coriolis/kite/src/TrackSegment.cpp

879 lines
26 KiB
C++
Raw Normal View History

// -*- C++ -*-
//
// This file is part of the Coriolis Software.
// Copyright (c) UPMC 2008-2014, All Rights Reserved
//
// +-----------------------------------------------------------------+
// | C O R I O L I S |
// | K i t e - D e t a i l e d R o u t e r |
// | |
// | Author : Jean-Paul CHAPUT |
// | E-mail : Jean-Paul.Chaput@asim.lip6.fr |
// | =============================================================== |
// | C++ Module : "./TrackSegment.cpp" |
// +-----------------------------------------------------------------+
#include <sstream>
#include <limits>
#include "hurricane/Bug.h"
#include "hurricane/Warning.h"
#include "hurricane/Net.h"
#include "hurricane/Name.h"
#include "hurricane/RoutingPad.h"
#include "katabatic/AutoContact.h"
#include "katabatic/GCell.h"
#include "crlcore/RoutingGauge.h"
#include "kite/DataNegociate.h"
#include "kite/TrackSegment.h"
#include "kite/Track.h"
#include "kite/Session.h"
#include "kite/RoutingEvent.h"
#include "kite/NegociateWindow.h"
#include "kite/KiteEngine.h"
namespace Kite {
using namespace std;
using Hurricane::inltrace;
using Hurricane::ltracein;
using Hurricane::ltraceout;
using Hurricane::tab;
using Hurricane::ForEachIterator;
using Hurricane::Bug;
using Hurricane::Error;
using Hurricane::Net;
using Hurricane::Name;
using Hurricane::RoutingPad;
using Katabatic::SegSlackened;
using Katabatic::KbPropagate;
// -------------------------------------------------------------------
// Class : "TrackSegment".
size_t TrackSegment::_allocateds = 0;
size_t TrackSegment::getAllocateds ()
{ return _allocateds; }
TrackSegment::TrackSegment ( AutoSegment* segment, Track* track )
: TrackElement (track)
, _base (segment)
, _freedomDegree(0)
, _ppitch (0)
, _data (NULL)
, _dogLegLevel (0)
{
ltrace(99) << "CTOR TrackSegment " << (void*)this << ":" << this << endl;
ltrace(99) << " over " << (void*)segment << ":" << segment << endl;
setFlags( TElemCreated|TElemLocked );
if (segment) {
_data = new DataNegociate( this );
_base->getCanonical( _sourceU, _targetU );
updateFreedomDegree();
updatePPitch();
}
++_allocateds;
}
void TrackSegment::_postCreate ()
{
TrackElement::_postCreate();
base()->addObserver( getObserver() );
}
TrackSegment::~TrackSegment ()
{
if (_data) delete _data;
--_allocateds;
}
void TrackSegment::_preDestroy ()
{
ltrace(90) << "TrackSegment::_preDestroy() - " << (void*)this
<< " [" << (void*)_base << ", "
<< (void*)(_base?_base->base():NULL) << "]" << endl;
base()->removeObserver( getObserver() );
TrackElement::_preDestroy();
}
TrackElement* TrackSegment::create ( AutoSegment* segment, Track* track, bool& created )
{
created = false;
TrackElement* trackElement = Session::lookup( segment->base() );
if (not trackElement) {
TrackSegment* trackSegment = new TrackSegment( segment, track );
trackSegment->_postCreate();
created = true;
trackSegment->invalidate();
ltrace(200) << "TrackSegment::create(): " << trackSegment << endl;
trackElement = trackSegment;
}
return trackElement;
}
// Formerly Inline Functions.
// Wrappeds.
AutoSegment* TrackSegment::base () const { return _base; }
bool TrackSegment::isFixed () const { return _base->isFixed(); }
bool TrackSegment::isHorizontal () const { return _base->isHorizontal(); }
bool TrackSegment::isVertical () const { return _base->isVertical(); }
bool TrackSegment::isLocal () const { return not _base->isWeakGlobal() and not _base->isGlobal(); }
bool TrackSegment::isGlobal () const { return _base->isWeakGlobal() or _base->isGlobal(); }
bool TrackSegment::isBipoint () const { return _base->isBipoint(); }
bool TrackSegment::isTerminal () const { return _base->isTerminal(); }
bool TrackSegment::isStrongTerminal ( unsigned int flags ) const { return _base->isStrongTerminal(flags); }
bool TrackSegment::isStrap () const { return _base->isStrap(); }
bool TrackSegment::isSlackened () const { return _base->isSlackened(); }
bool TrackSegment::isDogleg () const { return _base->isDogleg(); }
bool TrackSegment::isSameLayerDogleg () const { return _base->isSameLayerDogleg(); }
Implementation of pre-routing support (for clock-tree compliance). * New: In Katabatic, in <AutoContact>, this class is no longer derived from ExtentionGo. With the simplificated AutoContacts, there is no reason to do so, and it will save some QuadTree insertions/deletions. New factory function AutoContact::createFrom(Contact*) which try to build an AutoContact on top of a Hurricane::Contact. Of course that base contact *must fit* into one of the predefined Contact configurations (Terminal, Turn, HTee or VTee). NOTE: This implies that the pre-routed segments & contacts *are* correctly articulated, which is not the case when a Cell is read from disk in "ap" format. The pre-routing feature must be used for now without any re-read from disk. We will implement a re-articulating pre-process in the future. * Change: In Katabatic, in <AutoContact> derived classes, the ::updateCache() method now display an accurate error message if a segment is connected but has no AutoSegment conterpart (i.e. the lookup fails). * New: In Katabatic, in <AutoSegment>, the ::computeOptimal() method is short-circuited for pre-routed segments, the optimal axis position is considered to be the one it is currently on (i.e. we trust the designer). * New: In Katabatic, in <KatabaticEngine>, the ::loadGlobalRouting() method now accept a map of excluded nets (same as Knik). This map is the one of pre-routed nets. * New: In Katabatic, in layer assignment, do not try to displace fixed segments... * New: In Katabatic, in <AutoSegment>, new flag SegUserDefined and related methods to know if a segment comes from the global router (Knik) or is pre-routed (supplied by the user). * New: In Kite, In <BuildPowerRails>, support (exclusion) for pre-routed nets. * New: In Kite, In <GraphicKiteEngine> new menu entry for running the router on pre-routed nets ("Detailed Pre-Route"), also integrated in the all-on-one route command. * New: In Kite, In KiteEngine, new method ::_initDataBase() that group all the initialisation steps. It is a mix of calls between Knik and Kite initializations which are intertwinneds (may have to devellop a shared common base at a later point). It creates the Knik grid, then the Katabatic grid, then load pre-routed wires and power rails and protect isolated RoutingPads. Add support for a map of pre-routed nets (to be excluded for Knik calls). The method "::run()" now uses function flags, firstly to know if it is managing pre-routed wires or general purposes ones. * New: In Kite, in <NegociateWindow>, the "::run()" methods has now two modes. The normal one and the 'KtPreRoutedStage' that is for routing pre-routed nets. When in pre-route stage, the wires are fixed at the end of this step. * New: In Kite, in <TrackElement> add decorator for AutoSegment isUsedDefined(). * New: In Kite, in <TrackSegment>, the various ::canDogleg() methods returns false for a pre-routed (user-defined segment). * New: In Kite, in PyKiteEngine, added new method runNegociatePreRouted().
2014-06-21 13:16:47 -05:00
bool TrackSegment::isUserDefined () const { return _base->isUserDefined(); }
// Predicates.
// Accessors.
unsigned long TrackSegment::getId () const { return _base->getId(); }
unsigned int TrackSegment::getDirection () const { return _base->getDirection(); }
Net* TrackSegment::getNet () const { return _base->getNet(); }
const Layer* TrackSegment::getLayer () const { return _base->getLayer(); }
DbU::Unit TrackSegment::getPitch () const { return _base->getPitch(); }
DbU::Unit TrackSegment::getPPitch () const { return _ppitch; }
DbU::Unit TrackSegment::getAxis () const { return _base->getAxis(); }
unsigned long TrackSegment::getFreedomDegree () const { return _freedomDegree; }
unsigned int TrackSegment::getDoglegLevel () const { return _dogLegLevel; }
Interval TrackSegment::getSourceConstraints () const { return _base->getSourceConstraints(); }
Interval TrackSegment::getTargetConstraints () const { return _base->getTargetConstraints(); }
TrackElement* TrackSegment::getCanonical ( Interval& i ) { return Session::lookup( _base->getCanonical(i)->base() ); }
TrackElements TrackSegment::getPerpandiculars () { return new TrackElements_Perpandiculars(this); }
// Mutators.
void TrackSegment::invalidate () { setFlags( TElemInvalidated ); _base->invalidate(); }
* ./Kite: - New: In BuildPowerRails, special processing for the power ring segments. The "diagonal" of vias at each corner is causing a misbehavior of the routing algorithm (due to fully saturated GCells in one direction). As a temporary fix, extend the segments so they form a "square corner". (problem arise on "d_in_i(22)"). - New: In RoutingEvent::_processNegociate, disable the "isForcedToHint()" feature. No noticeable loss of quality or speed. - New: In TrackElement/TrackSegment, wraps the AutoSegment parent's mechanism. Allows to gets the DataNegociate of either the segment or it's parent. - New: State::solveFullBlockages(), dedicated method to solves the case when all the allowed tracks of a segment are blocked, tries to moves up local segments and to break-up global ones. - New: RoutingEventLoop, a more sophisticated way to detect looping. Maintain a dynamic histogram of the last N (default 10) segments routeds, with the count of how many times they have occurred. If that count exeed 40, we *may* be facing a loop. - Change: In State::conflictSolve1, implement new policy. The global segments no more can be broken by local ones. The idea behind is that breaking a global on the request of a local will only produce more cluttering in the GCell. Globals must be keep straigth pass through, especially inside near-saturated GCells. Globals breaking however can occurs at another global's request. - Change: In TrackCost, implement the new policy about locals segments that cannot break globals segments. The sorting class now accept flags to modulate the sorting function. Two options avalaibles: IgnoreAxisWeigth (to uses for strap segments) and DiscardGlobals (to uses with locals). - Change: In TrackCost, the "distance to fixed" have now an upper bound of 50 lambdas (no need to be greater because it means it's outside the begin & en GCells). Take account not only of fixed segment, but also of placed segments which makes bound. - Bug: In Track::_check(), while calling each individual TrackSegment check, uses it as the *first* argument of the "or", otherwise it may not be called. - Bug: In ProtectRoutingPad, loop over segment Collections while modificating it was producing non-deterministic results. The fact that a collection must be not modificated while beeing iterated is becoming a more and more painful problem.
2010-12-30 12:42:17 -06:00
DataNegociate* TrackSegment::getDataNegociate ( unsigned int flags ) const
{
if (flags & KtDataSelf) return _data;
* ./Kite: - New: In BuildPowerRails, special processing for the power ring segments. The "diagonal" of vias at each corner is causing a misbehavior of the routing algorithm (due to fully saturated GCells in one direction). As a temporary fix, extend the segments so they form a "square corner". (problem arise on "d_in_i(22)"). - New: In RoutingEvent::_processNegociate, disable the "isForcedToHint()" feature. No noticeable loss of quality or speed. - New: In TrackElement/TrackSegment, wraps the AutoSegment parent's mechanism. Allows to gets the DataNegociate of either the segment or it's parent. - New: State::solveFullBlockages(), dedicated method to solves the case when all the allowed tracks of a segment are blocked, tries to moves up local segments and to break-up global ones. - New: RoutingEventLoop, a more sophisticated way to detect looping. Maintain a dynamic histogram of the last N (default 10) segments routeds, with the count of how many times they have occurred. If that count exeed 40, we *may* be facing a loop. - Change: In State::conflictSolve1, implement new policy. The global segments no more can be broken by local ones. The idea behind is that breaking a global on the request of a local will only produce more cluttering in the GCell. Globals must be keep straigth pass through, especially inside near-saturated GCells. Globals breaking however can occurs at another global's request. - Change: In TrackCost, implement the new policy about locals segments that cannot break globals segments. The sorting class now accept flags to modulate the sorting function. Two options avalaibles: IgnoreAxisWeigth (to uses for strap segments) and DiscardGlobals (to uses with locals). - Change: In TrackCost, the "distance to fixed" have now an upper bound of 50 lambdas (no need to be greater because it means it's outside the begin & en GCells). Take account not only of fixed segment, but also of placed segments which makes bound. - Bug: In Track::_check(), while calling each individual TrackSegment check, uses it as the *first* argument of the "or", otherwise it may not be called. - Bug: In ProtectRoutingPad, loop over segment Collections while modificating it was producing non-deterministic results. The fact that a collection must be not modificated while beeing iterated is becoming a more and more painful problem.
2010-12-30 12:42:17 -06:00
TrackElement* parent = getParent();
return (parent) ? parent->getDataNegociate() : NULL;
}
TrackElement* TrackSegment::getNext () const
{
size_t dummy = _index;
return _track->getNext( dummy, getNet() );
}
TrackElement* TrackSegment::getPrevious () const
{
size_t dummy = _index;
return _track->getPrevious( dummy, getNet() );
}
* ./Kite: - New: In BuildPowerRails, special processing for the power ring segments. The "diagonal" of vias at each corner is causing a misbehavior of the routing algorithm (due to fully saturated GCells in one direction). As a temporary fix, extend the segments so they form a "square corner". (problem arise on "d_in_i(22)"). - New: In RoutingEvent::_processNegociate, disable the "isForcedToHint()" feature. No noticeable loss of quality or speed. - New: In TrackElement/TrackSegment, wraps the AutoSegment parent's mechanism. Allows to gets the DataNegociate of either the segment or it's parent. - New: State::solveFullBlockages(), dedicated method to solves the case when all the allowed tracks of a segment are blocked, tries to moves up local segments and to break-up global ones. - New: RoutingEventLoop, a more sophisticated way to detect looping. Maintain a dynamic histogram of the last N (default 10) segments routeds, with the count of how many times they have occurred. If that count exeed 40, we *may* be facing a loop. - Change: In State::conflictSolve1, implement new policy. The global segments no more can be broken by local ones. The idea behind is that breaking a global on the request of a local will only produce more cluttering in the GCell. Globals must be keep straigth pass through, especially inside near-saturated GCells. Globals breaking however can occurs at another global's request. - Change: In TrackCost, implement the new policy about locals segments that cannot break globals segments. The sorting class now accept flags to modulate the sorting function. Two options avalaibles: IgnoreAxisWeigth (to uses for strap segments) and DiscardGlobals (to uses with locals). - Change: In TrackCost, the "distance to fixed" have now an upper bound of 50 lambdas (no need to be greater because it means it's outside the begin & en GCells). Take account not only of fixed segment, but also of placed segments which makes bound. - Bug: In Track::_check(), while calling each individual TrackSegment check, uses it as the *first* argument of the "or", otherwise it may not be called. - Bug: In ProtectRoutingPad, loop over segment Collections while modificating it was producing non-deterministic results. The fact that a collection must be not modificated while beeing iterated is becoming a more and more painful problem.
2010-12-30 12:42:17 -06:00
TrackElement* TrackSegment::getParent () const
{
AutoSegment* baseParent = base()->getParent();
if (not baseParent) return NULL;
* ./Kite: - New: In BuildPowerRails, special processing for the power ring segments. The "diagonal" of vias at each corner is causing a misbehavior of the routing algorithm (due to fully saturated GCells in one direction). As a temporary fix, extend the segments so they form a "square corner". (problem arise on "d_in_i(22)"). - New: In RoutingEvent::_processNegociate, disable the "isForcedToHint()" feature. No noticeable loss of quality or speed. - New: In TrackElement/TrackSegment, wraps the AutoSegment parent's mechanism. Allows to gets the DataNegociate of either the segment or it's parent. - New: State::solveFullBlockages(), dedicated method to solves the case when all the allowed tracks of a segment are blocked, tries to moves up local segments and to break-up global ones. - New: RoutingEventLoop, a more sophisticated way to detect looping. Maintain a dynamic histogram of the last N (default 10) segments routeds, with the count of how many times they have occurred. If that count exeed 40, we *may* be facing a loop. - Change: In State::conflictSolve1, implement new policy. The global segments no more can be broken by local ones. The idea behind is that breaking a global on the request of a local will only produce more cluttering in the GCell. Globals must be keep straigth pass through, especially inside near-saturated GCells. Globals breaking however can occurs at another global's request. - Change: In TrackCost, implement the new policy about locals segments that cannot break globals segments. The sorting class now accept flags to modulate the sorting function. Two options avalaibles: IgnoreAxisWeigth (to uses for strap segments) and DiscardGlobals (to uses with locals). - Change: In TrackCost, the "distance to fixed" have now an upper bound of 50 lambdas (no need to be greater because it means it's outside the begin & en GCells). Take account not only of fixed segment, but also of placed segments which makes bound. - Bug: In Track::_check(), while calling each individual TrackSegment check, uses it as the *first* argument of the "or", otherwise it may not be called. - Bug: In ProtectRoutingPad, loop over segment Collections while modificating it was producing non-deterministic results. The fact that a collection must be not modificated while beeing iterated is becoming a more and more painful problem.
2010-12-30 12:42:17 -06:00
TrackElement* element = Session::lookup( baseParent );
* ./Kite: - New: In BuildPowerRails, special processing for the power ring segments. The "diagonal" of vias at each corner is causing a misbehavior of the routing algorithm (due to fully saturated GCells in one direction). As a temporary fix, extend the segments so they form a "square corner". (problem arise on "d_in_i(22)"). - New: In RoutingEvent::_processNegociate, disable the "isForcedToHint()" feature. No noticeable loss of quality or speed. - New: In TrackElement/TrackSegment, wraps the AutoSegment parent's mechanism. Allows to gets the DataNegociate of either the segment or it's parent. - New: State::solveFullBlockages(), dedicated method to solves the case when all the allowed tracks of a segment are blocked, tries to moves up local segments and to break-up global ones. - New: RoutingEventLoop, a more sophisticated way to detect looping. Maintain a dynamic histogram of the last N (default 10) segments routeds, with the count of how many times they have occurred. If that count exeed 40, we *may* be facing a loop. - Change: In State::conflictSolve1, implement new policy. The global segments no more can be broken by local ones. The idea behind is that breaking a global on the request of a local will only produce more cluttering in the GCell. Globals must be keep straigth pass through, especially inside near-saturated GCells. Globals breaking however can occurs at another global's request. - Change: In TrackCost, implement the new policy about locals segments that cannot break globals segments. The sorting class now accept flags to modulate the sorting function. Two options avalaibles: IgnoreAxisWeigth (to uses for strap segments) and DiscardGlobals (to uses with locals). - Change: In TrackCost, the "distance to fixed" have now an upper bound of 50 lambdas (no need to be greater because it means it's outside the begin & en GCells). Take account not only of fixed segment, but also of placed segments which makes bound. - Bug: In Track::_check(), while calling each individual TrackSegment check, uses it as the *first* argument of the "or", otherwise it may not be called. - Bug: In ProtectRoutingPad, loop over segment Collections while modificating it was producing non-deterministic results. The fact that a collection must be not modificated while beeing iterated is becoming a more and more painful problem.
2010-12-30 12:42:17 -06:00
return element;
}
Interval TrackSegment::getFreeInterval () const
{
if (not _track) return Interval(false);
size_t begin = _index;
size_t end = _index;
return _track->expandFreeInterval( begin, end, Track::InsideElement, getNet() );
}
size_t TrackSegment::getGCells ( Katabatic::GCellVector& gcells ) const
{
Katabatic::GCellVector().swap( gcells );
Katabatic::GCell* sourceGCell = base()->getAutoSource()->getGCell();
Katabatic::GCell* targetGCell = base()->getAutoTarget()->getGCell();
ltrace(148) << "getGCells(): sourceGCell: " << sourceGCell << endl;
ltrace(148) << "getGCells(): targetGCell: " << targetGCell << endl;
forEach ( AutoSegment*, isegment, base()->getAligneds() ) {
ltrace(148) << "| " << *isegment << endl;
Katabatic::GCell* gcell = isegment->getAutoSource()->getGCell();
if (gcell->getIndex() < sourceGCell->getIndex()) {
sourceGCell = gcell;
ltrace(148) << "getGCells(): new sourceGCell: " << sourceGCell << endl;
}
gcell = isegment->getAutoTarget()->getGCell();
if (gcell->getIndex() > targetGCell->getIndex()) {
targetGCell = gcell;
ltrace(148) << "getGCells(): new targetGCell: " << targetGCell << endl;
}
}
if (not sourceGCell or not targetGCell) return 0;
if (not sourceGCell) { gcells.push_back( targetGCell ); return 1; }
if (not targetGCell) { gcells.push_back( sourceGCell ); return 1; }
if (isHorizontal()) {
gcells.push_back( sourceGCell );
while ( sourceGCell != targetGCell ) {
sourceGCell = sourceGCell->getRight();
if (not sourceGCell) break;
gcells.push_back( sourceGCell );
}
} else {
gcells.push_back( sourceGCell );
while ( sourceGCell != targetGCell ) {
sourceGCell = sourceGCell->getUp();
if (not sourceGCell) break;
gcells.push_back( sourceGCell );
}
}
return gcells.size();
}
size_t TrackSegment::getPerpandicularsBound ( set<TrackElement*>& bounds )
{
bounds.clear ();
set<AutoSegment*> baseBounds;
set<AutoSegment*>::iterator ibase;
_base->getPerpandicularsBound( baseBounds );
for ( ibase=baseBounds.begin() ; ibase!=baseBounds.end() ; ++ibase ) {
TrackElement* segment = Session::lookup( *ibase );
if (segment)
bounds.insert( segment );
}
return bounds.size();
}
void TrackSegment::setDoglegLevel ( unsigned int level )
{
if (level > 15) {
cerr << Bug("%s has reached maximum dog leg count (15)."
,_getString().c_str()) << endl;
level = 15;
}
_dogLegLevel = level;
}
void TrackSegment::updateFreedomDegree ()
{ _freedomDegree = _base->getSlack(); }
void TrackSegment::updatePPitch ()
{
_ppitch = _base->getPPitch();
//cerr << "Update P/Pitch (" << DbU::toLambda(getPPitch()) << ") on " << this << endl;
}
void TrackSegment::setTrack ( Track* track )
{ TrackElement::setTrack( track ); }
void TrackSegment::detach ()
{
ltrace(200) << "TrackSegment::detach() - <id:" << getId() << ">" << endl;
setTrack( NULL );
setIndex( (size_t)-1 );
setFlags( TElemLocked );
}
void TrackSegment::revalidate ()
{
unsetFlags( TElemCreated );
ltrace(148) << "revalidate() - " << this << endl;
_base->getCanonical( _sourceU, _targetU );
if (_track) Session::addSortEvent( _track, true );
unsetFlags( TElemInvalidated );
}
void TrackSegment::setAxis ( DbU::Unit axis, unsigned int flags )
{
_base->setAxis( axis, flags );
invalidate();
}
void TrackSegment::swapTrack ( TrackElement* other )
{
if (not other) return;
ltrace(200) << "TrackSegment::swapTrack()" << endl;
size_t thisIndex = getIndex ();
Track* thisTrack = getTrack ();
size_t otherIndex = other->getIndex ();
Track* otherTrack = other->getTrack ();
if (_track and otherTrack and (_track != otherTrack)) {
cerr << Error("TrackSegment::swapTrack() - swapping TrackSegments from different tracks.") << endl;
}
setTrack( NULL );
other->setTrack( NULL );
other->setTrack( thisTrack );
other->setIndex( thisIndex );
if (thisTrack) thisTrack->setSegment( other, thisIndex );
setTrack( otherTrack );
setIndex( otherIndex );
if (_track) _track->setSegment( this, _index );
#if defined(CHECK_DATABASE_DISABLED)
if (_track) _track->_check();
else if (other->getTrack()) other->getTrack()->_check();
#endif
RoutingEvent* thisEvent = getDataNegociate(KtDataSelf)->getRoutingEvent();
RoutingEvent* otherEvent = other->getDataNegociate()->getRoutingEvent();
if (thisEvent ) thisEvent ->setSegment( other );
if (otherEvent) otherEvent->setSegment( this );
ltrace(200) << "| this: " << this << endl;
ltrace(200) << "| other: " << other << endl;
}
void TrackSegment::reschedule ( unsigned int level )
{
ltrace(200) << "TrackSegment::reschedule() - " << this << endl;
ltracein(200);
if (not _data or not _data->hasRoutingEvent())
Session::getNegociateWindow()->addRoutingEvent( this, level );
else {
if (_track != NULL)
Session::addRemoveEvent( this );
Session::getNegociateWindow()->rescheduleEvent( _data->getRoutingEvent(), level );
}
ltraceout(200);
}
* ./kite: - New: In NegociateWindow/RoutingEvent, adds a more comprehensive stage "Repair". Perform in three stage: first try to place with a relaxed constraint (one GCell on each side). Second try to minimize the faulty segment. Third perform another "repack perpandicular" but this time the faulty segment is re-inserted *before* any of it's perpandiculars. - New: In RoutingEvent::cacheAxisHint(), when a segment has a parent, that is comes for a "moveUp()", uses the parent axis hint as it's own. - New: In State::slackenTopology(), in the global FSM, adds a special operation when reaching MaximumSlack: forceOverLocals(), try to insert the global on track containing only local segments. Should tend to concentrate locals on a small set of shared tracks. Most useful on the highest layers. - New: In State::slackenTopology(), in the "MoveUp" state, try to find the more appropriate segment to move up (Manipulator::desaturate()). Effectively move up the longest segment fully enclosing the one we are processing. - New: In State::slackenTopology(), add a check for fully blocked segments in the local segment FSM. Calls State::solveFullBlocked(). - New: In KiteEngine::createGlobalGraph(), decrease the vertical capacity of one track inside the core. Helps smooth the vertical density. - Change: In Manipulator::insertInTrack(), when a track is freed for a to be inserted changes the priorities so that the segment is immediatly inserted. Parallels ripeds and theirs perpandiculars are replaced only *after*. This is the opposite of the previous behavior. - Change: In NegociateWindow::NegociateOverlapCost(), account the costs of terminals only for deep depth layers (M1, M2 & M3). - Change: In RoutingEvent::insertInTrack(), expand the excluded interval by a half-pitch (2.5l) instead of one lambda. - Change: In State::State(), do not uses DiscardGlobal if the ripup count exceed 5. Case of the "Strap" segments that can be ripped a lot before changing state. - Change: In State::_processNegociate(), no longer lock into position (fixed) the local terminal segments as a last resort. - Change: In RoutingEvent::_processNegociate(), no longer ripup perpandiculars when a segment is inserted in a free space. Reduce the number of events whithout degrading the routing quality. - Change: In State::conflictSolve1_v1b(), if getLongestConflict() is nul, ignore the track, the conflict must occurs on another track. - Change: In TrackCost, add a flag support. First uses, a flags to prevent a local of the topmost layer to ripup a global which is in moveUp state. - Bug: In State::solveFullBlockage(), after have been freed, reset the segment state to "moveUp". - Bug: In manipulator::minimize(), the axisHint was miscalculated if the punctual span was empty.
2011-01-25 11:16:50 -06:00
float TrackSegment::getMaxUnderDensity ( unsigned int flags ) const
{ return _base->getMaxUnderDensity( flags ); }
* ./kite: - New: In NegociateWindow/RoutingEvent, adds a more comprehensive stage "Repair". Perform in three stage: first try to place with a relaxed constraint (one GCell on each side). Second try to minimize the faulty segment. Third perform another "repack perpandicular" but this time the faulty segment is re-inserted *before* any of it's perpandiculars. - New: In RoutingEvent::cacheAxisHint(), when a segment has a parent, that is comes for a "moveUp()", uses the parent axis hint as it's own. - New: In State::slackenTopology(), in the global FSM, adds a special operation when reaching MaximumSlack: forceOverLocals(), try to insert the global on track containing only local segments. Should tend to concentrate locals on a small set of shared tracks. Most useful on the highest layers. - New: In State::slackenTopology(), in the "MoveUp" state, try to find the more appropriate segment to move up (Manipulator::desaturate()). Effectively move up the longest segment fully enclosing the one we are processing. - New: In State::slackenTopology(), add a check for fully blocked segments in the local segment FSM. Calls State::solveFullBlocked(). - New: In KiteEngine::createGlobalGraph(), decrease the vertical capacity of one track inside the core. Helps smooth the vertical density. - Change: In Manipulator::insertInTrack(), when a track is freed for a to be inserted changes the priorities so that the segment is immediatly inserted. Parallels ripeds and theirs perpandiculars are replaced only *after*. This is the opposite of the previous behavior. - Change: In NegociateWindow::NegociateOverlapCost(), account the costs of terminals only for deep depth layers (M1, M2 & M3). - Change: In RoutingEvent::insertInTrack(), expand the excluded interval by a half-pitch (2.5l) instead of one lambda. - Change: In State::State(), do not uses DiscardGlobal if the ripup count exceed 5. Case of the "Strap" segments that can be ripped a lot before changing state. - Change: In State::_processNegociate(), no longer lock into position (fixed) the local terminal segments as a last resort. - Change: In RoutingEvent::_processNegociate(), no longer ripup perpandiculars when a segment is inserted in a free space. Reduce the number of events whithout degrading the routing quality. - Change: In State::conflictSolve1_v1b(), if getLongestConflict() is nul, ignore the track, the conflict must occurs on another track. - Change: In TrackCost, add a flag support. First uses, a flags to prevent a local of the topmost layer to ripup a global which is in moveUp state. - Bug: In State::solveFullBlockage(), after have been freed, reset the segment state to "moveUp". - Bug: In manipulator::minimize(), the axisHint was miscalculated if the punctual span was empty.
2011-01-25 11:16:50 -06:00
bool TrackSegment::canPivotUp ( float reserve ) const
{ return _base->canPivotUp(reserve); }
* ./Kite: - New: In BuildPowerRails, special processing for the power ring segments. The "diagonal" of vias at each corner is causing a misbehavior of the routing algorithm (due to fully saturated GCells in one direction). As a temporary fix, extend the segments so they form a "square corner". (problem arise on "d_in_i(22)"). - New: In RoutingEvent::_processNegociate, disable the "isForcedToHint()" feature. No noticeable loss of quality or speed. - New: In TrackElement/TrackSegment, wraps the AutoSegment parent's mechanism. Allows to gets the DataNegociate of either the segment or it's parent. - New: State::solveFullBlockages(), dedicated method to solves the case when all the allowed tracks of a segment are blocked, tries to moves up local segments and to break-up global ones. - New: RoutingEventLoop, a more sophisticated way to detect looping. Maintain a dynamic histogram of the last N (default 10) segments routeds, with the count of how many times they have occurred. If that count exeed 40, we *may* be facing a loop. - Change: In State::conflictSolve1, implement new policy. The global segments no more can be broken by local ones. The idea behind is that breaking a global on the request of a local will only produce more cluttering in the GCell. Globals must be keep straigth pass through, especially inside near-saturated GCells. Globals breaking however can occurs at another global's request. - Change: In TrackCost, implement the new policy about locals segments that cannot break globals segments. The sorting class now accept flags to modulate the sorting function. Two options avalaibles: IgnoreAxisWeigth (to uses for strap segments) and DiscardGlobals (to uses with locals). - Change: In TrackCost, the "distance to fixed" have now an upper bound of 50 lambdas (no need to be greater because it means it's outside the begin & en GCells). Take account not only of fixed segment, but also of placed segments which makes bound. - Bug: In Track::_check(), while calling each individual TrackSegment check, uses it as the *first* argument of the "or", otherwise it may not be called. - Bug: In ProtectRoutingPad, loop over segment Collections while modificating it was producing non-deterministic results. The fact that a collection must be not modificated while beeing iterated is becoming a more and more painful problem.
2010-12-30 12:42:17 -06:00
bool TrackSegment::canPivotDown ( float reserve ) const
{ return _base->canPivotDown( reserve ); }
* ./Kite: - New: In BuildPowerRails, special processing for the power ring segments. The "diagonal" of vias at each corner is causing a misbehavior of the routing algorithm (due to fully saturated GCells in one direction). As a temporary fix, extend the segments so they form a "square corner". (problem arise on "d_in_i(22)"). - New: In RoutingEvent::_processNegociate, disable the "isForcedToHint()" feature. No noticeable loss of quality or speed. - New: In TrackElement/TrackSegment, wraps the AutoSegment parent's mechanism. Allows to gets the DataNegociate of either the segment or it's parent. - New: State::solveFullBlockages(), dedicated method to solves the case when all the allowed tracks of a segment are blocked, tries to moves up local segments and to break-up global ones. - New: RoutingEventLoop, a more sophisticated way to detect looping. Maintain a dynamic histogram of the last N (default 10) segments routeds, with the count of how many times they have occurred. If that count exeed 40, we *may* be facing a loop. - Change: In State::conflictSolve1, implement new policy. The global segments no more can be broken by local ones. The idea behind is that breaking a global on the request of a local will only produce more cluttering in the GCell. Globals must be keep straigth pass through, especially inside near-saturated GCells. Globals breaking however can occurs at another global's request. - Change: In TrackCost, implement the new policy about locals segments that cannot break globals segments. The sorting class now accept flags to modulate the sorting function. Two options avalaibles: IgnoreAxisWeigth (to uses for strap segments) and DiscardGlobals (to uses with locals). - Change: In TrackCost, the "distance to fixed" have now an upper bound of 50 lambdas (no need to be greater because it means it's outside the begin & en GCells). Take account not only of fixed segment, but also of placed segments which makes bound. - Bug: In Track::_check(), while calling each individual TrackSegment check, uses it as the *first* argument of the "or", otherwise it may not be called. - Bug: In ProtectRoutingPad, loop over segment Collections while modificating it was producing non-deterministic results. The fact that a collection must be not modificated while beeing iterated is becoming a more and more painful problem.
2010-12-30 12:42:17 -06:00
* ./kite: - Change: Propagate renaming "obstacle" -> "blockage". - Bug/Change: In Configuration, the value of the extensionCap was too big (1.5 lambda), reduce to 0.5 lambda. This is a problem, the extension should be coupled to the layer as it is not the same for each METAL. - Bug: When using TrackElement, always uses the virtual "->isFixed()" method instead of trying to access to "->base()->isFixed()" as the base may be NULL in case of blockage/fixed segment. - Change: Merge PowerRails & Blockage trans-hierarchical construction (into PowerRails). All blockages are groupeds under "blockagenet". Allows to remove TrackBlockage & BuildBlockages. - Change: In KiteEngine::annotateGloblalGraph(), when routing a full chip, ring power segments around the core must completly saturate the edges in their segment direction. This is to prevent the global router to use paths under the power/ground ring (may generate unsolvable configs). - Change: In KiteEngine::annotateGloblalGraph(), when routing a full chip, distinguish three areas: the core (65%), the corona (90%) and the pads (100%). Capacities on the edges are sets accordingly. - Change: In RoutingEvent, introduce an alternative algorithm for conflictSolve1, FindPath which try to deduce the breakpoints from a truly explorated path. Unfortunatly this gives worst results than the Cs1Candidates method. The why should be investigated as it's a critical point in the algorithm. - Change: In Manipulator::ripupPerpandicular(), when a caged perpandicular is encountered, instead of just "stopping", rip it up and change is axis hint (actually increase) it's axis hint so it stands a chance to go outside the track with an obstacle. - Change: In RoutingEvent/State::slackenTopology(), allow move up of local segments when they are tightly constrained *and* blocked (cageds). Partial modification of functions calls from booleans to flags. - Bug: In NegociateWindow::NegociateOverlapCost, check for fixed segments before trying to get DataNegociate. The lack of DataNegociate cause the TrackElement to be discarted. It's a failsafe behavior, but it leads to overlaps. - Bug: In ProtectRoutingPad, in Pad Cells only, *do not* protect RoutingPad to avoid the edge capacity over the pad to decrease to zero. This is due to unused RoutingPads being accounted as blockages.
2010-12-04 09:25:48 -06:00
bool TrackSegment::canMoveUp ( float reserve, unsigned int flags ) const
{ return _base->canMoveUp( reserve, flags ); }
bool TrackSegment::canSlacken () const
{
ltrace(200) << "TrackSegment::canSlacken() doglegLevel:" << getDoglegLevel() << endl;
return (not isSlackened() and (getDoglegLevel() <= 3)) ? _base->canSlacken(KbPropagate) : false;
}
bool TrackSegment::slacken ( unsigned int flags )
{
ltrace(200) << "TrackSegment::slacken()" << endl;
bool success = false;
if (not isSlackened()) {
TrackElement* perpandicular = NULL;
TrackElement* parallel = NULL;
ltracein(200);
success = base()->slacken( flags|KbPropagate );
_postDoglegs( perpandicular, parallel );
ltraceout(200);
return success;
} else
cerr << Bug("TrackSegment::slacken(): NULL base or already slackened.") << endl;
return success;
}
* ./kite: - Change: Propagate renaming "obstacle" -> "blockage". - Bug/Change: In Configuration, the value of the extensionCap was too big (1.5 lambda), reduce to 0.5 lambda. This is a problem, the extension should be coupled to the layer as it is not the same for each METAL. - Bug: When using TrackElement, always uses the virtual "->isFixed()" method instead of trying to access to "->base()->isFixed()" as the base may be NULL in case of blockage/fixed segment. - Change: Merge PowerRails & Blockage trans-hierarchical construction (into PowerRails). All blockages are groupeds under "blockagenet". Allows to remove TrackBlockage & BuildBlockages. - Change: In KiteEngine::annotateGloblalGraph(), when routing a full chip, ring power segments around the core must completly saturate the edges in their segment direction. This is to prevent the global router to use paths under the power/ground ring (may generate unsolvable configs). - Change: In KiteEngine::annotateGloblalGraph(), when routing a full chip, distinguish three areas: the core (65%), the corona (90%) and the pads (100%). Capacities on the edges are sets accordingly. - Change: In RoutingEvent, introduce an alternative algorithm for conflictSolve1, FindPath which try to deduce the breakpoints from a truly explorated path. Unfortunatly this gives worst results than the Cs1Candidates method. The why should be investigated as it's a critical point in the algorithm. - Change: In Manipulator::ripupPerpandicular(), when a caged perpandicular is encountered, instead of just "stopping", rip it up and change is axis hint (actually increase) it's axis hint so it stands a chance to go outside the track with an obstacle. - Change: In RoutingEvent/State::slackenTopology(), allow move up of local segments when they are tightly constrained *and* blocked (cageds). Partial modification of functions calls from booleans to flags. - Bug: In NegociateWindow::NegociateOverlapCost, check for fixed segments before trying to get DataNegociate. The lack of DataNegociate cause the TrackElement to be discarted. It's a failsafe behavior, but it leads to overlaps. - Bug: In ProtectRoutingPad, in Pad Cells only, *do not* protect RoutingPad to avoid the edge capacity over the pad to decrease to zero. This is due to unused RoutingPads being accounted as blockages.
2010-12-04 09:25:48 -06:00
bool TrackSegment::moveUp ( unsigned int flags )
{
bool success = false;
* ./kite: - Change: Propagate renaming "obstacle" -> "blockage". - Bug/Change: In Configuration, the value of the extensionCap was too big (1.5 lambda), reduce to 0.5 lambda. This is a problem, the extension should be coupled to the layer as it is not the same for each METAL. - Bug: When using TrackElement, always uses the virtual "->isFixed()" method instead of trying to access to "->base()->isFixed()" as the base may be NULL in case of blockage/fixed segment. - Change: Merge PowerRails & Blockage trans-hierarchical construction (into PowerRails). All blockages are groupeds under "blockagenet". Allows to remove TrackBlockage & BuildBlockages. - Change: In KiteEngine::annotateGloblalGraph(), when routing a full chip, ring power segments around the core must completly saturate the edges in their segment direction. This is to prevent the global router to use paths under the power/ground ring (may generate unsolvable configs). - Change: In KiteEngine::annotateGloblalGraph(), when routing a full chip, distinguish three areas: the core (65%), the corona (90%) and the pads (100%). Capacities on the edges are sets accordingly. - Change: In RoutingEvent, introduce an alternative algorithm for conflictSolve1, FindPath which try to deduce the breakpoints from a truly explorated path. Unfortunatly this gives worst results than the Cs1Candidates method. The why should be investigated as it's a critical point in the algorithm. - Change: In Manipulator::ripupPerpandicular(), when a caged perpandicular is encountered, instead of just "stopping", rip it up and change is axis hint (actually increase) it's axis hint so it stands a chance to go outside the track with an obstacle. - Change: In RoutingEvent/State::slackenTopology(), allow move up of local segments when they are tightly constrained *and* blocked (cageds). Partial modification of functions calls from booleans to flags. - Bug: In NegociateWindow::NegociateOverlapCost, check for fixed segments before trying to get DataNegociate. The lack of DataNegociate cause the TrackElement to be discarted. It's a failsafe behavior, but it leads to overlaps. - Bug: In ProtectRoutingPad, in Pad Cells only, *do not* protect RoutingPad to avoid the edge capacity over the pad to decrease to zero. This is due to unused RoutingPads being accounted as blockages.
2010-12-04 09:25:48 -06:00
ltrace(200) << "TrackSegment::moveUp() " << flags << endl;
ltracein(200);
success = base()->moveUp( flags );
if (success) {
TrackElement* perpandicular = NULL;
TrackElement* parallel = NULL;
* ./Kite: - New: In BuildPowerRails, special processing for the power ring segments. The "diagonal" of vias at each corner is causing a misbehavior of the routing algorithm (due to fully saturated GCells in one direction). As a temporary fix, extend the segments so they form a "square corner". (problem arise on "d_in_i(22)"). - New: In RoutingEvent::_processNegociate, disable the "isForcedToHint()" feature. No noticeable loss of quality or speed. - New: In TrackElement/TrackSegment, wraps the AutoSegment parent's mechanism. Allows to gets the DataNegociate of either the segment or it's parent. - New: State::solveFullBlockages(), dedicated method to solves the case when all the allowed tracks of a segment are blocked, tries to moves up local segments and to break-up global ones. - New: RoutingEventLoop, a more sophisticated way to detect looping. Maintain a dynamic histogram of the last N (default 10) segments routeds, with the count of how many times they have occurred. If that count exeed 40, we *may* be facing a loop. - Change: In State::conflictSolve1, implement new policy. The global segments no more can be broken by local ones. The idea behind is that breaking a global on the request of a local will only produce more cluttering in the GCell. Globals must be keep straigth pass through, especially inside near-saturated GCells. Globals breaking however can occurs at another global's request. - Change: In TrackCost, implement the new policy about locals segments that cannot break globals segments. The sorting class now accept flags to modulate the sorting function. Two options avalaibles: IgnoreAxisWeigth (to uses for strap segments) and DiscardGlobals (to uses with locals). - Change: In TrackCost, the "distance to fixed" have now an upper bound of 50 lambdas (no need to be greater because it means it's outside the begin & en GCells). Take account not only of fixed segment, but also of placed segments which makes bound. - Bug: In Track::_check(), while calling each individual TrackSegment check, uses it as the *first* argument of the "or", otherwise it may not be called. - Bug: In ProtectRoutingPad, loop over segment Collections while modificating it was producing non-deterministic results. The fact that a collection must be not modificated while beeing iterated is becoming a more and more painful problem.
2010-12-30 12:42:17 -06:00
Session::revalidateTopology();
_postDoglegs( perpandicular, parallel );
}
* ./Kite: - New: In BuildPowerRails, special processing for the power ring segments. The "diagonal" of vias at each corner is causing a misbehavior of the routing algorithm (due to fully saturated GCells in one direction). As a temporary fix, extend the segments so they form a "square corner". (problem arise on "d_in_i(22)"). - New: In RoutingEvent::_processNegociate, disable the "isForcedToHint()" feature. No noticeable loss of quality or speed. - New: In TrackElement/TrackSegment, wraps the AutoSegment parent's mechanism. Allows to gets the DataNegociate of either the segment or it's parent. - New: State::solveFullBlockages(), dedicated method to solves the case when all the allowed tracks of a segment are blocked, tries to moves up local segments and to break-up global ones. - New: RoutingEventLoop, a more sophisticated way to detect looping. Maintain a dynamic histogram of the last N (default 10) segments routeds, with the count of how many times they have occurred. If that count exeed 40, we *may* be facing a loop. - Change: In State::conflictSolve1, implement new policy. The global segments no more can be broken by local ones. The idea behind is that breaking a global on the request of a local will only produce more cluttering in the GCell. Globals must be keep straigth pass through, especially inside near-saturated GCells. Globals breaking however can occurs at another global's request. - Change: In TrackCost, implement the new policy about locals segments that cannot break globals segments. The sorting class now accept flags to modulate the sorting function. Two options avalaibles: IgnoreAxisWeigth (to uses for strap segments) and DiscardGlobals (to uses with locals). - Change: In TrackCost, the "distance to fixed" have now an upper bound of 50 lambdas (no need to be greater because it means it's outside the begin & en GCells). Take account not only of fixed segment, but also of placed segments which makes bound. - Bug: In Track::_check(), while calling each individual TrackSegment check, uses it as the *first* argument of the "or", otherwise it may not be called. - Bug: In ProtectRoutingPad, loop over segment Collections while modificating it was producing non-deterministic results. The fact that a collection must be not modificated while beeing iterated is becoming a more and more painful problem.
2010-12-30 12:42:17 -06:00
ltraceout(200);
return success;
}
bool TrackSegment::moveDown ( unsigned int flags )
{
bool success = false;
ltrace(200) << "TrackSegment::moveDown() " << flags << endl;
ltracein(200);
success = base()->moveDown( flags );
if (success) {
TrackElement* perpandicular = NULL;
TrackElement* parallel = NULL;
Session::revalidateTopology();
_postDoglegs( perpandicular, parallel );
}
ltraceout(200);
return success;
}
bool TrackSegment::moveAside ( unsigned int flags )
{
bool success = true;
ltrace(200) << "TrackSegment::moveAside() - "
<< ((flags&KtMoveToLeft )?"left" :"")
<< ((flags&KtMoveToRight)?"rigth":"") << endl;
ltracein(200);
if (flags & KtMoveToLeft ) base()->moveULeft ();
if (flags & KtMoveToRight) base()->moveURight();
ltraceout(200);
return success;
}
TrackElement* TrackSegment::getSourceDogleg ()
{
if (not hasSourceDogleg()) return NULL;
unsigned int direction = perpandicularTo( getDirection() );
TrackElement* dogleg = NULL;
forEach ( Segment*, isegment, base()->getAutoSource()->getSlaveComponents().getSubSet<Segment*>() ) {
dogleg = Session::lookup( *isegment );
if (dogleg and (dogleg->getDirection() == direction)) {
ltrace(200) << "Source dogleg: " << dogleg << endl;
return dogleg;
}
}
return NULL;
}
TrackElement* TrackSegment::getTargetDogleg ()
{
if (not hasSourceDogleg()) return NULL;
unsigned int direction = perpandicularTo( getDirection() );
TrackElement* dogleg = NULL;
forEach ( Segment*, isegment, base()->getAutoTarget()->getSlaveComponents().getSubSet<Segment*>() ) {
dogleg = Session::lookup( *isegment );
if (dogleg and (dogleg->getDirection() == direction)) {
ltrace(200) << "Target dogleg: " << dogleg << endl;
return dogleg;
}
}
return NULL;
}
bool TrackSegment::canDogleg ()
{
ltrace(200) << "TrackSegment::canDogleg()" << endl;
if (not isLocal()) {
ltrace(200) << "Failed: is not local." << endl;
return false;
}
if (isFixed()) {
ltrace(200) << "Failed: is fixed." << endl;
return false;
}
Implementation of pre-routing support (for clock-tree compliance). * New: In Katabatic, in <AutoContact>, this class is no longer derived from ExtentionGo. With the simplificated AutoContacts, there is no reason to do so, and it will save some QuadTree insertions/deletions. New factory function AutoContact::createFrom(Contact*) which try to build an AutoContact on top of a Hurricane::Contact. Of course that base contact *must fit* into one of the predefined Contact configurations (Terminal, Turn, HTee or VTee). NOTE: This implies that the pre-routed segments & contacts *are* correctly articulated, which is not the case when a Cell is read from disk in "ap" format. The pre-routing feature must be used for now without any re-read from disk. We will implement a re-articulating pre-process in the future. * Change: In Katabatic, in <AutoContact> derived classes, the ::updateCache() method now display an accurate error message if a segment is connected but has no AutoSegment conterpart (i.e. the lookup fails). * New: In Katabatic, in <AutoSegment>, the ::computeOptimal() method is short-circuited for pre-routed segments, the optimal axis position is considered to be the one it is currently on (i.e. we trust the designer). * New: In Katabatic, in <KatabaticEngine>, the ::loadGlobalRouting() method now accept a map of excluded nets (same as Knik). This map is the one of pre-routed nets. * New: In Katabatic, in layer assignment, do not try to displace fixed segments... * New: In Katabatic, in <AutoSegment>, new flag SegUserDefined and related methods to know if a segment comes from the global router (Knik) or is pre-routed (supplied by the user). * New: In Kite, In <BuildPowerRails>, support (exclusion) for pre-routed nets. * New: In Kite, In <GraphicKiteEngine> new menu entry for running the router on pre-routed nets ("Detailed Pre-Route"), also integrated in the all-on-one route command. * New: In Kite, In KiteEngine, new method ::_initDataBase() that group all the initialisation steps. It is a mix of calls between Knik and Kite initializations which are intertwinneds (may have to devellop a shared common base at a later point). It creates the Knik grid, then the Katabatic grid, then load pre-routed wires and power rails and protect isolated RoutingPads. Add support for a map of pre-routed nets (to be excluded for Knik calls). The method "::run()" now uses function flags, firstly to know if it is managing pre-routed wires or general purposes ones. * New: In Kite, in <NegociateWindow>, the "::run()" methods has now two modes. The normal one and the 'KtPreRoutedStage' that is for routing pre-routed nets. When in pre-route stage, the wires are fixed at the end of this step. * New: In Kite, in <TrackElement> add decorator for AutoSegment isUsedDefined(). * New: In Kite, in <TrackSegment>, the various ::canDogleg() methods returns false for a pre-routed (user-defined segment). * New: In Kite, in PyKiteEngine, added new method runNegociatePreRouted().
2014-06-21 13:16:47 -05:00
if (isRouted()) {
ltrace(200) << "Failed: belongs to an already routed net." << endl;
return false;
}
if (isSlackened()) {
ltrace(200) << "Failed: is local & slackened." << endl;
return false;
}
if (hasSourceDogleg() or hasTargetDogleg()) {
ltrace(200) << "Failed: already has source or target dogleg." << endl;
return false;
}
if (getDoglegLevel() > 3) {
ltrace(200) << "Failed: maximum dogleg level reached (4)." << endl;
return false;
}
return true;
}
bool TrackSegment::canDogleg ( Katabatic::GCell* doglegGCell, unsigned int flags )
{
ltrace(200) << "TrackSegment::canDogleg(GCell*) " << doglegGCell << endl;
ltracein(200);
if (doglegGCell->isUnderIoPad()) {
ltrace(200) << "false: Cannot dogleg in a GCell under an I/O Pad." << endl;
ltraceout(200);
return false;
}
if (isFixed()) {
ltrace(200) << "false: Cannot dogleg a fixed segment." << endl;
ltraceout(200);
return false;
}
Implementation of pre-routing support (for clock-tree compliance). * New: In Katabatic, in <AutoContact>, this class is no longer derived from ExtentionGo. With the simplificated AutoContacts, there is no reason to do so, and it will save some QuadTree insertions/deletions. New factory function AutoContact::createFrom(Contact*) which try to build an AutoContact on top of a Hurricane::Contact. Of course that base contact *must fit* into one of the predefined Contact configurations (Terminal, Turn, HTee or VTee). NOTE: This implies that the pre-routed segments & contacts *are* correctly articulated, which is not the case when a Cell is read from disk in "ap" format. The pre-routing feature must be used for now without any re-read from disk. We will implement a re-articulating pre-process in the future. * Change: In Katabatic, in <AutoContact> derived classes, the ::updateCache() method now display an accurate error message if a segment is connected but has no AutoSegment conterpart (i.e. the lookup fails). * New: In Katabatic, in <AutoSegment>, the ::computeOptimal() method is short-circuited for pre-routed segments, the optimal axis position is considered to be the one it is currently on (i.e. we trust the designer). * New: In Katabatic, in <KatabaticEngine>, the ::loadGlobalRouting() method now accept a map of excluded nets (same as Knik). This map is the one of pre-routed nets. * New: In Katabatic, in layer assignment, do not try to displace fixed segments... * New: In Katabatic, in <AutoSegment>, new flag SegUserDefined and related methods to know if a segment comes from the global router (Knik) or is pre-routed (supplied by the user). * New: In Kite, In <BuildPowerRails>, support (exclusion) for pre-routed nets. * New: In Kite, In <GraphicKiteEngine> new menu entry for running the router on pre-routed nets ("Detailed Pre-Route"), also integrated in the all-on-one route command. * New: In Kite, In KiteEngine, new method ::_initDataBase() that group all the initialisation steps. It is a mix of calls between Knik and Kite initializations which are intertwinneds (may have to devellop a shared common base at a later point). It creates the Knik grid, then the Katabatic grid, then load pre-routed wires and power rails and protect isolated RoutingPads. Add support for a map of pre-routed nets (to be excluded for Knik calls). The method "::run()" now uses function flags, firstly to know if it is managing pre-routed wires or general purposes ones. * New: In Kite, in <NegociateWindow>, the "::run()" methods has now two modes. The normal one and the 'KtPreRoutedStage' that is for routing pre-routed nets. When in pre-route stage, the wires are fixed at the end of this step. * New: In Kite, in <TrackElement> add decorator for AutoSegment isUsedDefined(). * New: In Kite, in <TrackSegment>, the various ::canDogleg() methods returns false for a pre-routed (user-defined segment). * New: In Kite, in PyKiteEngine, added new method runNegociatePreRouted().
2014-06-21 13:16:47 -05:00
if (isRouted()) {
ltrace(200) << "false: Cannot dogleg a segment belonging to an already routed net." << endl;
ltraceout(200);
return false;
}
if (isLocal()) {
if (hasSourceDogleg() or hasTargetDogleg()) {
ltrace(200) << "false: Cannot dogleg again a local segment." << endl;
ltraceout(200);
return false;
}
if (isSlackened()) {
ltrace(200) << "false: Cannot dogleg a local slackened segment." << endl;
ltraceout(200);
return false;
}
}
if (getDoglegLevel() > 3) {
ltrace(200) << "Failed: maximum dogleg level reached (4)." << endl;
ltraceout(200);
return false;
}
vector<Katabatic::GCell*> gcells;
getGCells( gcells );
ltrace(190) << "Source: " << *gcells.begin () << endl;
ltrace(190) << "Target: " << *gcells.rbegin() << endl;
bool isGCellInside = false;
for ( size_t igcell=0 ; igcell<gcells.size() ; ++igcell ) {
if (doglegGCell != gcells[igcell]) continue;
isGCellInside = true;
if (igcell == 0) {
if (hasSourceDogleg()) {
if (flags & KtAllowDoglegReuse) return true;
ltrace(200) << "false: Cannot dogleg again in source GCell." << endl;
ltraceout(200);
return false;
}
}
if (hasTargetDogleg() and (igcell == gcells.size()-1)) {
if (flags & KtAllowDoglegReuse) {
ltrace(200) << "true" << endl;
ltraceout(200);
return true;
}
ltrace(200) << "false: Cannot dogleg again in target GCell." << endl;
ltraceout(200);
return false;
}
break;
}
if (not isGCellInside) {
ltrace(200) << "false: dogleg GCell is outside segment support (go outside GCell active)." << endl;
ltraceout(200);
return false;
}
ltrace(200) << "true" << endl;
ltraceout(200);
return true;
}
bool TrackSegment::canDogleg ( Interval interval )
{
ltrace(200) << "TrackSegment::canDogleg(Interval) " << interval << endl;
if (isFixed()) {
ltrace(200) << "Failed: is fixed" << endl;
return false;
}
Implementation of pre-routing support (for clock-tree compliance). * New: In Katabatic, in <AutoContact>, this class is no longer derived from ExtentionGo. With the simplificated AutoContacts, there is no reason to do so, and it will save some QuadTree insertions/deletions. New factory function AutoContact::createFrom(Contact*) which try to build an AutoContact on top of a Hurricane::Contact. Of course that base contact *must fit* into one of the predefined Contact configurations (Terminal, Turn, HTee or VTee). NOTE: This implies that the pre-routed segments & contacts *are* correctly articulated, which is not the case when a Cell is read from disk in "ap" format. The pre-routing feature must be used for now without any re-read from disk. We will implement a re-articulating pre-process in the future. * Change: In Katabatic, in <AutoContact> derived classes, the ::updateCache() method now display an accurate error message if a segment is connected but has no AutoSegment conterpart (i.e. the lookup fails). * New: In Katabatic, in <AutoSegment>, the ::computeOptimal() method is short-circuited for pre-routed segments, the optimal axis position is considered to be the one it is currently on (i.e. we trust the designer). * New: In Katabatic, in <KatabaticEngine>, the ::loadGlobalRouting() method now accept a map of excluded nets (same as Knik). This map is the one of pre-routed nets. * New: In Katabatic, in layer assignment, do not try to displace fixed segments... * New: In Katabatic, in <AutoSegment>, new flag SegUserDefined and related methods to know if a segment comes from the global router (Knik) or is pre-routed (supplied by the user). * New: In Kite, In <BuildPowerRails>, support (exclusion) for pre-routed nets. * New: In Kite, In <GraphicKiteEngine> new menu entry for running the router on pre-routed nets ("Detailed Pre-Route"), also integrated in the all-on-one route command. * New: In Kite, In KiteEngine, new method ::_initDataBase() that group all the initialisation steps. It is a mix of calls between Knik and Kite initializations which are intertwinneds (may have to devellop a shared common base at a later point). It creates the Knik grid, then the Katabatic grid, then load pre-routed wires and power rails and protect isolated RoutingPads. Add support for a map of pre-routed nets (to be excluded for Knik calls). The method "::run()" now uses function flags, firstly to know if it is managing pre-routed wires or general purposes ones. * New: In Kite, in <NegociateWindow>, the "::run()" methods has now two modes. The normal one and the 'KtPreRoutedStage' that is for routing pre-routed nets. When in pre-route stage, the wires are fixed at the end of this step. * New: In Kite, in <TrackElement> add decorator for AutoSegment isUsedDefined(). * New: In Kite, in <TrackSegment>, the various ::canDogleg() methods returns false for a pre-routed (user-defined segment). * New: In Kite, in PyKiteEngine, added new method runNegociatePreRouted().
2014-06-21 13:16:47 -05:00
if (isRouted()) {
ltrace(200) << "Failed: belongs to an already routed net" << endl;
return false;
}
if (not isLocal()) {
ltrace(200) << "Failed: is not local" << endl;
return false;
}
if (hasSourceDogleg() or hasTargetDogleg() or isSlackened()) {
ltrace(200) << "Failed: already has source and/or target dogleg or slackened." << endl;
return false;
}
if (getDoglegLevel() > 3) {
ltrace(200) << "Failed: maximum dogleg level reached (4)." << endl;
return false;
}
return _base->canDogleg(interval);
}
TrackElement* TrackSegment::makeDogleg ()
{
Katabatic::AutoContact* source = _base->getAutoSource();
Katabatic::AutoContact* target = _base->getAutoTarget();
Katabatic::GCell* gcell = _base->getAutoSource()->getGCell();
TrackElement* dogleg = NULL;
TrackElement* parallel = NULL;
makeDogleg( gcell, dogleg, parallel );
if (dogleg) {
if (source->isTerminal() xor target->isTerminal()) {
if (target->isTerminal())
source = target;
DbU::Unit axis = (_base->isHorizontal()) ? source->getX() : source->getY();
ltrace(200) << "Setting dogleg axis @" << DbU::getValueString(axis) << endl;
dogleg->setAxis( axis );
}
}
return dogleg;
}
TrackElement* TrackSegment::makeDogleg ( Katabatic::GCell* dogLegGCell
, TrackElement*& perpandicular
, TrackElement*& parallel
)
{
ltrace(200) << "TrackSegment::makeDogleg(GCell*)" << endl;
ltrace(200) << "Break in: " << dogLegGCell << endl;
base()->makeDogleg( dogLegGCell );
_postDoglegs( perpandicular, parallel );
return perpandicular;
}
TrackElement* TrackSegment::makeDogleg ( Interval interval, unsigned int& flags )
{
TrackElement* perpandicular = NULL;
TrackElement* parallel = NULL;
ltrace(200) << "TrackSegment::makeDogleg(Interval)" << endl;
flags = base()->makeDogleg( interval );
_postDoglegs( perpandicular, parallel );
return perpandicular;
}
void TrackSegment::_postDoglegs ( TrackElement*& perpandicular, TrackElement*& parallel )
{
ltrace(200) << "TrackSegment::_postDoglegs()" << endl;
ltracein(200);
unsigned int doglegLevel = 0;
const vector<AutoSegment*>& doglegs = Session::getDoglegs();
vector<TrackElement*> segments;
if (not doglegs.empty()) {
if (doglegs.size()%3 != 0)
cerr << Error( "Session::_postDoglegs(): Number of created segments incoherent with pure doglegs (%u)."
, doglegs.size() ) << endl;
for ( size_t i=0 ; i<doglegs.size() ; i+=3 ) {
ltrace(200) << "Looking up original: " << doglegs[i] << endl;
segments.push_back( Session::getNegociateWindow()->createTrackSegment(doglegs[i],0) );
segments[i+0]->setFlags( TElemTargetDogleg );
segments[i+0]->getDataNegociate()->resetRipupCount();
//segments[i+0]->getDataNegociate()->resetStateCount();
segments[i+0]->getDataNegociate()->setState( DataNegociate::RipupPerpandiculars );
doglegLevel = segments[i+0]->getDoglegLevel() + 1;
segments[i+0]->setDoglegLevel( doglegLevel );
ltrace(200) << "Looking up new perpand: " << doglegs[i+1] << endl;
segments.push_back( Session::getNegociateWindow()->createTrackSegment(doglegs[i+1],0) );
segments[i+1]->setFlags( TElemSourceDogleg|TElemTargetDogleg );
segments[i+1]->setDoglegLevel( doglegLevel );
ltrace(200) << "Looking up new parallel: " << doglegs[i+2] << endl;
segments.push_back( Session::getNegociateWindow()->createTrackSegment(doglegs[i+2],0) );
segments[i+2]->setFlags( TElemSourceDogleg );
segments[i+2]->getDataNegociate()->resetStateCount();
segments[i+2]->getDataNegociate()->setState( segments[i+0]->getDataNegociate()->getState() );
segments[i+2]->setDoglegLevel( doglegLevel );
segments[i+0]->getDataNegociate()->setChildSegment( segments[i+2] );
perpandicular = segments[i+1];
parallel = segments[i+2];
}
// TO CHECK
// If the original TrackElement was inserted in a Track, must check
// if the new bit takes it's place or not.
//if ( getGCell() != originalGCell ) swapTrack ( segments[2] );
for ( size_t i=0 ; i<doglegs.size() ; ++i ) {
segments[i]->reschedule ( ((i%3==1) ? 0 : 1) );
const char* segPart = "Unknown";
switch ( i%3 ) {
case 0: segPart = "original "; break;
case 1: segPart = "perpand "; break;
case 2: segPart = "new paral"; break;
}
ltrace(200) << "[" << (i/3) << ":" << i << "] " << segPart << ": "
<< segments[i] << endl;
}
}
ltraceout(200);
Session::doglegReset();
}
bool TrackSegment::_check () const
{
if (not base()) return true;
bool coherency = true;
if (not base()->isCanonical()) {
cerr << "[CHECK] " << this << " supporting AutoSegment is not canonical." << endl;
coherency = false;
}
DbU::Unit min;
DbU::Unit max;
base()->checkPositions();
base()->getCanonical( min, max );
if (getSourceU() != min) {
Implementation of pre-routing support (for clock-tree compliance). * New: In Katabatic, in <AutoContact>, this class is no longer derived from ExtentionGo. With the simplificated AutoContacts, there is no reason to do so, and it will save some QuadTree insertions/deletions. New factory function AutoContact::createFrom(Contact*) which try to build an AutoContact on top of a Hurricane::Contact. Of course that base contact *must fit* into one of the predefined Contact configurations (Terminal, Turn, HTee or VTee). NOTE: This implies that the pre-routed segments & contacts *are* correctly articulated, which is not the case when a Cell is read from disk in "ap" format. The pre-routing feature must be used for now without any re-read from disk. We will implement a re-articulating pre-process in the future. * Change: In Katabatic, in <AutoContact> derived classes, the ::updateCache() method now display an accurate error message if a segment is connected but has no AutoSegment conterpart (i.e. the lookup fails). * New: In Katabatic, in <AutoSegment>, the ::computeOptimal() method is short-circuited for pre-routed segments, the optimal axis position is considered to be the one it is currently on (i.e. we trust the designer). * New: In Katabatic, in <KatabaticEngine>, the ::loadGlobalRouting() method now accept a map of excluded nets (same as Knik). This map is the one of pre-routed nets. * New: In Katabatic, in layer assignment, do not try to displace fixed segments... * New: In Katabatic, in <AutoSegment>, new flag SegUserDefined and related methods to know if a segment comes from the global router (Knik) or is pre-routed (supplied by the user). * New: In Kite, In <BuildPowerRails>, support (exclusion) for pre-routed nets. * New: In Kite, In <GraphicKiteEngine> new menu entry for running the router on pre-routed nets ("Detailed Pre-Route"), also integrated in the all-on-one route command. * New: In Kite, In KiteEngine, new method ::_initDataBase() that group all the initialisation steps. It is a mix of calls between Knik and Kite initializations which are intertwinneds (may have to devellop a shared common base at a later point). It creates the Knik grid, then the Katabatic grid, then load pre-routed wires and power rails and protect isolated RoutingPads. Add support for a map of pre-routed nets (to be excluded for Knik calls). The method "::run()" now uses function flags, firstly to know if it is managing pre-routed wires or general purposes ones. * New: In Kite, in <NegociateWindow>, the "::run()" methods has now two modes. The normal one and the 'KtPreRoutedStage' that is for routing pre-routed nets. When in pre-route stage, the wires are fixed at the end of this step. * New: In Kite, in <TrackElement> add decorator for AutoSegment isUsedDefined(). * New: In Kite, in <TrackSegment>, the various ::canDogleg() methods returns false for a pre-routed (user-defined segment). * New: In Kite, in PyKiteEngine, added new method runNegociatePreRouted().
2014-06-21 13:16:47 -05:00
cerr << "[CHECK] " << this << " has bad source position "
<< "cache:" << DbU::getValueString(getSourceU()) << " vs. "
<< "canon:" << DbU::getValueString(min) << "." << endl;
coherency = false;
}
if (getTargetU() != max) {
Implementation of pre-routing support (for clock-tree compliance). * New: In Katabatic, in <AutoContact>, this class is no longer derived from ExtentionGo. With the simplificated AutoContacts, there is no reason to do so, and it will save some QuadTree insertions/deletions. New factory function AutoContact::createFrom(Contact*) which try to build an AutoContact on top of a Hurricane::Contact. Of course that base contact *must fit* into one of the predefined Contact configurations (Terminal, Turn, HTee or VTee). NOTE: This implies that the pre-routed segments & contacts *are* correctly articulated, which is not the case when a Cell is read from disk in "ap" format. The pre-routing feature must be used for now without any re-read from disk. We will implement a re-articulating pre-process in the future. * Change: In Katabatic, in <AutoContact> derived classes, the ::updateCache() method now display an accurate error message if a segment is connected but has no AutoSegment conterpart (i.e. the lookup fails). * New: In Katabatic, in <AutoSegment>, the ::computeOptimal() method is short-circuited for pre-routed segments, the optimal axis position is considered to be the one it is currently on (i.e. we trust the designer). * New: In Katabatic, in <KatabaticEngine>, the ::loadGlobalRouting() method now accept a map of excluded nets (same as Knik). This map is the one of pre-routed nets. * New: In Katabatic, in layer assignment, do not try to displace fixed segments... * New: In Katabatic, in <AutoSegment>, new flag SegUserDefined and related methods to know if a segment comes from the global router (Knik) or is pre-routed (supplied by the user). * New: In Kite, In <BuildPowerRails>, support (exclusion) for pre-routed nets. * New: In Kite, In <GraphicKiteEngine> new menu entry for running the router on pre-routed nets ("Detailed Pre-Route"), also integrated in the all-on-one route command. * New: In Kite, In KiteEngine, new method ::_initDataBase() that group all the initialisation steps. It is a mix of calls between Knik and Kite initializations which are intertwinneds (may have to devellop a shared common base at a later point). It creates the Knik grid, then the Katabatic grid, then load pre-routed wires and power rails and protect isolated RoutingPads. Add support for a map of pre-routed nets (to be excluded for Knik calls). The method "::run()" now uses function flags, firstly to know if it is managing pre-routed wires or general purposes ones. * New: In Kite, in <NegociateWindow>, the "::run()" methods has now two modes. The normal one and the 'KtPreRoutedStage' that is for routing pre-routed nets. When in pre-route stage, the wires are fixed at the end of this step. * New: In Kite, in <TrackElement> add decorator for AutoSegment isUsedDefined(). * New: In Kite, in <TrackSegment>, the various ::canDogleg() methods returns false for a pre-routed (user-defined segment). * New: In Kite, in PyKiteEngine, added new method runNegociatePreRouted().
2014-06-21 13:16:47 -05:00
cerr << "[CHECK] " << this << " has bad target position "
<< "cache:" << DbU::getValueString(getTargetU()) << " vs. "
<< "canon:" << DbU::getValueString(max) << "." << endl;
coherency = false;
}
return coherency;
}
string TrackSegment::_getTypeName () const
{ return "TrackSegment"; }
string TrackSegment::_getString () const
{
string s1 = _base->_getString();
string s2 = " [" + DbU::getValueString(_sourceU)
+ ":" + DbU::getValueString(_targetU) + "]"
+ " " + DbU::getValueString(_targetU-_sourceU)
+ " " + getString(_dogLegLevel)
+ " [" + ((_track) ? getString(_index) : "npos") + "] "
Implementation of pre-routing support (for clock-tree compliance). * New: In Katabatic, in <AutoContact>, this class is no longer derived from ExtentionGo. With the simplificated AutoContacts, there is no reason to do so, and it will save some QuadTree insertions/deletions. New factory function AutoContact::createFrom(Contact*) which try to build an AutoContact on top of a Hurricane::Contact. Of course that base contact *must fit* into one of the predefined Contact configurations (Terminal, Turn, HTee or VTee). NOTE: This implies that the pre-routed segments & contacts *are* correctly articulated, which is not the case when a Cell is read from disk in "ap" format. The pre-routing feature must be used for now without any re-read from disk. We will implement a re-articulating pre-process in the future. * Change: In Katabatic, in <AutoContact> derived classes, the ::updateCache() method now display an accurate error message if a segment is connected but has no AutoSegment conterpart (i.e. the lookup fails). * New: In Katabatic, in <AutoSegment>, the ::computeOptimal() method is short-circuited for pre-routed segments, the optimal axis position is considered to be the one it is currently on (i.e. we trust the designer). * New: In Katabatic, in <KatabaticEngine>, the ::loadGlobalRouting() method now accept a map of excluded nets (same as Knik). This map is the one of pre-routed nets. * New: In Katabatic, in layer assignment, do not try to displace fixed segments... * New: In Katabatic, in <AutoSegment>, new flag SegUserDefined and related methods to know if a segment comes from the global router (Knik) or is pre-routed (supplied by the user). * New: In Kite, In <BuildPowerRails>, support (exclusion) for pre-routed nets. * New: In Kite, In <GraphicKiteEngine> new menu entry for running the router on pre-routed nets ("Detailed Pre-Route"), also integrated in the all-on-one route command. * New: In Kite, In KiteEngine, new method ::_initDataBase() that group all the initialisation steps. It is a mix of calls between Knik and Kite initializations which are intertwinneds (may have to devellop a shared common base at a later point). It creates the Knik grid, then the Katabatic grid, then load pre-routed wires and power rails and protect isolated RoutingPads. Add support for a map of pre-routed nets (to be excluded for Knik calls). The method "::run()" now uses function flags, firstly to know if it is managing pre-routed wires or general purposes ones. * New: In Kite, in <NegociateWindow>, the "::run()" methods has now two modes. The normal one and the 'KtPreRoutedStage' that is for routing pre-routed nets. When in pre-route stage, the wires are fixed at the end of this step. * New: In Kite, in <TrackElement> add decorator for AutoSegment isUsedDefined(). * New: In Kite, in <TrackSegment>, the various ::canDogleg() methods returns false for a pre-routed (user-defined segment). * New: In Kite, in PyKiteEngine, added new method runNegociatePreRouted().
2014-06-21 13:16:47 -05:00
+ ((isRouted() ) ? "R" : "-")
+ ((isSlackened() ) ? "S" : "-")
+ ((_track ) ? "T" : "-")
+ ((canRipple() ) ? "r" : "-")
+ ((hasSourceDogleg()) ? "s" : "-")
+ ((hasTargetDogleg()) ? "t" : "-");
Implementation of pre-routing support (for clock-tree compliance). * New: In Katabatic, in <AutoContact>, this class is no longer derived from ExtentionGo. With the simplificated AutoContacts, there is no reason to do so, and it will save some QuadTree insertions/deletions. New factory function AutoContact::createFrom(Contact*) which try to build an AutoContact on top of a Hurricane::Contact. Of course that base contact *must fit* into one of the predefined Contact configurations (Terminal, Turn, HTee or VTee). NOTE: This implies that the pre-routed segments & contacts *are* correctly articulated, which is not the case when a Cell is read from disk in "ap" format. The pre-routing feature must be used for now without any re-read from disk. We will implement a re-articulating pre-process in the future. * Change: In Katabatic, in <AutoContact> derived classes, the ::updateCache() method now display an accurate error message if a segment is connected but has no AutoSegment conterpart (i.e. the lookup fails). * New: In Katabatic, in <AutoSegment>, the ::computeOptimal() method is short-circuited for pre-routed segments, the optimal axis position is considered to be the one it is currently on (i.e. we trust the designer). * New: In Katabatic, in <KatabaticEngine>, the ::loadGlobalRouting() method now accept a map of excluded nets (same as Knik). This map is the one of pre-routed nets. * New: In Katabatic, in layer assignment, do not try to displace fixed segments... * New: In Katabatic, in <AutoSegment>, new flag SegUserDefined and related methods to know if a segment comes from the global router (Knik) or is pre-routed (supplied by the user). * New: In Kite, In <BuildPowerRails>, support (exclusion) for pre-routed nets. * New: In Kite, In <GraphicKiteEngine> new menu entry for running the router on pre-routed nets ("Detailed Pre-Route"), also integrated in the all-on-one route command. * New: In Kite, In KiteEngine, new method ::_initDataBase() that group all the initialisation steps. It is a mix of calls between Knik and Kite initializations which are intertwinneds (may have to devellop a shared common base at a later point). It creates the Knik grid, then the Katabatic grid, then load pre-routed wires and power rails and protect isolated RoutingPads. Add support for a map of pre-routed nets (to be excluded for Knik calls). The method "::run()" now uses function flags, firstly to know if it is managing pre-routed wires or general purposes ones. * New: In Kite, in <NegociateWindow>, the "::run()" methods has now two modes. The normal one and the 'KtPreRoutedStage' that is for routing pre-routed nets. When in pre-route stage, the wires are fixed at the end of this step. * New: In Kite, in <TrackElement> add decorator for AutoSegment isUsedDefined(). * New: In Kite, in <TrackSegment>, the various ::canDogleg() methods returns false for a pre-routed (user-defined segment). * New: In Kite, in PyKiteEngine, added new method runNegociatePreRouted().
2014-06-21 13:16:47 -05:00
s1.insert( s1.size()-1, s2 );
return s1;
}
Record* TrackSegment::_getRecord () const
{
Record* record = TrackElement::_getRecord();
record->add( getSlot( "_base", _base ) );
return record;
}
} // Kite namespace.