row_last_cells_.size());
for(index_t i=0; i<cell_cnt(); ++i){
for(index_t l=0; l<cell_height(i); ++l){
// not verified now since we don't modify the position for the obstacles
// : assert(c.position.x >= min_x_ and c.position.x + c.width <= max_x_);
2015-04-08 03:45:11 -05:00
index_t n_ind = l + neighbours_limits_[i];
assert(cell_rows_[i] + cell_height(i) <= row_cnt());
if(neighbours_[n_ind].first != null_ind){
index_t oi = neighbours_[n_ind].first;
// Correct neighbour position
assert(neighbours_[neighbour_index(oi, cell_rows_[i]+l)].second == i);
}
else{
// Beginning of a row
assert(row_first_cells_[cell_rows_[i] + l] == i);
}
if(neighbours_[n_ind].second != null_ind){
index_t oi = neighbours_[n_ind].second;
// Correct neighbour position
assert(neighbours_[neighbour_index(oi, cell_rows_[i]+l)].first == i);
}
else{
// End of a row
assert(row_last_cells_[cell_rows_[i] + l] == i);
}
}
}
}
void detailed_placement::swap_standard_cell_topologies(index_t c1, index_t c2){
assert(cell_height(c1) == cell_height(c2));
assert(cell_height(c1) == 1 and cell_height(c2) == 1);
index_t row_c1 = cell_rows_[c1],
row_c2 = cell_rows_[c2];
index_t b_c1 = neighbours_[neighbours_limits_[c1]].first;
index_t b_c2 = neighbours_[neighbours_limits_[c2]].first;
index_t a_c1 = neighbours_[neighbours_limits_[c1]].second;
index_t a_c2 = neighbours_[neighbours_limits_[c2]].second;
// Two cases: they were adjacent or they were not
// Luckily updating in the neighbours first then swapping the recorded neighbours works in both cases for standard cells
// Update the pointers in the cells' neighbours
if(b_c1 != null_ind) neighbours_[neighbour_index(b_c1, row_c1)].second = c2;
else row_first_cells_[row_c1] = c2;
if(b_c2 != null_ind) neighbours_[neighbour_index(b_c2, row_c2)].second = c1;
else row_first_cells_[row_c2] = c1;
if(a_c1 != null_ind) neighbours_[neighbour_index(a_c1, row_c1)].first = c2;
else row_last_cells_[row_c1] = c2;
if(a_c2 != null_ind) neighbours_[neighbour_index(a_c2, row_c2)].first = c1;
else row_last_cells_[row_c2] = c1;
// Swap the properties in both cells
std::swap(neighbours_[neighbours_limits_[c1]], neighbours_[neighbours_limits_[c2]]);
std::swap(cell_rows_[c1], cell_rows_[c2]);
}
std::pair<int_t, int_t> detailed_placement::get_limit_positions(netlist const & circuit, index_t c) const{
auto ret = std::pair<int_t, int_t>(min_x_, max_x_);
for(index_t l=neighbours_limits_[c]; l<neighbours_limits_[c+1]; ++l){
index_t b_i = neighbours_[l].first,
a_i = neighbours_[l].second;
if(b_i != null_ind){
ret.first = std::max(ret.first, plt_.positions_[b_i].x + circuit.get_cell(b_i).size.x);
2015-04-08 03:45:11 -05:00
}
if(a_i != null_ind){
ret.second = std::min(ret.second, plt_.positions_[a_i].x);
2015-04-08 03:45:11 -05:00
}
}
return ret;
}
index_t detailed_placement::get_first_cell_on_row(index_t r){
return row_first_cells_[r];
}
index_t detailed_placement::get_first_standard_cell_on_row(index_t r){
index_t c = get_first_cell_on_row(r);
while(c != null_ind and cell_height(c) != 1){
index_t next_c = get_next_cell_on_row(c, r);
assert(c != next_c);
c = next_c;
}
assert(c == null_ind or cell_rows_[c] == r);
return c;
}
index_t detailed_placement::get_next_cell_on_row(index_t c, index_t r){
return neighbours_[neighbour_index(c, r)].second;
}
index_t detailed_placement::get_prev_cell_on_row(index_t c, index_t r){
return neighbours_[neighbour_index(c, r)].first;
}
index_t detailed_placement::get_next_standard_cell_on_row(index_t c, index_t r){
do{
index_t next_c = get_next_cell_on_row(c, r);
assert(c != next_c);
c = next_c;
}while(c != null_ind and cell_height(c) != 1);
assert(c == null_ind or cell_rows_[c] == r);
return c;
}
void detailed_placement::reorder_cells(std::vector<index_t> const old_order, std::vector<index_t> const new_order, index_t r){
assert(old_order.size() == new_order.size());
assert(not old_order.empty());
index_t before_row = get_prev_cell_on_row(old_order.front(), r);
index_t after_row = get_next_cell_on_row(old_order.back(), r);
for(index_t i=0; i<new_order.size(); ++i){
auto & nghs = neighbours_[neighbour_index(new_order[i], r)];
if(i > 0){
nghs.first = new_order[i-1];
}
else{
nghs.first = before_row;
}
if(i+1 < new_order.size()){
nghs.second = new_order[i+1];
}
else{
nghs.second = after_row;
}
}
if(before_row != null_ind) neighbours_[neighbour_index(before_row, r)].second = new_order.front();
else row_first_cells_[r] = new_order.front();
if(after_row != null_ind) neighbours_[neighbour_index(after_row, r)].first = new_order.back();
else row_last_cells_[r] = new_order.back();
}
void detailed_placement::reorder_standard_cells(std::vector<index_t> const old_order, std::vector<index_t> const new_order){
assert(old_order.size() == new_order.size());
assert(not old_order.empty());
index_t before_row = neighbours_[neighbours_limits_[old_order.front()]].first;
index_t after_row = neighbours_[neighbours_limits_[old_order.back() ]].second;
index_t r = cell_rows_[new_order.front()];
for(index_t i=0; i<new_order.size(); ++i){
assert(cell_height(new_order[i]) == 1);
assert(cell_rows_[new_order[i]] == r);
auto & nghs = neighbours_[neighbours_limits_[new_order[i]]];
if(i > 0){
nghs.first = new_order[i-1];
}
else{
nghs.first = before_row;
}
if(i+1 < new_order.size()){
nghs.second = new_order[i+1];
}
else{
nghs.second = after_row;
}
}
if(before_row != null_ind) neighbours_[neighbour_index(before_row, r)].second = new_order.front();
else row_first_cells_[r] = new_order.front();
if(after_row != null_ind) neighbours_[neighbour_index(after_row, r)].first = new_order.back();
else row_last_cells_[r] = new_order.back();
}
void row_compatible_orientation(netlist const & circuit, detailed_placement & pl, bool first_row_orient){
for(index_t c=0; c<circuit.cell_cnt(); ++c){
if( (circuit.get_cell(c).attributes & YFlippable) != 0 and pl.cell_height(c) == 1){
pl.plt_.orientations_[c].y = (pl.cell_rows_[c] % 2 != 0) ^ first_row_orient;
2015-04-08 03:45:11 -05:00
}
}
}
} // namespace dp
} // namespace coloquinte